首页 > 期刊 > 自然科学与工程技术 > 工程科技II > 水利水电工程 > 南水北调与水利科技 > 基于芒种日分析的BP模型在中长期汛期降雨量预报中的应用 【正文】
摘要:为提高汛期降雨量中长期预报的精度,采用芒种日分析充分提取有用信息,基于BP神经网络模型,构建了芒种日分析的BP神经网络耦合模型,并将其应用于北京市中长期汛期降雨量的预测。结果表明:相比于常规BP模型,耦合BP模型能够有效提高预报的精度,验证期耦合BP模型模拟值与实测值相关系数为0.78,明显优于常规BP模型的0.42;耦合BP模型较常规BP模型的预报合格率提高了40%。芒种日分析能够充分发掘隐藏在原始数据中的有用信息,降低极端值等噪声数据对预报结果的影响,有效提高了模型的预报精度。将传统节气与人工智能预报技术相结合,为中长期汛期降雨量预报提供了一种新思路。
注:因版权方要求,不能公开全文,如需全文,请咨询杂志社