时间:2023-01-03 15:16:12
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇自动化焊接技术论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
关键词:管道,焊接,新技术
当前管道的工作参数得到了很大的改变,其使用领域正在逐渐扩展,这就使得焊接技术的要求变得更加严格。最为常用的焊接方法、焊接工艺、焊接材料、焊接设备等方面的使用情况得到了很大的改进,而在高效、低耗、低污染等方面的要求也有所提升。随着技术竞争不断加大,焊接工作者面临的焊接技术难题也会越来越复杂,这就需要积极研究出新的焊接方法,运用先进的焊接技术投入到工业生产中,促进管道的焊接技术得到显著的改进。
1.当前管道焊接施工面临的相关问题
1.1现场施工环焊缝的焊接
低C微合金控轧及加速冷却后将会出现管线钢,且力学性能较强。但焊缝是属于电弧熔化的一种组织形式,其强韧性匹配程度水平较低,在使用过程中倘若与母材韧性匹配存在着很大的难度。在经过X80管线钢的相关检验后得出,当管线钢强度级别增强时,其环焊接头达到高强匹配的难度将逐渐增加。这就使得管线钢强度的大大增强,给研制高强度、高韧性焊接材料造成了较大的麻烦,而现场环焊缝的焊接对于高强度管线钢运用有着很大的阻碍。
1.2管道建设的焊接工艺
焊接施工作业点对于整个管道建设而言,其能够出现不同情况的变化,由于自然环境出现的清理复杂,使得长输管道的施工常出现很多不同的因素影响,如:人文环境、地质形貌、气候条件等。管道施工的焊接工艺要想达到各种焊接环境的需要,就必须保证管道施工的焊接工艺呈现多种形式。但是当前管道环焊缝最为普遍运用等不断变化的同时,焊接施工劳动强度也会随之增强,当前的自保护药芯焊丝半自动焊工艺却难以满足今后的管道建设需要。
1.3高效率的根焊方法的不断开发
管道焊接施工大多采用流水作业方式,根焊完成的速度决定了整条管道建设的效率。而焊部焊缝中的未熔合、未焊透、咬边、内凹等缺欠是影响管道安全的重要因素。因此,根焊的质量和速度是管道建设的关键环节。目前管道建设常采用的根焊方法有纤维素焊条电弧焊、数字电源熔化极气保护半自动焊和内焊机熔化极气保护自动焊等,几种方法在焊接工艺性、焊接质量和焊接速度等方面各有所长。管道技术人员仍在不断开发新的高质量、高效率的根焊方法。
2.管道中常用两种焊接工艺的对比分析
2.1纤维素型焊条下向电弧焊焊接工艺
纤维素型焊条在使用过程中其电弧吹力大,且工艺效果显著,能够在单面焊双面成型的根部焊接中发挥作用。自保护药芯焊丝由于半自动焊,其操作形式较为优越,且位置能够快速成型,熔敷性能好,使得焊工对于此项技术很好的把握。这类形式的焊接方法主要用在野外环境下的施工,在当前的管道焊接施工中也是极为普遍的方式。伴随着管道输送压力和钢管强度级别的有所改善,给环焊缝的强韧性制定了更加严格的标准,难以满足自保护药芯焊丝产品的生产需要。
2.2熔化极气体保护下向自动焊工艺
熔化极气保护焊过程中,在焊接区中的优越性体现在维护边界,生产快速,能够实施自动化生产,且采取必要的全位置焊接。这使得该技术在长输管道焊接中的自动化焊接方面得到了充分的运用。自动焊焊接的特点在于效率高、消耗低、稳定型好,对于恶劣的环境条件中使用效果显著。对于坡口形式的标准更加高,当其难以达到标准需要时,则将导致管口组织的精度较差,导致烧穿、未焊透、未熔合等问题。这就需要在焊接施工现场结合配管端坡口的相关形式做好处理,以保证最终的精度达到相关的要求。但在外界因素的影响下,自动焊接施工涉及到的范围较大,而焊接机组需经过一个调整时期,这对改正焊接作用的发挥有着很大的阻碍作用。
3.大直径厚壁管的高效焊接法
当管道的形式属于全焊结构时,其焊接工作的劳动强度将变得更强,且在质量方面的标准也会大大提升。但焊接工作者在施工过程中根据自己的实际经验进行研究,取得了客观的技术进步。而在输送管线工作参数积极改进的当前,对大直径厚壁管的要求更为严格。在生产过程中主要是运用把钢板压制成形的方式,这样才能保证管道的使用性能不会被影响。针对厚壁管焊接工作量较大这一问题,需要使用串列电弧高速埋弧焊来增加钢管的产量。对于5丝埋弧焊焊接16 mm厚壁管外纵缝而言,其最高焊接速度能够达到156m/h,而焊接38mm厚壁管外纵缝的速度则达100m/h。
4.大直径管对接全位置TIG焊机
对于我国的管道生产企业而言,很多中型企业的焊接机械化、自动化水平已经达到了一个较高的台阶。焊接机械化主要是说焊接机头的运动和焊丝的给送通过机械化的形式来实现,不需要人工进行操作,这就需要在焊接过程中焊头适当调整接缝中心位置,并对相关的焊接操作做好观察调整。焊接自动化主要是说焊接过程在开始到结束后这一过程都是通过焊机的执行机构自动实现。不需要操作工人为改动。整个调整过程都是在焊机的自适应控制系统下完成的。论文参考网。由于自适应控制系统主要是受到高灵敏传感器的作用,采用了先进的人工智能软件,这对于数据信息的处理能够发挥出明显的优势。
大直径管对接的全位置TIG焊在当前的管道焊接中属于一项技术含量较高的操作。当前企业要想培训出技能高度熟练的焊工则需投入较大的资金,并且在焊接质量上难以得到保证,产品的焊接质量必须靠焊工自己积累的经验才能有所提升。为避免焊工技能不足带来的问题,防止人为因素给产品焊接质量造成影响,这就需要采用先进的智能操作方式来实现生产。这种自动焊管机能够在直径165~1000mm,壁厚7.0~35.0mm的不锈钢管环缝中得到有效的处理。焊机的自动控制系统使用的是视觉和听觉传感器,并通过计算机来实现控制。
自适应控制和质量监控系统在使用过程中的理论依据为:自适应控制采取视觉传感器实时检测后,对不同的信息或图像进行数据化处理,这样能够按照一定的逻辑规则运行,对焊接情况进行实时观察。且焊缝质量的监控系统则按照激光视频传感器,听觉传感器、电流传感器的具体情况来测定焊接熔池尺寸、焊道形状,这样能够有效提高焊缝质量。论文参考网。论文参考网。
安装视觉传感器对于自适应控制系统的使用过程有着较大的作用,把所摄取的对接区图像输送给计算机后就能起到很好的显示作用。掌握计算机软件图像后,能够对坡口边缘的位置进行测量,便于以后的焊接操作。
摄像机和激光聚光灯是构成激光视频传感器的主要部件,主要安装位置是焊枪后面。其生成的图像可以对焊道表面与坡口侧壁之间的角度进行测量估算。而控制系统结合相关的信息能够实现焊接参数的确定。
5.结束语
科学技术的不断发展使得管道制造企业研制了很多先进的焊接技术,并且运用到了大量的现代化焊接设备,而焊接生产的工艺水平也在这种环境下得到了很好的改进。各个管道制造企业应该在生产中积极采用这些技术,并根据自身的经验不断研发新的焊接技术,提高产品的焊接质量。
【参考文献】
[1] 潘家华.全球能源变换级管线钢的发展趋势[ J].焊管, 2008,31(1):9-11.
[2] 王晓香.加快技术进步转变增长方式促进我国焊管业又好又快发展[J].焊管, 2008,31(1):5-8.
[3] 薛振奎,隋永莉.国内外油气管道焊接施工现状与展望[J].焊接技术, 2001, 140(30):16-18.
关键词:双丝焊;造船;高速列车;管道工程.
【分类号】:TF762.3
前言
随着中国经济的快速发展,中国的钢产量和用量均达到世界第一位,这极大地推动了焊接技术的发展,目前中国钢结构的焊接工作量已达到世界焊接强国的水平[1]。随着海洋装备、航空探测器、大飞机、高速列车等产业的发展,对焊接技术和焊接质量的要求越来越高,因此提高焊接过程的生产效率,探寻和发展优质、高效、节能的焊接方法已成为满足实际生产需要的重要任务[2-4]。随着先进制造业的发展,传统单丝焊接方法的生产效率已趋于极限,无法满足现代化工业技术发展的步伐。同单丝焊接技术相比,双丝焊具有焊接速度高、熔敷效率高、焊缝质量好等优点,能够极大地提高焊接生产效率,因此受到越来越多的关注[5-7]。
1. 双丝焊的分类
根据焊接特点和保护方式不同,双丝焊主要包括双丝埋弧焊和双丝气体保护焊两种[8-10]。双丝埋弧焊因其高效、节能、优质的特点,在国内外造船、桥梁、压力容器和管道领域都得到了广泛的应用。但是,双丝埋弧焊只适于平焊长的直焊缝和圆形纵、环焊缝,而且焊缝熔深大,其应用有一定的局限性。双丝气体保护焊具有焊接高速快、熔敷率高的特点,不仅可以焊接薄板工件,也可以焊接厚板结构,在输气管道、压力窗口、钢管、桥梁、船舶等领域具有较好的应用前景。
根据焊接电路配置和焊丝的装配不同,双丝焊分为串列双丝焊、并列双丝焊、串联双丝焊、双丝三弧焊和双丝预热填丝焊等[11, 12]。本文主要介绍串列双丝焊、并列双丝焊、串联双丝焊。
1.1 串列双丝焊
串列双丝焊中每根焊丝由一个电源控制,是目前最受关注的双丝焊技术。气体保护串联双丝焊一般称为TANDEM双丝焊。根据焊丝的相对位置不同,串列双丝焊分为分离电弧法和共熔池法。在双丝埋弧焊中,分离电弧法应用较广。分离电弧法实际上是由两套传统的单丝埋弧焊系统组装而成,设备简单,通用性强。通常情况下,一根焊丝直流反接,另一根焊丝使用交流电源,从而即能够获得较大的熔深,也能够保证焊缝成形美观,目前该方法已在造船、压力容器和管道焊接领域广泛应用。
共熔池法同分离电弧焊最大的区别在于焊枪部分,它同样包括两台焊机和两台送丝机,但只有一把焊枪。共熔池法多用于气保焊,两根焊丝分别使用单独的导电嘴,共用一个气体喷嘴。焊接时,两根焊丝分别引弧,在双电弧中熔化形成一个熔池。由于双电弧距离较近,相互干扰,一般使用脉冲电源。
1.2 并列双丝焊
并列双丝焊的两根焊丝共用一个电源和一个导电嘴,两根焊丝平行排列,一般垂直于母材,焊丝的直径和成分可以更换和调整,但两根焊丝的送进速度相同。并列双丝焊实质上是利用两个较细的焊丝来代替一根较粗的焊丝,由于存在两个电弧,母材的热影响区变宽,但热输入变小,焊缝金属的过热倾向减小,而且焊接速度较单丝焊有明显提高。气体保护并列双丝焊一般称为TWIN-ARC双丝焊,两根焊丝共用一个导电嘴和气体喷嘴。
1.3 串联双丝焊
串联双丝焊的母材不通电,两焊丝通过导电嘴分别接电源的正负两极,两焊丝串联,电弧在两焊丝之间产生。焊接时即可用直流电源也可用交流电源,两焊丝之间的夹角一般为30-45°。这种焊接工艺熔敷速度是传统单丝焊的1.5-2倍,由于母材不接电源,母材的热输入少,熔深浅,熔敷层金属的稀释率一般小于10%。
双丝间接电弧气体保护焊是一种比较新的串联双丝焊技术,该方法采用直流电源,两套送丝机构分别控制两根焊丝的送进,电弧可在距工件不同的位置引弧和燃烧,两极性斑点分别在两焊丝上,利用弧柱热量和熔滴携带的热量熔化母材形成焊缝。
2. 双丝焊的发展及现状
双丝焊的研究基本都是从埋弧焊开始,双丝自动埋弧焊最早的应用出现在20世纪50年代,该技术的出现使焊接效率发生了根本性的提升[13]。双丝自动埋弧焊包括单电源双丝和串列双弧两种,单电源双丝焊熔透能力较差,一般仅适用于窄间隙焊接,而串列双弧中双丝由两个电源单独控制,具有熔深大、熔敷速度高、焊缝金属稀释率接近单丝焊的特点,目前已在实际生产中得到广泛应用。
气体保护双丝焊的研究最早出现在1955 年。同双丝埋弧焊一样,双丝气保焊也可以减小焊接变形,提高焊接质量和生产效率,同时节约焊接材料[14]。国外科研机构对于双丝气保焊的研究较早,目前已完全掌握相关设备的成熟生产工艺。例如,加拿大焊接研究所研制了脉冲双焊丝GMAW 焊接设备,用于窄间隙的高强钢焊接;日本的NKK 船厂采用了双高速旋转电弧的焊接工艺,用于角焊缝的焊接;奥地利弗尼斯公司成功开发了单枪双丝MIG 焊技术,焊枪尺寸小巧,适应于焊件的任何位置焊接。为了适应薄板高速焊和厚板高熔敷率焊接,2001 年在德国埃森展上由奥地利Fronius 公司和德国CLOOS 公司分别展出了双丝 MIG 焊设备,该类设备是将两根焊丝按一定角度放在同一个焊枪喷嘴内,两根焊线分别由各自独立的电源供电,焊接过程稳定,焊接效率较高,达到 3~5m/min,该类设备已在车辆制造、造船、汽车等方面得到了广泛的应用[15-17]。除上述公司外,德国的BENZEL公司,美国的Miller、Lincoln公司目前均可以生产成套的TANDEM或TWIN-ARC双丝焊设备。
我国在双丝焊方面的研究也比较早,在80年代便可以制造出双丝气体保护焊设备。但后来由于焊接人才缺乏和科研经费短缺,我国双丝焊技术的研究一直远远落后于国外,目前我国的双丝焊设备基本依赖进口,仅德国的CLOOS公司的TANDEM双丝焊接系统在国内便有数百套。近年来,国家加大了先进焊接技术领域的资助,我国在双丝焊领域的研究迅速发展,上海交通大学、西南交通大学、北京工业大学、哈尔滨工业大学、山东大学等科研院校均开展了该方面的研究工作,部分机构已经具备研制双丝焊设备的能力[18-20]。但是,由于研究基础薄弱,相关理论知识缺乏,我国双丝焊设备的整体水平同国外同类产品还有较大的差距。
3. 双丝焊的应用
3.1 双丝焊在造船领域的应用
2010年,中国造船业的三大指标即造船完工量、新承接订单量、手持订单量均超越老牌造船强国韩国和日本,成为世界第一造船大国。虽然由于经济危机和产业结构的问题,近两年我国的造船业发展进程有所回落,但仍然保持在世界三大造船大国之列。焊接技术是船舶制造工业的关键技术,船舶的焊接技术水平直接影响着我国造船业的国际竞争力和发展前景。
采用双丝埋弧焊工艺焊接船用高强钢DH36,焊接质量完全满足中国船级社《材料与焊接规范》的技术要求,焊接熔敷率较单丝埋弧焊有明显提高,焊接道次减少,20-30mm厚度的钢板能够实现双面单道焊,焊接效率大大提高[21]。对于60mm厚度的DH36 钢采用交流方波双丝埋弧焊方法,通过优化焊接工艺,焊接接头的低温断裂韧性(0 °C)明显改善。采用小电流、低速焊的工艺,焊缝的断裂韧性裂纹尖端张开位移(CTOD)值比常规工艺提高约85%,热影响区提高近4倍;采用大电流、高速焊的工艺,焊缝的断裂韧性 CTOD 值比常规工艺提高近3倍,热影响区提高近2倍[22]。
高强度船体用EH36是一种经过细晶处理的镇静钢,其焊接热影响区组织与性能对焊接热输入较敏感,热影响区淬硬倾向大,氢致裂纹敏感性较大。相比较传统单丝CO2气保焊,采用双丝CO2气保焊焊接EH36,焊接接头的屈服强度、延伸率和低温韧性(-40 °C)均显著改善。另外,在单根焊丝具有相同电流和电压的前提下,获得相同的焊缝宽度时,双丝焊的焊接速度比单丝焊提高1倍,生产效率大大提高[23]。
3.2 双丝焊在高速列车领域的应用
我国的高速列车技术经过近20年的发展,通过消化吸收和自主创新相结合的发展道路,逐渐突破高速列车的关键技术问题,实现了高速列车的自主制造。2010年CRH380AL新一代高速列车创造了486.1 km/h的世界高速铁路最高运营速度,标志着我国高速列车技术已跻身世界高速列车技术先进行列。高速列车的高速化主要取决于车身的轻量化材料和车体结构,因此高速列车承载结构轻量化的研究至关重要。
铝合金因其比强度高、耐蚀性好、成型工艺好等优点,在高速列车车体中得到广泛应用。但是,铝合金活性高,铝与氧的亲和力在,焊缝中容易形成氧化铝夹渣。铝合金导热系数和膨胀系数也较大,焊接时需要高的热输入,容易产生焊接应力和变形甚至裂纹。目前铝合金的有效焊接方法主要为钨极氩弧焊和熔化极氩弧焊[24]。钨极氩弧焊适合焊接的板厚范围为1-20mm,熔化极氩弧焊采用高熔敷率焊接(大电流、粗焊丝,适用于厚板)时,热输入过大,焊缝成形较差,若采用高速焊接(高电流密度、细焊丝,适用于薄板)时,对送丝速度的要求较高。
双丝焊接技术可以解决高速列车铝合金焊接时存在的问题,不仅可以获得优质的焊接接头,还可以提高焊接效率。以CRH3型动车组车体用6005A-T6铝合金为例,采用奥地利IGM Robot RTI 330-S双丝焊接系统,通过优化工艺参数,焊接接头组织比单丝焊更为致密和均匀,抗拉强度和延伸率均有所提高,焊接速度显著提高,目前该技术工艺已实际应用于CRH3高速动车组的生产中[25]。采用双丝MIG焊焊接6082-T6铝合金时,由于双丝焊热输入较小,焊接接头晶粒较小,热影响区较窄,硬度及抗拉强度相比单丝焊接接头略有提高,但双丝焊焊接速度大大提高[26]。另外,双丝焊在2219、7A52等铝合金的焊接也被学者广泛研究,通过调整工艺参数,双丝焊接技术均能够获得良好的焊接接头,不仅力学性能优于单丝焊接接头,耐蚀性也有所提高[27-30]。
3.3 双丝焊在管道焊接领域的应用
管道工程主要用于输送各种介质,作为一项重要的基础设施,管道工程已广泛地存在于石油、化工、电力、建筑和市政等行业。随着我国经济的持续快速发展,东部沿海地区的能源消耗越来越多,石油、天然气等战略能源物质的输送变得尤为重要,逐渐得到国家的重视。近年来,随着“西气东输”等大型管道工程的开展,钢管材料的使用量大幅增加。同其他焊接结构不同,管道即要承受一定的压力,还要完全保证传输物质不能泄露,因此钢管的焊接质量要求较高,焊接接头不仅具有良好的力学性能,还要具有较好的致密性和耐蚀性,以保证管道工程的安全运行。
目前管道工程主要采用X系列管线钢,代表钢种有X60、X65、X70和 X80。管线钢的焊接主要为环焊缝或螺旋焊缝,而且管径较大,管壁较厚,因此主要采用埋弧焊焊接。同单丝埋弧焊相比,双丝埋弧焊减少了咬边焊接缺陷,焊接速度提高30-40%,满足了钢管的高速焊接。双丝埋弧焊工艺特别适用于厚管的焊接,22mm厚板可单面焊双面成型,甚至可以焊接300mm厚的焊件。埋弧焊管工艺一般采用串列双丝焊技术,采用直流+交流的形式,前丝采用直流电,后丝采用交流电,即可以获得足够的熔深,以能够得到满意的焊缝[31,32]。大管径X65级钢管对接环焊缝焊接时,采用U形坡口多层焊工艺,在较小的热输入下,可以保证焊接接头具有优良的拉伸性能和断裂韧性,焊缝效率大大提高,完全能够应用于陆地和海底油气管道[33]。
4. 双丝焊的前景及展望
“十二五”期间,“发展高效焊接”、“提高焊接机械化、自动化水平”是焊接技术发展的方向和目标。双丝焊以高速、高效、节能、优质等优点越来越被焊接界人士认同,在实际生产中的应用也越来越多。我国每年造船用钢量可达上千万吨,油气管道用钢在200万吨以上,若全面采用双丝焊工艺,其能源节约将非常可观,而且生产效率大大提高,其发展前景非常广阔。此外,中俄、中缅、中国-中亚油气管道工程以及中国西气东输三线工程的建设为双丝焊接技术的发展和应用提供了空间的机遇。随着双丝焊技术的不断成熟和完善,双丝焊工艺也同焊接机器人相整合,焊接效率和自动化程度进一步提高。同时,三丝甚至多丝焊工艺也在逐渐出现,新的电弧组合焊接工艺方法也被学者广泛研究。相信在不久的将来,焊接产业将进入全新的发展时期,先进的焊接技术和工艺将不断涌现,从而推动机械加工行业整体水平的提升。
参考文献
[1] 林尚扬,关桥. 我国制造业焊接生产现状与发展战略研究 [J]. 机械工人:热加工,2004,5:10-15.
[2] 刘兵,彭超群,王日初,王小锋,李婷婷. 大飞机用铝合金的研究现状及展望 [J]. 中国有色金属学报,2010,20(9):1705-1715.
[3] 张卫华,王伯铭. 中国高速列车的创新发展 [J]. 机车电传动,2010,1:9-12.
[4] 崔维成,刘峰,胡震,朱敏,郭威,刘诚刚. 蛟龙号载人潜水器的7000米级海上试验 [J]. 船舶力学,2012,16(10):1131-13.
[5] Tim Morehead. Automatic multiwire GMAW multiplies productivity [J]. Welding Journal, 2003, 6: 40-43.
[6] Did-ling L A, Michael S, Ladwing B. High-quality and economically viable coating by means of tandem gas-shielded metal-arc welding [J]. Welding and Cutting, 2002, 5: 18-23.
[7] 曹梅青,邹增大,张顺善,曲仕尧. 双丝电弧焊研究现状及进展 [J]. 山东科技大学学报(自然科学版),2008,27(4):88-92.
[8] 伍小龙,徐卫东,汪浑. 厚壁容器的双丝窄间隙埋弧焊 [J]. 压力容器,2010,20(3):27-31.
[9] 张红兵,黄石生,周漪清,蒋晓明. 双电弧共熔池气保焊技术特点与发展现状 [J]. 电焊机,34(11):25-28.
[10] 范成磊,孙清洁,赵博,杨春利,张良峰. 双丝窄间隙熔化极气体保护焊的焊接稳定性 [J]. 机械工程学报,2009,45(7):265-269.
[11] 魏占静. 先进的TANDEM高速、高效的MIG/MAG双丝焊技术 [J]. 机械工人:热加工,2002,5:22-37.
[12] 单文超,曹净淑,王志伟. 双丝电弧焊研究进展 [J]. 油气田地面工程,2007,26(2):45.
[13] Knight D E. Multiple-electrode welding by “union melt” process [J]. Welding Journal, 1954, 4: 303-312.
[14] Volodin V S. Automatic welding with two wires [J]. Welding Journal, 1955, 3: 103-111.
[15] Lassaline E. Norrow groove twin wire GMAW of high-strength steel [J]. Welding Journal, 1989, 68(9): 53-57.
[16] 韩国明. 双丝熔化极气体保护焊 [J]. 现代焊接,2006,4:45-47.
[17] 王振民,黄石生,薛家祥. 软开关双丝脉冲熔化极活性气体保护焊逆变电源[J]. 华南理工大学学报(自然科学版),2006,34(7):31-34.
[18] 孙远芳. 双焊丝悬臂送丝CO2气体保护焊新工艺 [J]. 焊接技术,1992,6:6-7.
[19] 李恒,梁秀娟,李幸呈. 高效双丝MIG/MAG脉冲焊系统及工艺 [J]. 焊接,2005,10:24-27.
[20] 王元良,屈金山,胡久富. 高效节能细丝自动焊设备的研究 [J]. 电焊机,2002,32(3):9-12.
[21] 刘海清,徐雁飞,吕德华,胡建华,汪亮. 船用高强钢双丝埋弧焊工艺研究[J]. 焊接技术,2011,4:33-39.
[22] 吴世品,王东坡,邓彩艳,王颖. 焊缝CTOD试验中的Pop-in效应及产生原因 [J]. 焊接学报,2012,33(4):105-108.
[23] 吕艳丽,船用E级钢三丝GMAW对接焊工艺研究 [M]. 上海交通大学硕士论文,2012,70-72.
[24] 吕艳丽,华学明,叶定剑,吴毅雄. 多丝气体保护焊电弧干扰研究现状 [J]. 热加工工艺,2011,40(5):155-158.
[25] 张海沧,尹维,黄飞,阮野,刘喜明. 高速列车车体铝合金双丝焊接头组织与性能 [J]. 长春工业大学学报(自然科学版),2010,31(2):197-201.
[26] 赵世航. 6082-T6铝合金双丝MIG焊接头组织和性能的研究 [M]. 吉林大学硕士学位论文,2010,17:23.
[27] 孟庆国,方洪渊,徐文立,姬书得. 2219铝合金双丝焊热影响区组织及力学性能 [J]. 焊接学报,2006,27(3):9-12.
[28] 张传臣,陈芙蓉,高云喜. 7A52铝合金单双丝焊工艺对比分析 [J]. 焊接学报,2008,29(9):67-70.
[29] 解瑞军,陈芙蓉,张传臣,高云喜. 7A52铝合金双丝焊工艺及焊缝耐腐蚀性 [J]. 焊接学报,2008,29(12):57-60.
[30] 何静,陈芙蓉,解瑞军,高云喜. 7A52超硬铝合金焊接参数与人工时效参数的优化 [J]. 热加工工艺,2009,38(3):91-92.
[31] 董军,周林. 螺旋埋弧焊管内焊双丝焊工艺参数的优化 [J]. 焊管,2005,28(4):60-61.
关键词:工艺技术;工艺流程;工艺材料;SMC/SMD贴装;ESD防护
前言
SMT(英文名Surface Mounted Technology),即表面贴装技术,是一种直接将元器件焊接到印制板表面固定位置上的贴装技术(不需要进行砖孔插孔作业)贴片工艺和贴片设备对生产现场要求的电压必须要稳定,且要防止电磁干扰,操作人员要有防静电意识,生产现场具有良好的照明和通风设施,在生产过程中的温度、湿度、空气清洁度等都有相应的要求,一线的担当人员也必须经过专门培训部门考核后,进行上岗作业。
1 SMT工艺技术
SMT简介电子电路表面组装技术称为表面贴装技术。它是一种将无引脚或短引线表面组装元器件(简称SMC/SMD,中文称片状元器件)安装在印制电路板的表面或其它基板的表面上,通过回流焊或波峰焊等方法加以焊接组装的电路装连技术。
1.1 主要特点
(1)元器件重量轻、贴片元器件部品体积小、贴装精密度高,贴片元器件的体积和重量也只有传统插装件的大小1/10左右,SMT生产之后,电子产品体积缩小至原有器件部品的40%~60%,重量减轻至原有器件部品的60%~80%。(2)元器件焊接不良率低,且可靠性高、抗震能力强。(3)高频特性好,减少了电磁和射频干扰。(4)对于现在生产的电子产品易于实现自动化,生产效率提高。
1.2 SMT和THT的比较
SMT和THT的比较:二者的根本区别是“贴”和“插”,为什么要用SMT逐步替代传统生产方式其原因是,随着电子行业发展,而THT-“插”工艺技术采用的是通孔插件法,无法满足电子产品小型化/超薄型,因此被SMT-“贴”工艺技术所取替。从而将表面组装工艺技术充分与化工,材料技术、涂覆技术、精密机械加工技术、自动控制技术、焊接技术、测试和检验技术、组装设备原理与应用技术等诸多技术相结合。
SMT工艺流程如下:
丝印(红胶/锡膏)检查(可选AOI光学检查仪或者目视检查)贴装(优先贴小部品后贴大部品)检测(可选AOI光学/目视检测)焊接(采用热风回流焊进行焊接)检测(可分AOI光学检测外观及功能性测试检查)维修(使用烙铁及热风枪等)分离板(手工或者cutting Jig进行分割)
工艺流程简化为:丝印―贴片―焊接―检查(功能性/外观性检查发现不良,需要维修)
2 SMT贴装工艺材料
SMT贴装工艺时,需要包含焊料、焊膏、胶黏剂等焊接和贴片器件,以及助焊剂、清洗剂、热转换介质等工艺材料。
2.1 SMT贴装材料的用途
焊料、焊膏、胶黏剂等材料在波峰焊、回流焊、手工焊三种主要焊接工艺中的作用如下。
(1)焊料和焊膏:回流焊接时采用焊膏,它是焊接材料,同时又能利用其粘性作用提前固定SMC/SMD器件。(2)焊剂:主要作用是助焊。(3)胶黏剂:对SMD器件起到加固作用,防止贴装作业时SMD的偏移和脱落现象。(4)清洗剂:清洗焊接工艺后残留(如钢网焊膏残留,PCB异物等)物。
2.2 焊料
Sn63/Pb37和Sn62/Pb36/Ag2具有最佳综合性能,而在低熔点焊料中,Sn43/Pb43/Bi14具有较好的综合性能。电子产品贴装时Sn-Pb是最普遍的焊料合金物,强度和可润湿性是最合适。
2.3 焊剂
焊剂分为酸性焊剂和树脂焊剂,焊剂的作用是去除金属表面和焊料本身的氧化物或其它表面污染,润湿被焊接的金属表面。
2.4 清洗剂
清洗剂应满足化学和热稳定性好,在贮存和使用期间不发生分解,不与其它物质发生化学反应,对接触材料弱腐蚀或无腐蚀,具有不燃性和低毒性,操作安全,清洗操作过程中损耗小,必须能在设定温度及时间内进行有效清洗。
3 SMC/SMD贴装工艺技术
SMC:表面组装元件(Surface Mounted components)主要有矩形片式元件、圆柱形片式元件、复合片式元件、异形片式元件。
SMD:它是Surface Mounted Devices的缩写,意为:表面贴装器件,它是SMT元器件中的一种。
(1)贴装机的一般组成:SMT贴装机是计算机控制,并集光、电、气及机械为一体的高精度自动化设备。
(2)主要的影响SMT设备贴装率要素:贴片在选择设备时主要考虑其贴装精度与贴装速度,而在SMT实际使用过程中,为了有效提高产品质量、使成本降低、确保生产效率提高,那么如何提高和确保SMT设备贴装率是摆在使用者面前的首要任务。
(3)贴装机的影响因素:贴片机XY轴传动系统的结构,XY坐标轴向平移传动误差,XY位移检测装置,真空吸嘴Z轴运动对器件贴装偏差的影响等。
(4)贴装机视觉系统:要准确地贴装细间距器件,最主要是摄像机的像元数和光学放大倍数。
(5)贴装机软件系统:高精度贴装机软件系统为二级计算机控制系统,一般采用DOS界面,也有采用Windows界面或UNIX操作系统,由中央控制软件、自动编程软件、贴装头控制系统和视觉处理软件组成。
4 静电防护
4.1 电子产品制造中的静电
在电中不流动的电叫静电,静电是由正电荷和负电荷聚集在一起的电。静电是一种电能,它存在于物体表面,是正负电荷在局部失衡时产生的一种现象。静电对电子产品所造成的危害主要表现为损伤,击穿是损伤的一种。通常静电对部品损害的特点是:(1)隐蔽性。(2)潜在性。(3)随机性。(4)复杂性。
静电防护的特殊性:第一,静电的产生和积累要一定的条件和过程,因此在没有进行保护的产品也未必都会受到静电损害,它是具有一定的随机性;第二,静电释出的能量在多数情况下能量都比较小,因此受到静电损伤的产品也并不会立即不良,部分产品表现为产品漏电,且性能不稳定,甚至在产品出库时测试中也表现不明显,以后发现问题易归咎为材料不良或设计不良而不自醒,因此常使人们认识不到ESD的危害。
4.2 静电放电的防护
基于贴片生产过程的ESD防护系统主要有:(1)生产车间环境静电防护;(2)人体手环、手套等静电防护;(3)静电防护大地接地;(4)静电检测与仪表检查;(5)生产车间门帘接地;(6)每日点检及维护。
4.3 防静电采用的工具和措施
(1)设备接地;(2)采用防静电地面;(3)采用不锈钢工作台(或者在作业台铺设防静电皮);(4)使用离子风机;(5)使用自动加湿机;(6)使用铝质传递盘、传递架;(7)工作人员戴防静电手环、穿防静电服和鞋;(8)芯片及成品采用防静电袋包装;(9)成品搁架采用铁质和铝质材料;(10)静电手环每日检测一次、设备接地每月检测一次。
5 结束语
本论文包括了基础知识、发展历程、SMT的工艺流程,重点介绍了SMC/SMD贴装工艺技术及静电防护,影响SMT技术的一些主要因素,涉及到电子元器件使用、SMT设备的了解和熟悉,操作流程的用电常识等重要电子加工领域,符合当代电子电路贴装行业的发展趋势,对现在加工生产技术的指导具有一定意义。文章在内容上面比较充实,实用性较强,对在今后的工作中有一定的参考价值。
参考文献
[1]龙绪明.实用电子SMT设计技术[M].北京:机械工业出版社,1997.
[2]张文典.实用表面组装技术[M].电子工业出版社,2006.
痴心报国不言悔
1982年9月,作为吉林省蛟河市偏远山区农村中学的高中毕业生,张福成以优异的高考成绩被燕山大学的前身――东北重型机械学院金属材料专业录取。大学期间,私下里他曾听到一些同学对专业前景的“描绘”:毕业后只能到辅助部门工作,不仅没有发展前途,而且将终日在粉尘和高温的恶劣环境中工作。张福成却认为,“行行出状元”,只要是国家的发展建设需要,就不应计较个人的得失。尤其是他从专业课上得知:全世界每年因磨损就消耗掉200万吨以上的奥氏体锰钢。他越发坚定了努力学好专业知识,在金属材料专业领域有所作为的坚定信念。从此,张福成便与耐磨材料结下了不解之缘。本科毕业论文的题目,他选的是耐磨材料方面的;硕士、博士研究生的研究方向,他仍选择了耐磨材料。1986年本科毕业时,当时实行的是统招统分的政策,张福成在全专业四年总成绩排名第一,但他毅然放弃了到北京和上海工作的机会。读硕士和博士研究生时,他没有选择当时一些人趋之若鹜的热门专业,也经受住了“下海经商”大潮的巨大诱惑,始终默默地在被有些人看不上眼的耐磨材料领域里上下求索,潜心钻研,一点一滴地打下了坚实的专业基础。
1986年,正在燕大读研究生的张福成参与了硕士生导师郑炀曾教授承担的国家“七五”重点攻关项目“湿式中硬矿特大磨球机衬板材料的研究”的科研工作,也开始了他在耐磨材料领域不断拼搏进取的科研生涯。研究耐磨材料需要经常做磨损试验,试验中作为磨料的石英石会产生大量的粉尘,长期在这种环境中工作容易得矽肺病。从1988年至1998年,张福成教授整整与石英石粉尘打了10年的交道,经常是每天1 O多个小时的磨损试验一做就是半年。从事耐磨材料的研究,还要经常到工作环境恶劣的水泥厂、炼钢厂和矿山做现场试验,有时还要冒意想不到的风险。1994年的一天,张福成教授正在山东的一个钢厂的炼钢炉前作现场实验,投入炼钢炉的废钢铁中混入了一发旧炮弹。若不是突然停电,张福成和同伴将面临不堪设想的后果!从小在农村艰苦的劳动生活中磨炼出的坚强意志和吃苦耐劳的品格,使张福成在科研工作中遇到的各种困难面前总是从容不迫,知难而进。
22年来。正是凭着坚韧不拔的意志和科学的创新精神,张福成在耐磨材料领域的科研能力和水平不断提高,并取得了丰硕的科研成果,从而奠定了他在我国耐磨材料领域中举足轻重的地位。作为课题负责人或主要完成人。他先后完成了国家“七五”、“八五”攻关项目,国家“973”项目和省部级以上的科研项目二十多项。在耐磨材料的理论研究方面,他提出了“耐磨奥氏体锰钢中合金元素原子呈短程有序偏聚分布”的理论,圆满地解释了学术界近百年来在奥氏体锰钢研究领域中一直有争议的一些理论问题,如加工硬化机制、耐磨机理及其中的应变诱发马氏体相变机制等。根据这个理论,张福成教授又设计了新型耐磨材料――新型耐磨奥氏体锰钢,其耐磨性比原普通高锰钢提高1倍以上。这种新型耐磨材料已被全国的五十多家企业采用,用于制作球磨机衬板、铁路辙叉、齿板、破碎篦、铲齿和履带板等各行业急需的耐磨零部件,累计为国家创造利税6亿元,取得了显著的经济和社会效益。这项成果先后获得2002年国家科技进步二等奖,2000年中国高校科技进步一等奖。
随着铁路运输事业的发展,高速、重载、跨区间无缝线路已成为发展的必然趋势。这对铁路辙叉的使用寿命和结构形式提出了新的更高的要求,然而,其中有许多技术问题十分棘手,它们已经成为铁路运输事业发展的瓶颈和障碍。
高锰钢辙叉和高碳钢钢轨的焊接是我国铁路实现全面提速的关键技术之一,国际上只有法国和奥地利拥有该项技术的发明专利。从1997年起,始终在耐磨材料领域不懈地探索的张福成教授又毅然承担了国家科委重点攻关项目――“高速铁路用高锰钢辙叉与碳钢钢轨焊接”这一长期困扰着材料焊接领域发展和全国铁路大提速的难题。此前,我国的几十家科研单位曾进行了20多年的研究,但始终没有取得突破性的成果。高碳钢焊接要求缓冷,以防止热影响区出现马氏体和产生大的热应力。然而,高锰钢焊接却要求快冷,以抑止奥氏体晶界的碳化物析出。否则会产生热裂纹和韧性急剧下降的后果;同时,两种材料的热物理性能差异很大,直接焊接将导致接头处产生很大的内应力,不仅降低接头的强度和韧性,而且严重降低其疲劳寿命。因此,高锰钢辙叉与高碳钢钢轨焊接技术一直是制约我国铁路提速的难题之一。
在攻关的过程中,张福成教授查阅了国内外关于焊接技术的最新理论,做了上百次的等离子焊、铸焊、氩弧焊等试验,经过5年的反复研究后终于提出了利用材料性质梯度过渡的思路。并设计了一种物理性质和组织结构介于高锰钢和高碳钢之间的材料作为焊接材料,并优化出焊接速度快、自动化程度高、焊接质量稳定的闪光焊接方法作为高锰钢辙叉与碳钢钢轨的焊接技术;同时对高锰钢进行特殊的变质处理,降低晶界碳化物析出和液化裂纹形成的倾向,从而发明了高锰钢辙叉焊接技术。高锰钢辙叉焊接技术使高锰钢辙叉使用寿命进一步提高60%以上,平均过载量从1.8亿吨提高到3.0亿吨以上,最高达到5亿吨以上,减少了火车对铁路路轨的冲击。提高了铁路路轨和火车的使用寿命。高锰钢辙叉焊接技术的发明使我国成为世界上第三个自主拥有该项技术的国家,在我国铁路全面提速中发挥了重要作用。与法国和奥地利两个国家的技术相比,张福成教授发明的技术具有综合成本低、工艺简单和性能优异等特点。2001年,在秦岭隧道建设项目验收会上,铁道部科技司的一位领导对参会的近百名铁道部所属院校和科研单位的科研人员讲话时说“铁路辙叉焊接项目,铁道部曾经给一所大学和铁道部研究部门800多万元进行开发研究。最终没有搞成,而只给了燕山大学12万元,项目就搞成了,所以,今后我们要加强路内路外科研单位的项目合作。”铁道部组织的成果鉴定委员会认为:这项成果“是我国高锰钢与钢轨焊接技术的重大突破”,“填补了国内空白,总体技术水平达到国际先进水平”,“它为实现我国高速、重载、跨区间无缝线路的技术跨越创造了条件”。这项技术在近几年的国际招标中连续几十次中标,已成为我国高锰钢辙叉焊接采用的唯一技术,并在中铁山桥集团有限公司投产,产品出口加拿大、澳大利亚、新西兰、伊朗、印尼、委内瑞拉等十几个国家和香港地区,仅高锰钢辙叉一项年产值就达8000余万元,出口创汇450万美元。
近几年来,继发明高锰钢辙叉焊接技术之后,张福成教授在铁路辙又用材研究领域又连续取得了一系列新的研究成
果:纯净高锰钢辙叉制造新技术、高锰钢辙叉爆炸硬化技术、锻造高锰钢辙叉制造技术、含氮高锰钢辙叉用钢、高锰钢辙叉与碳钢钢轨焊接材料及其制造技术、高锰钢辙叉专用堆焊材料及其制造技术和铁路辙叉用贝氏体钢及其制造技术等。目前,这些新成果中的大部分已被应用在我国和外国的提速或高速铁路线路中。
20多年来,张福成教授先后主持了二十几项国家“七五”、“八五”攻关项目、国家“973”项目、国家自然基金项目、国家重点攻关项目、国家中小企业创新基金项目、铁道部重点攻关项目和河北省自然基金项目,并在国内外学术刊物上100余篇,获得国家发明专利16项。
呕心沥血培育创新型人才
在科研领域不断勇攀高峰,取得累累硕果的同时,从1989年研究生毕业起就承担教学任务的张福成教授也无愧于人民教师的光荣称号。张福成教授认为,大学是培养创新型人才的摇篮,作为一名高校教师,在不断地提高自身素质的同时,还应自觉主动地改革教学内容和教学方法。为社会培养出更多的高素质创新型人才。在长期的教学工作中,无论是对待本科生还是对待研究生,他都坚持高标准、严要求。他以严谨的治学态度和敢为人先的胆识,大胆地进行教学内容和方法的改革。在讲授每一门专业课前,他都认真地查阅大量文献资料。并结合自己的科研工作,把国内外最新的科研动态和成果写进讲义;讲课时,他总是结合教学内容,毫无保留地把自己多年从事科研工作的成功经验传授给学生。为培养学生的科技创新能力,根据当代科技发展呈现多学科交叉的趋势,结合学生的实际情况,张福成教授鼓励、引导学生不断拓展自己的知识面,使自己的视野更开阔,为走上工作岗位后的科技创新活动打下坚实的基础。
根据自己多年从事创新性科研工作的切身体会,张福成教授十分重视培养学生的动手能力。在金相实验技术课的教学中,他发现,长期以来,金相实验技术课的教学一直沿用传统的课堂讲授为主、实验教学为辅的方法,而忽略了金相实验技术课是让学生掌握金属试样的制备及组织分析方法,了解相关实验设备的原理及应用技术的主要目的。以致使学生在金相实验技术课结业时,从试样的制备到金相组织的分析能力都达不到应有的要求。张福成教授看在眼里,急在心上,他决心改变这种现状。经过认真的思考和充分的准备,从1996年秋季起,张福成教授在实验室的老师们的支持和配合下,开始了改变传统的教学方式的改革实践。他把金相实验技术课的课堂直接搬到实验室,由具有丰富实验经验的实验教师现场指导、讲解实验。然后他再对较深的理论进行课堂讲解。他在实验室讲课时,坚持以培养学生动手能力为主,讲解为辅的原则,对学生在实验过程中出现的问题再进行讲解,使学生既锻炼了动手能力,又提高了观察问题、发现问题、分析问题的能力。金相实验技术课教学改革的实践证明,学生的动手能力和金相组织分析能力明显地得到了提高。
20年来,张福成教授讲授的专业课始终受到本科生和研究生的欢迎。许多本科生由此对专业产生了兴趣,许多人毕业后考上了研究生。张福成教授指导培养的研究生知识面广、基础扎实、科技创新能力强,不少人目前已成为国内材料科学研究领域的骨干。
关键词:低压;智能;配电柜;创新;发展
Abstract: In this paper, the author introduces the low voltage intelligent distribution cabinet manufacturing technology improvement, expounds the low-voltage power distribution cabinet technological innovation, and points out its future development trend.
Key words: low pressure; intelligent; distribution cabinet; innovation; development
中图分类号:TU7文献标识码:A文章编号:2095-2104(2012)
随着全球经济一体化进程的不断加快,市场竞争随之越来越激烈,这种竞争也逐渐由区域性竞争扩大为国际性竞争,基于这一现状,给低压配电柜的使用和维护提出了更高的要求。企业的发展离不开技术的创新和发展,为了能够生产制造出更好的低压变电柜,企业应不断引进先进的技术,并在此基础上进行创新,自主研发出新型产品,并以此为企业创造有利的竞争条件,进而在激烈的市场竞争中占据一席之地。
1 低压智能配电柜制造技术的提升
在以往传统低压配电柜的制造过程中,会涉及诸多较为专业的工艺,如焊接技术、冷冲压技术、模具加工以及塑料成型等,可以说配电柜制造技术水平的提升与这些专业技术的提高有着密不可分的关系。很多生产商家为了提高配电柜的制造技术,都不断加大了研发力度,各种新型产品也随之不断涌现。如ABB公司在低压配电柜的制造上,本着创新的精神,研发并推出了一系列新型的终端配电箱。该配电箱以手折式为主,底箱采用的是特殊工艺直接在镀锌钢板上冲孔成型,并未采用传统的焊接成型技术,用户能够通过手动将底箱快速折叠成型。此外,该箱体在未经折叠前为平板形状,便于存放和运输。
1.1 标准化和模块化设计
目前供电企业要求全面推进电网需求管理,对线损管理、提高供电质量、保证供电的可靠性和安全性提出了新的要求。低压配电柜的模块化设计是指安装方式多样化、安装尺寸模数化、组装结构积木化、系统功能模块化等,此类设计具有较高的标准化及流程化程度,设计过程方便快捷,结构形式多元化等特点,可满足不同使用环境及防护等级的需要,极大地提高了运行的安全性和可靠性。
电网配电变压器由于其安装位置分布、安装地点等问题,使其无法为配变管理和决策分析提供有效数据。而GPRS技术能很好地满足传输突发性数据的需要。
在GPRS无线电网配电变压器实时监测管理系统中,GPRS覆盖范围广,GPRS电力远程抄表系统一般位于电力公司的配电中心,或者位于居民小区的电表数据采集点,利用中国移动现有的GPRS/GSM网络,电表数据通过中国移动的GPRS/GSM网络进行传输。
1.2 低压配智能电柜的可靠性
低压配电柜一个最重要的技术创新应属高可靠性。为了使低压配电柜能够具有较高的可靠性,这就要求供电企业在使用过程中进行严格地可靠性控制和可靠性检验维护。国外大部分电气公司对于低压配智能电柜的可靠性重视程度都相当高,并颁布了一系列可靠性检测标准,如IEC605等。
2 低压配电柜的技术创新
低压配电智能终端柜可单独使用,也可组成终端柜配套使用。安装低压配电智能终端后,终端能够全面地、准确地、实时地采集配变各种运行数据,如三相电压电流、N线电流、有功功率、无功功率、功率因数、谐波等,同时该终端可同时完成实时监测仪、无功补偿装置、谐波监测仪、电压监测仪、电能计量表等的功能。随着工业以太网以及现场总线技术的快速发展,为低压开关柜的智能化提供了良好发展平台,使其从各个电器元件到成套设备均实现了通讯化、网络化和智能化。
2.1 配电系统的智能化控制
由于开关柜中的各种电器元件均采用了智能化元件,并将微电子、计算机控制、工业以太网和电力电子等技术与传统配电柜技术相结合,从而极大程度地提高了设备的可靠性。智能型低压开关柜利用通讯网络构成了智能低压配电系统,该系统具有“四遥”功能,即遥测、遥控、遥调和遥讯。此外,现场总线技术的发展,提高了低压配电柜的总体配电质量,大幅度降低了能耗,并且实现了配电保护自动化以及局域网现场连接,进一步提高了配电系统的可靠性。工业以太网、通信技术以及现场总线的应用,给用户提供了一个智能快捷、安全可靠的人机界面,从而实现了对自动化配电系统的智能化控制。智能化低压配电系统主要由以下几个部分组成。
低压配电智能终端既可单独使用,也可组成终端柜配套使用。低压配电智能终端柜主要由低压配电智能终端、无功补偿电力电容器、复合开关和保护器件等组成,并且可以根据用户的自身需要,选配电能表计和负荷开关等
2.2 新型环保材料在配电柜的应用
现阶段,我国大力提倡的方针政策是节能减排、低碳环保。各大低压配电柜的生产厂家也顺应这一趋势大量采用低碳环保的新型材料。如在电力及自动化技术领域中都首屈一指的ABB公司生产的MNS低压配电柜除采用了覆铝锌柜架外,还采用了高导电率的铜母排,并配以热缩套管,极大地提高了安全性能。另外,由于氟利昂和卤素在燃烧过程中,前者会破坏臭氧层,后者则会产生有毒烟气,影响人体健康,而该配电柜中采用的塑胶材料不含卤素和氟利昂,并且还具有自熄和阻燃功效,因此,不仅保障了安全,而且还实现了环保。
3 低压配电柜的未来发展趋势
随着数字化和网络信息化技术的不断发展,第四代智能化低压配电柜的研发必将成为我国未来一段时期内低压配电柜的主要发展趋势。利用现场总线技术与具有网络化、智能化和通讯化的各类新型低压配电设备相结合的方式肯定会研制出新型的产品。由于我国大规模工程项目以及智能化高层建筑的不断增多,对低压配电柜的容量提出了更高的要求,虽然目前单个变压器的最大容量已经达到2000kVA以上,但是为了不断适应未来发展的需要,还应不断研发容量更大的低压配电柜来满足供电需求。低压配电柜未来技术的创新与发展将越来越倾向于模块化和系统化,侧重于元件的研究和开发,力求使元件面向体积小型化、性能强大化方向发展,同时也将会被越来越广泛地使用在新材料上。低压配电柜会以自动化操作系统为发展趋势,在机械制造与安装方面,表现为日趋模块化与标准化,通过接口终端实现与计算机控制的自动化配电系统组件相通信,使整个配电柜系统处于智能化控制状况。随着低压配电柜技术的不断创新与发展,其必将广泛应用于各大企业、工程项目和重要技术领域之中,并且在机电自动化领域发挥着不可忽视的作用,不仅可以确保电网安全运行,提高电网运行质量,还可以自动化控制用电量,从而有助于电力企业提高经济效益,促进电力企业持续健康发展。
4 结束语
近年来,随着我国经济的快速发展和科技水平的不断进步,为低压配电柜的发展创造了有利条件。与此同时,现场总线技术和工业以太网技术的发展也为低压配电柜向智能化方向发展提供了有利的平台。在我国,低压配电柜经历了50年左右的发展历程,目前已经形成一个较为完善的体系。现阶段,低压配电柜也从最初的容量小、性能指标低、功能单一、体积大、种类少,发展为具有高性能、小体积、智能化等特点的产品。低压配电柜的主要功能是分配电能和控制电能使用,随着人们生活水平的不断提高,对供电质量也提出了更高的要求。而低压配电柜各方面性能的优劣直接影响整个电网的供电质量。因此,必须从技术上进行创新来不断提高低压配电柜各方面的性能,以此来确保供电质量。
参考文献:
[1] 李铿.低压配电柜的发展及其对低压电器主要元件的要求[J].科技资讯.2007(35).
关键词: 熔敷金属;扩散氢;方法比较
中图分类号: TG-457.11
Abstract: This paper introduced the source of hydrogen during welding, the type of diffusible hydrogen in welding metal and its harm. The mercury method、gas chromatography method、hot-extraction method and glycerol method for diffusing hydrogen measurements were presented and the advantage and shortcoming of those four methods were summarized. Also the effects of heat input、passes、cooling way of the test assembly and welding environment on diffusible hydrogen were summed up.
Key words: deposited metal; diffusible hydrogen; comparison method
0 前言
在钢焊缝中,氢大部分是以氢原子或离子的形式存在的,它们与焊缝金属形成间隙固溶体。由于氢原子和离子的半径很小,可以在焊缝金属的晶格中自由扩散,故称之为扩散氢。还有一部分氢扩散聚集到晶格缺陷、显微裂纹和非金属夹杂物边缘的空隙中,结合为氢分子,因其半径增大,不能自由扩散,故称之为残余氢。因为扩散氢能够自由扩散,并占总含氢量的比例较大,因此它对焊接接头的影响比残余氢大。
由于焊接方法不同,导致氢向金属中溶解的途径也不相同。气体保护焊时,氢是通过气相与液态金属的界面以原子或质子的形式溶入金属的;电渣焊和电渣熔炼时,氢是通过渣层溶入金属的;而焊条电弧焊和埋弧焊时,上述两种途径兼而有之。焊接过程中,氢主要来源于焊接材料中的水分、含氢物质、电弧周围空气中的水蒸气和母材坡口表面上的铁锈油污等杂质。
大部分体心立方金属与合金焊接时,进入焊缝和热影响区中的氢将会对接头产生极大危害,如在焊缝中形成氢脆和白点,这种危害是暂态性的,经过时效处理或热处理之后,可以消除;而如果产生气孔和冷裂纹,这种危害则是永久性的,这类现象一旦产生,是不能消除的,且危害相当严重。焊接材料的扩散氢含量高是焊接接头形成冷裂纹的三大因素之一。单位熔敷金属中测出的扩散氢越多,其产生冷裂纹的可能性就越大。为了测定焊缝中的氢含量,国际上都制定了相应的测试标准,如GB/T 3965―1995《熔敷金属中扩散氢测定方法》、美国AWS A4.3―1993《测定马氏体、贝氏体、铁素体钢电弧焊焊缝金属中扩散氢含量的标准方法》和JIS Z3118―2007《钢质焊缝扩散氢含量测量方法》等。
1 扩散氢的检测方法
熔敷金属中扩散氢含量是指焊后立即按标准方法检测并换算为标准状态下的氢含量。熔敷金属扩散氢含量是判断焊接质量和焊条质量的重要依据之一[1-4] 。为了使测氢准确和便于比较试验结果,从20世纪初开始,产生了许多测定熔敷金属中扩散氢的方法。目前,最为广泛的扩散氢的测定方法有4种,即甘油法,水银法、气相色谱法和载气热提取法。
1.1 甘油法
甘油法是以甘油为介质,用气体排液法把扩散氢收集到一个密闭的集气管内进行测量。甘油法主要的优点是,具有低的蒸汽压力,化学稳定性好,对人体无害,并且价格便宜。但是甘油因其粘度大,使氢气泡往往附着在试样以及测量管壁上或浮在甘油中而不能浮升到集气管顶部,而且甘油能溶解部分氢,故甘油法测量准确性差,因而不适用测量低氢和超低氢焊接材料的扩散氢含量。
1.2 水银法
水银法是国际标准化组织规定的标准扩散氢测定方法。水银法与甘油法相似,是以水银作为介质收集扩散氢。水银法测氢的主要优点是水银不吸收氢,测试精度非常高(可达0.05 mL),它是一种基准方法,可用于校验其它测氢方法的可靠性。但水银对人体有害,而且会对环境造成污染,加之水银的价格比较贵,限制了它的实际应用范围。
1.3 气相色谱法
气相色谱法测定扩散氢,正被日渐推广。气相色谱的原理就是利用氢敏色谱元件转为电信号并用数字显示[5]。该方法既克服了水银法的毒害和污染问题,又解决了甘油法测氢精度低的缺点,数据处理自动化,快速、灵活、精度高,测定范围宽,而且可排除由于各种原因混入的空气的干扰,测定结果精确可靠。在高氢测定范围和超低氢测定范围都具有良好的精度和准确度。但气相色谱法也存在一些缺点,如仪器价格高,操作复杂等。
1.4 载气热提取法
传统的方法集气时间长,制约了扩散氢测量的效率。近些年,更高效的测量方法被陆续发明出来。载气热提取法就是其中之一。载气热提取法是采用热导检测器(TCD)通过测量不同组分的热导率将浓度变成电信号来测定氢气体积。与其他的扩散氢检测方法相比,载气热提取法一个非常显著的特点是可以加温促进氢快速扩散出来,从而实现边扩散边收集边测定。样品在可进行程序升温的红外加热石英式炉内(最高达900 ℃)或采用电阻丝加热的样品炉内(温度最高可达1 100 ℃)进行热提取。当温度加热在300~400 ℃时,可最短在几十分钟内快速测定扩散氢的含量,但应控制不超过400 ℃,以免释放残余氢。
载气热提取法收集样品中扩散氢,是通过载气(N2)携带扩散出的氢气至热导检测器(TCD)进行检测。N2纯度要求不小于99.999 %,所以选择氮气作为载气的原因是氮气和氢气的热导率差别较大。然而,载气中的其他气体杂质,如CO, H2O也会影响热导。因此,在到达检测器之前这些杂质必须从气路中除去。分析气流经过的第一个试剂管是苏氏试剂,它可将CO选择性的定量转化为CO2,然后通过装有分子筛的试剂管去除,其他杂质也可通过分子筛去除。
载气热提取法的优点是快速、准确、可靠,大大提高了效率。但也存在仪器价格高,操作复杂等问题。
2 4种测氢方法的比较
国内外已有许多研究将不同的测定扩散氢的方法进行比较。研究表明,甘油法的测氢值远远低于气相色谱法,而且当扩散氢的含量越低时,它们相差倍数差越大。因为收集介质甘油对扩散氢具有一定的浓解度,且甘油粘度大,导致扩散氢不易上浮,因此会带来较大误差。而气相色谱法对超低氢含量的分析有着很大的优越性。气相色谱法与水银法相比,水银法和气相色谱法的测定结果基本相当。两种方法具有相似的准确度。而甘油法与水银法相比较,一般情况下,甘油法测定扩散氢的含量只有水银法的50%~75%[6]。还有研究表明,载气热提取法与水银法相比,当氢气含量大于3×10-2 mL/g时,载气热提取法测定扩散氢含量会大于水银法测得的结果;当扩散氢浓度较低(小于3×10-2 mL/g)时,两种方法得到的结果基本一致。同时研究还表明,焊接样品在150~400 ℃进行脱气与室温(20 ℃)时相比并不会导致收集到的扩散氢量有所增加,而进行较高温度的氢提取可以大大缩短试验时间。
在测试时间及温度方面,甘油法、水银法、气相色谱法的扩散氢收集温度均为45 ℃,收集时间均为72 h。载气热提取法温度为400 ℃,收集时间为21min,相比之下,载气热提取法更加的快速,便捷。
3 扩散氢含量的影响因素
根据对焊接过程进行分析,结合国内外资料,影响扩散氢结果的原因很多,在其它过程符合标准的情况下,主要有以下因素。
3.1 焊接参数
焊接热输入对扩散氢含量的影响分为两方面。一方面,随热输入的增加,熔池在液态中存在的时间增长,有利于扩散氢的溢出,减少熔敷金属中扩散氢的含量。其次,从焊接条件看,热输入的增加主要是电流的增长幅度较大,而电流的增加对熔池的作用力如电磁力、熔滴冲击力有所加强,使熔池金属中液态金属的流动速度和搅拌作用加强,也有利于氢的溢出,使扩散氢含量减少。另一方面,随着热输入的增加,氢在熔池中存在的时间较长,溶解度增大,使得含氢量增大,所以它们之间存在一个平衡点[7]。焊接电压的高低,对扩散氢的含量也有一定的影响,但是在实际操作中,低氢焊条都尽量采用短弧施焊,其影响可以不考虑。
3.2 焊接道数
通常都是利用单道堆焊方法测氢,但实际焊接结构,有单道焊与多道焊,快速与冷慢速之分。多道焊接时,不论是水冷还是空冷,焊缝中扩散氢的含量基本上与单道焊是处于同一水平的。多道焊接时,焊缝中的氢不但有向外溢出的过程,也存在一个向内溶解的过程,即后续焊道中过饱和的氢向前一道扩散,形成一个所谓的积累过程。但随着焊道数的增加,扩散氢溢出的路程增长,溢出需要的时间增加,因而增加了产生延迟裂纹的危险性。
3.3 冷却方式
不同的冷却方式对扩散氢的含量影响也是不同的。目前研究了两种冷却方式,即在冰水中冷却后再放入液氮中冷却,和直接放入液氮中冷却。研究对比了两种冷却方式,相比之下直接放入液氮中冷却的冷却方式扩散氢含量较低,这是因为在完成焊接后,迅速的在液氮中冷却首先隔热气体保护膜包围住了试件,这就大大降低了冷却率。
3.4 焊接环境
影响焊接接头中扩散氢含量的因素很多,其中焊接环境的温度和湿度对焊缝中扩散氢含量有很大的影响。有研究表明,当环境空气中相对湿度一定而温度不同时,熔敷金属中扩散氢含量随着环境温度的升高而升高。当环境温度相同而相对湿度不同时,熔敷金属中扩散氢含量随着相对湿度的升高而升高。熔敷金属中扩散氢含量随着空气中的水蒸气分压,即绝对湿度的增加而明显增加。
4 结束语
近年来,随着焊接行业的不断发展,扩散氢的测定方法越来越被人们重视。文中所述的测氢方法都有一定的局限性,随着超低氢焊接材料的研制不断取得重大进展,研制更精确、可靠、简便、经济及没有公害的新型测氢方法显得尤为重要。
在对于影响扩散氢含量的因素方面,由于焊接热循环本身是一个非平衡过程,因而焊接热循环各参数对扩散氢的影响非常复杂,有待于进一步深入研究。
参考文献
[1]漆廷邦, 雷素范, 刘景美. 气相色谱法测量熔敷金属中扩散氢的仪器HD-3扩散氢测定仪[J], 焊接技术, 1994(6):8-10.
[2] 张文钺, 祝美丽. 焊接冷裂敏感性的有效扩散氢及氢扩散因子[J]. 焊接学报, 1991, 12(3): 129-135.
[3] 王晓东, 文九巴, 魏金山. 低合金高强度焊接结构钢扩散氢的研究进展[J]. 洛阳工学院学报, 2002, 23(2): 16-20.
[4] 杜则裕, 张智. 合金钢焊接区扩散氢的动态分布[J]. 中国机械工程, 1994, 5(1): 10-13.
[5] 刘翠荣, 吴志生, 赵钰. CO2气保焊焊缝扩散氢含量的测定[J].山西机械, 1998(3):6-7.
关键词: 柔性显示;组装;引线键合;覆晶;异向导电胶
中图分类号:TN141 文献标识码:B
1 柔性显示背景分析与发展前景
1.1 背景分析
近半个世纪来,电子信息技术的发展对日常生活的影响有诸多案例,但其中显示技术的发展带来的日常生活的变革是最显而易见的。
从首台基于动态散射模式的液晶显示器(liquid crystal display,LCD)(约为上世纪70年代),到目前LCD电视的普及、3D电视的热潮,显示技术的发展颠覆了我们对传统阴极射线管(cathode ray tube,CRT)显示器的认知。2012年1~5月,液晶电视销售额为1,331.9万台,占彩电销售总额(1,470万台)的90.6%(数据来源:视像协会与AVC),可以毫不夸张地说,目前已经是液晶电视的天下。与传统的CRT显示技术相对比,液晶显示技术的显著优点已广为人知,不用赘述。
随着电子技术应用领域的不断扩展,电子产品已经逐步成为日常生活的必须品,而将更多显示元素引入家庭和个人环境是未来显示技术的发展趋势,目前基于此类的研究正在逐步进行(如飞利浦、索尼、通用已经开始相关技术的研发)。但是刚性、矩形、基于玻璃基板的显示器件已经显示出不能满足设计者对外形的需求,设计人员更趋向于选择一种可弯曲、可折叠,甚至可以卷曲的显示器件。
与此同时,对产品品质的要求不断提升,电子产品被要求能承受更多次的“随机跌落试验”。而实验证明基于刚性玻璃基板的显示器件在试验中极易损坏,所以在引入全新设计理念的过程中,具有轻薄、不易碎、非矩形等特性的“概念产品”被普遍认为“具有不一般的对市场的高度适应性”。
在产品外形方面,与传统显示器相比,柔性显示器具有更结实、更轻薄、样式新颖的特点,而这些特点对产品设计师和最终用户都极具吸引力。
在制造商方面,柔性显示器生产时,可以采用新型印刷或者卷绕式工艺进行生产,运输成本相对低廉,使得制造商具有进一步降低生产成本的潜力。
在潜在安全性方面,当柔性显示器破裂时,不会产生可能导致人员受伤的锋利边缘,因此相对刚性显示器而言,柔性显示器无疑更加安全。
1.2 柔性显示的发展前景
由于柔性显示技术具有独特的技术特点,与现有显示技术相比具有一定的先进性,所以普遍认为,在某些市场中,柔性显示具有潜在的替代优势,同时,柔性显示技术更具开拓全新应用领域的潜力(如军方将柔性显示应用于新式迷彩服,而这个领域传统刚性显示器件是很难涉及的)。柔性显示器是一种具备良好的市场前景的新技术,目前用于生产柔性显示器的显示技术有十多种,包括传统的液晶、有机发光显示(organic light-emitting diode,OLED)、电致变色、电泳技术等等,据估计全球约有数百家公司正在或即将开始柔性显示的研发。
可以认为,柔性显示技术的发展将为显示技术领域注入革命性的创新动力。
2 现有组装技术的分析
2.1 组装技术概述
作为柔性显示重要部件之一的驱动芯片,如何与柔性显示器件相连接是一个值得研究的课题。无论何种显示技术,最终的显示画面依赖于驱动芯片给显示介质(例如液晶,发光二极管等)提供其所需的信号(电压信号或电流信号)。已有的芯片组装和封装方式有很多种成熟的方案,但在柔性显示器芯片组装时,最主要考虑的因素有以下几点:
(1)组装制程中的压力和温度;
(2)组装方式的可靠度(包括物理连接可靠度和电性能的可靠度);
(3)组装中能达到的最小管脚距离(Pin pitch)和最高管脚数量。
就目前主流的芯片与目标介质的组装技术宏观上可以分为如下4类(由于TFT-LCD的驱动芯片与目标介质组装技术比较特殊,所以单独归为一类):
第一类,微电子封装技术,是指将晶圆(Wafer)切割后的Chip做成一种标准的封装形式的技术。
第二类,微电子表面组装技术(Surface Mount Technology,简称SMTc),是指将封装后的芯片(IC)成品组装到目标介质上的技术。
第三类,裸芯片组装(Bare Chip Assembly),是指将晶圆切割后的Chip直接组装到目标介质上的技术。
第四类,液晶显示器(TFT-LCD)领域特有的芯片封装和组装技术(COF/TCP封装和ACF bonding技术)。
下面将逐一介绍各类组装技术。
2.2 微电子封装技术
对于电子设备体积、重量、性能的期盼长久以来一直是促进电子技术发展的源动力,而在微电子领域,对芯片面积减小的期望从未停歇(从某种程度上讲,芯片的面积决定芯片的成本价格),在莫尔斯定律的效应下,芯片电路的集成度以10个月为单位成倍提高,因此也对高密度的封装技术不断提出新的挑战。
从早期的DIP封装,到最新的CSP(Chip scale package)封装,封装技术水平不断提高。芯片与封装的面积比可达1:1.14,已经十分接近1:1的理想值。然而,不论封装技术如何发展,归根到底,都是采用某种连接方式把Chip上的接点(Pad)与封装壳上的管脚(Pin)相连。而封装的本质就是规避外界负面因素对芯片电路的影响,当然,也为了使芯片易于使用和运输。
以BGA封装形式为例,通常的工艺流程如图3所示。
通常的工艺流程是首先使用充银环氧粘结剂将Chip粘附于封装壳上,然后使用金属线将Chip的接点与封装壳上相应的管脚连接,然后使用模塑包封或者液态胶灌封,以保护Chip、连接线(Wire bonding)和接点不受外部因素的影响。
另外随着芯片尺寸的不断缩小,I/O数量的不断增加,有时也会使用覆晶方式(Flip Chip)将芯片与封装壳连接。覆晶方式是采用回焊技术,使芯片和封装壳的电性连接和物理连接一次性完成,目前也有在裸芯片与目标介质的组装中使用覆晶方式。
2.3 微电子表面组装技术
微电子表面组装技术(surface mount technolo gy,SMTc,又称表面贴片技术),一般是指用自动化方式将微型化的片式短引脚或无引脚表面组装器件焊接到目标介质上的一种电子组装技术。
表面组装焊接一般采用浸焊或再流焊,插装元器件多采用浸焊方式。
浸焊一般采用波峰焊技术,它首先将焊锡高温熔化成液态,然后用外力使其形成类似水波的液态焊锡波,插装了元器件的印刷电路板以特定角度和浸入深度穿过焊锡波峰,实现浸焊,不需要焊接的地方用钢网保护。波峰焊最早起源于20世纪50年代,由英国Metal公司首创,是20世纪电子产品组装技术中工艺最成熟、影响最广、效率最明显的技术之一。
表面贴片元器件多使用再流焊技术,它首先在PCB上采用“点涂”方式涂布焊锡膏,然后通过再流焊设备熔化焊锡膏进行焊接。再流焊的方法主要以其加热方式不同来区别,最早使用的是气相再流焊,目前在表面组装工艺中使用最为广泛的是红外再流焊,而激光再流焊在大规模生产中暂时无法应用。再流焊中最关键的技术是设定再流曲线,再流曲线是保证焊接质量的关键,调整获得一条高质量的再流焊曲线是一件极其重要但是又是极其繁琐的工作。
2.4 裸芯片组装技术
裸芯片组装是指在芯片与目标介质的连接过程中,芯片为原始的晶圆切片形式(Chip),芯片没有经过预先的封装而直接与目标介质连接。常用的封装形式为COB(Chip On Board)形式。
COB方式一般是将Chip先粘贴在目标介质表面,然后采用金属线键接的方式将Chip的接点与目标介质上相应的连接点相连接。完成后Chip、金属连接线、目标介质上的连接点均用液态胶覆盖,用以隔离外界污染和保护线路。
裸芯片组装还有另一种方式,即覆晶方式。覆晶方式是指在Chip接点上预先做出一定高度的引脚,然后使用高温熔接的方式,使引脚与目标介质相应位置结合,形成电性的连接。与传统方式相比,覆晶方式不需要使用金属线进行连接。TFT-LCD驱动芯片常用的TCP/COF封装使用的即是覆晶方式,但是由于TCP/COF封装应用领域的特殊性,所以没有将其归入裸芯片封装技术中,而是单独划为一类。
2.5 液晶显示器领域特有的芯片封装和组装形式
由于TFT-LCD显示电路的特殊性,要求驱动芯片提供更多的I/O端口,所以一般情况下TFT-LCD驱动芯片封装多采用TCP(Tape Carrier Package)方式,或者COF(Chip On Film)方式,芯片与TFT-LCD显示面板连接多采用ACF(Anisotropic Conductive Film)压合粘接的方式。
TCP/COF多使用高分子聚合材料(PI ,polyimide)为基材,在基材上采用粘接或者溅镀(Spatter)方式使之附着或形成铜箔,然后使用蚀刻方式(Etching)在铜箔上制作出所需要的线路、与Chip连接的内引脚(ILB Lead,ILB:Inner Lead Bonding)、与TFT-LCD显示电路连接的外引脚C(OLB Lead-C,OLB:Outer Lead Bonding)、和外部目标介质(多为PCB板)连接的外引脚P(OLB Lead-P,OLB:Outer Lead Bonding),最后在所有引脚表面附着一层焊锡。
Chip的接点为具有一定高度的金突块(Au Bump),在与Chip连接(Assembly)时,Chip的接点与TCP/COF上的内引脚通过高温高压形成金-锡-铜合金,从而达到电性导通的目的,然后使用液态胶灌封。而在与外部目标介质——TFT-LCD显示电路连接时,则采用另一种组装方式——ACF压合粘接方式(AFC bonding)。
ACF胶结构类似于双面胶,胶体内富含一定密度的导电粒子(Conductive Particle),导电粒子为球状,外部为绝缘材料,内部为导电材料。当导电粒子受到外部压力破裂时,内部导电材料露出,多个破裂的导电粒子连接,可形成电性通路。由于导电粒子破裂时仅受到垂直方向的压力,加之芯片相邻接点距离远大于导电粒子直径,因此,破裂的导电粒子产生的电性链路具有垂直方向导电,水平方向不导电的特性。基于该种特性,ACF胶能使TCP/COF封装形式的芯片每根外引脚在水平方向上互相绝缘,不致形成短路,而在垂直方向又能与目标介质实现电性导通。由于ACF胶加热固化后具有很强的粘合力,所以形成电性导通的同时,可以使COF/TCP与目标介质实现物理连接。
TCP/COF封装形式能支持高达数千的I/O引脚数,因此在TFT-LCD驱动芯片领域得到广泛的应用。
当然,随着成本因素的影响日渐增加,另一种方式COG(Chip On Glass)也应运而生。与TCP/COF方式唯一的不同点在于,COG方式不需要PI基材,而是使用ACF压合粘接方式,直接将Chip与TFT-LCD显示电路连接,因此会更加节省成本。由于在组装中芯片是晶圆切片形式,所以COG技术也可以认为是一种裸芯片组装技术。
3 柔性显示驱动芯片组装方安提出
3.1 柔性显示动芯片组装方案概述
基于上述介绍,可将芯片与目标介质连接的技术做如下归类:
第一类为使用金属线形成电性连接,该种形式多用在常规的芯片和封装壳组装、裸芯片COB封装,可将其归纳为Wire bonding方式。
第二类为芯片和目标介质采用焊接的方式形成电性连接,电子表面组装技术,裸芯片覆晶方式多使用该种技术形式,可将其归纳为焊接方式。
第三类为TFT-LCD芯片组装中经常使用的ACF胶压合连接方式,可将其归纳为ACF bonding方式。
按照上述分类,拟依照不同技术背景,制定不同的芯片与目标介质连接方案,实现驱动芯片与柔性显示基材的电性连接。
具体方案如下:
方案1:采用Wire bonding方式。
方案2:采用Flip Chip方式。
方案3:采用ACF bonding方式。
需要指出,提出方案时,只讨论理论上该方案的可行性,并没有对该种方案是否具有投入实际生产的可行性做出判断和论述。
下面将具体讨论三种方案的优劣。
3.2 Wire bonding方案
目前Wire bonding技术的具体实现步骤如下:
首先,在晶圆制程后期使用电镀方式将Chip的连接点做成金突块;同时,目标介质上的引线(Lead)上也使用镀金技术使其附着一定厚度的金;然后使用Wire bonding设备将金属线的一端熔接(采用超声波或高温熔接方式)在金突块上,另一端采用相同的方式熔接在目标介质的Lead上,从而实现电性的导通。由于金具有良好的延展性和良好的导电性,所以,在Wire bonding的过程中,一般使用高纯度金线(99.99%)。当然,目前在一些极低端应用中出于成本的考虑,或者在SOC(System On Chip)/SOP(System On Package)封装中出于保密的需求,会在某些没有高频信号和大电流信号的连接管脚上使用铝线或者铜线进行Wire bonding。
在柔性显示中使用Wire bonding方案的优势和劣势同样明显。
首先,金是良好的导体,所以在使用金线键接时无需担心传输线RC/RH效应对高频率信号传输造成的影响;同时,也不需过多考虑大电流信号在传输过程中由于传输线本身电阻造成的电压降效应和热效应;其次,采用COB方式可以将芯片直接固定在柔性基材上,省去芯片封装的成本。
但是,Wire bonding的劣势也同样明显,第一,一般只有在金含量较高的连接点上才能实现金线和Lead/Pad的熔接;第二,Wire Bonding要求目标介质能承受一定压力且不能有太大形变;第三,Wire Bonding要求目标介质能承受较高温度;第四,Wire bonding受Wire bonding设备精度的限制,以BGA封装为例,一般I/O数量为500以内的芯片使用Wire bonding的方式,I/O数量增高,势必会使单个芯片连接点的尺寸减小,而在I/O数超过500以上时,芯片接点的尺寸会使Wire bonding的成功率大幅下降,而目前的显示技术恰恰又要求驱动芯片提供更多的I/O数目。
所以,综合分析上述各种因素,只有在低分辨率金属材质(如用金属箔为基材的柔性显示)的柔性显示方案中才有可能采用Wire bonding的方式进行芯片和柔性基材的键接。因此,作为一种连接技术,Wire bonding技术可以使用在柔性显示中,但是受到Wire bonding技术自身的制约,它在柔性显示中的应用会受到不小的限制。
3.3 覆晶方式
覆晶封装方式的应用十分广泛,由于覆晶方式可以节省Wire bonding的金线成本,同时芯片与封装壳的距离更近,可以保证高频信号具有良好的信号品质,所以被大量使用在对信号品质要求较高的CPU芯片封装中。传统封装形式,芯片的最高工作频率为2~3GHz,而采用覆晶方式封装,依照不同的基材,芯片的最高工作频率可达10~40GHz。
覆晶方式的基本做法是在芯片上沉积锡球,然后采用加温的方式使得锡球和基板上预先制作的Lead连接,从而实现电性连接。可以这样认为,覆晶方式是焊接方式的提升。
应用覆晶方式实现柔性基材和驱动芯片的连接有其独特之处。首先,芯片与柔性基材直接连接,从电性上考虑,该方式由于省略了封装中的信号传输线,所以可以降低芯片管脚上杂讯的干扰,而从成本角度考虑,由于使用裸芯片,该方式可以节约芯片的封装成本;其次,当芯片晶背(Chip backside)减薄到一定程度后(例如将Chip晶背研磨至13μm时,Chip可以弯折,如图6所示),Chip会呈现一定程度的柔性,可以在一定程度上实现与显示基材同步的柔性弯曲。
与Wire bonding方式相比,覆晶方式会有其成本上的先天优势(不需使用金属线键接),但是覆晶方式也存在一些问题。
覆晶方式中会使用锡球工艺,目前出于绿色环保考虑,微电子表面焊接技术中大量使用无铅焊锡,无铅焊锡的熔点约在200℃以上。而在柔性显示基材的各种方案中,一般具有良好弯折特性的柔性基材多为有机材料,有机柔性基材所要求的制程温度范围一般在150℃以内,超过200℃的高温会对柔性显示基材造成不可逆的损伤。所以,柔性基材不耐高温的特性与覆晶技术中需要使用的高温制程存在一定的矛盾。因此,我们可以推测,覆晶方式在柔性显示的应用领域会受到其制程温度的限制。
综上所述,覆晶方式多应用于柔性电路板(Flexible Print circuit)与芯片连接或者PCB板直接与芯片连接。当然,在能够耐受高温的柔性基材上使用覆晶方式实现驱动芯片与柔性基材的连接也极为可行。
3.4 ACF bonding方式
ACF bonding是目前TFT-LCD领域驱动芯片和显示基板连接最常用的方式,可以将裸芯片或者TCP/COF封装形式的芯片通过ACF胶与目标介质实现电性连接以及物理连接。
ACF胶连接方式中,ACF胶电阻率变化曲线依赖于导电粒子密度、导电胶厚度、宽度以及导电胶的固化温度。本文没有设计具体实验测量导电胶电阻率的实际曲线,参考相关文献,导电胶的电阻率约为5×10-4Ω×cm。而基于TFT-LCD Array线路本身带给驱动芯片的负载远大于导电胶引入负载的事实,以及驱动芯片输出信号对电容类负载比电阻类负载更为敏感的特性,可以认为,ACF bonding方式的电阻率的非线性变化不会为显示电路引入太多负面因素。而在TFT-LCD中大量使用ACF bonding方式的事实更能说明ACF bonding方式的电性能和可靠度是可以接受的。
其次,由于TFT-LCD分辨率的增加,驱动芯片所需的I/O数量也随之增加。目前主流的Driver IC已可以提供多于1,000 channel的输出I/O。I/O数量的增加直接导致Chip中接点尺寸和管脚间距(Pitch)的减小,而导电胶中导电粒子的直径远小于Chip接点的尺寸,同时,ACF胶能提供的最小Bonding pitch约为10μm,足以满足驱动芯片的需求。所以在支持I/O数量和小管脚间距方面,ACF bonding具有巨大的优势。
再次,由于使用金属箔和薄化玻璃为基材制成的柔性显示器只能实现有限的“柔性”,所以目前柔性显示器基材更倾向于使用柔性更佳的有机材料。以PET/PEN为例,其耐温性与传统刚性显示基材相比较差,仅为120℃左右。而传统的Wire bonding和覆晶方式在组装过程中需要较高的温度,故该两项技术在柔性基材上的应用受到制程温度的极大限制。而ACF bonding方式的组装温度取决于ACF胶本压过程中使用的ACF胶固化温度,固化温度会影响最终成品的物理特性,但对电性的影响较为有限(图7 所示为ACF胶在不同温度/压力下的电阻变化曲线)。
目前,索尼和3M已经有低于150℃的ACF胶出售(约为140℃),而PET/PEN可以短时间耐受150℃的高温,所以,使用低温ACF胶连接驱动芯片和显示基材成为可能。相比上述前两种方式,ACF bonding方式具有工艺简单、适用范围广的特点,所以就目前而言,ACF bonding应该是柔性显示驱动芯片与显示基材连接的最佳方式。
4 结 论
通过比较基于不同技术背景的各种组装技术方案,综合考虑柔性显示基材的物理特性,ACF bonding方式以其在制程温度上的低温特性相比其它两种方案更具优势。客观的说,各种组装技术均有其各自的技术特点和应用领域,而目前柔性显示基材的物理特性限制了组装技术的选择。我们期待新型柔性显示基材的面世,能给柔性显示组装方式带来更大的选择空间。
本文仅在理论层面探讨用于柔性显示屏的驱动芯片连接技术实现,未对用于柔性显示屏的驱动芯片连接技术应用于实际生产中的可行性进行讨论。
参考文献
[1] Nicole Rutherford. Flexible Substrates and Packing for Organic Display and Electronics[J]. Advanced Display, Jan/Feb 2006: 24-29.
[2] 3M. Anisotropic Conductive Film Adhesive 7303. 3M Web.
[3] 3M. Anisotropic Conductive Film 7376-30. 3M Web.
[4] Prof. Jan Vanfleteren (Promotor). Technology Development and Characterization for Interconnecting Driver Electronic Circuitry to Flat-Panel Displays.
[5] Shyh-Ming Chang, Jwo-Huei Jou, et al. Characteristic Study of Anisotropic-conductive Film for Chip-on-Film Packaging. Microelectronics Reliability.
[6] 陈党辉. 微电子组装用导电胶长期可靠性的研究[D]. 西安电子科技大学硕士学位论文.
[7] 肖启明,汪 辉. 焊球植球凸块工艺的可靠性研究[J].封装、测试与设备,第35卷,第12期: 1190-1212.