时间:2022-06-22 01:51:33
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇结构设计论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
一:荷载的计算。荷载包括外部荷载(例如,风荷载,雪荷载,施工荷载,地下水的荷载,地震荷载,人防荷载等等)和内部荷载(例如,结构的自重荷载,使用荷载,装修荷载等等)上述荷载的计算要根据荷载规范的要求和规定采用不同的组合值系数和准永久值系数等来进行不同工况下的组合计算。
二:构件的试算。根据计算出的荷载值,构造措施要求,使用要求及各种计算手册上推荐的试算方法来初步确定构件的截面。
三:内力的计算,根据确定的构件截面和荷载值来进行内力的计算,包括弯矩,剪力,扭矩,轴心压力及拉力等等。
四:构件的计算。根据计算出的结构内力及规范对构件的要求和限制(比如,轴压比,剪跨比,跨高比,裂缝和挠度等等)来复核结构试算的构件是否符合规范规定和要求。如不满足要求则要调整构件的截面或布置直到满足要求为止。
施工图设计阶段的内容为:根据上述计算结果,来最终确定构件布置和构件配筋以及根据规范的要求来确定结构构件的构造措施。
3.各设计阶段的基本方法:根据方案阶段的主要内容,其基本方法就是根据各种结构形式的适用范围和特点来确定结构应该使用的最佳结构形式,这要看规范中对于各种结构形式的界定和工程的具体情况而定,关键是清楚各种结构形式的极限适用范围。还要考虑合理性和经济性。
在结构计算阶段,就是根据方案阶段确定的结构形式和体系,依据规范上规定的具体的计算方法来进行详细的结构计算,规范上的方法有多种,关键是结合工程的实际情况来选择合适的计算方法,以楼板为例,就有弹性计算法,塑性计算法及弹塑性计算法。所以选择符合工程实际的计算方法是合理的结构设计的前提,是十分重要的。
在施工图设计阶段,就是根据结构计算的结果来用结构语言表达在图纸上。首先表达的东西要符合结构计算的要求,同时还要符合规范中的构造要求,最后还要考虑施工的可操作性。这就要求结构设计人员对规范要很好的理解和把握。另外还要对施工的工艺和流程有一定的了解。这样设计出的结构,才会是合理的结构。
4.规范、手册及标准图集在具体工作中的应用:结构设计的准则和依据就是各种规范和标准图集。在进行不同结构型式的设计时必须要紧扣不同的规范,但这些规范又都是相互联系密不可分的。在不同的工程中往往会使用多种规范,在一个工程确定了结构形式后,首先要根据《建筑结构可靠度设计统一标准》来确定建筑的可靠度和重要性;然后再根据《中国地震动参数区划图》,《建筑抗震设防分类标准》《建筑抗震设计规范》确定建筑在抗震设防方面的规定和要求,在荷载的取值时要按照《建筑结构荷载规范》来确定,这是建筑总体需要运用的规范。在工程的具体设计方面,涉及到砌体部分的要遵循《砌体结构设计规范》的规定;涉及到混凝土部分的要遵循《混凝土结构设计规范》的规定;涉及到钢筋部分的要遵循《钢筋焊接及验收规程》和《钢筋机械连接通用技术规程》的规定;在基础部分的设计时需要遵循的是《建筑地基基础设计规范》的规定。最后在结构绘图时则要符合《建筑结构制图标准》的要求。
在各种结构设计手册中,给出了该结构形式设计的原理,方法,一般规定和计算的算例以及用来直接选用的各种表格。这对于深刻理解和具体设计各种结构形式具有良好的指导作用。我们推荐最好能参照设计手册来手算典型的结构形式。
标准图集是依据规范来制定的国家和省市地方统一的设计标准和施工做法构造。不同的结构形式有不同的标准图集。设计中常用的有,结构绘图时采用:平法制图(03G101-1),砌体中的钢筋混凝土过梁采用:过梁(L03G303),砖混结构抗震构造详图采用:L03G313,钢筋混凝土结构抗震构造详图采用:L03G323,地沟及盖板采用:02J331.需要说明的是,在选用标准图集时一定要根据具体工程的实际情况来酌情选用,必要时应说明选用的页号和图集号,不可盲目采用。
总之,结构设计是个系统的,全面的工作。需要扎实的理论知识功底,灵活创新的思维和严肃认真负责的工作态度。千里之行始于足下,设计人员要从一个个基本的构件算起,做到知其所以然,深刻理解规范和规程的含义,并密切配合其它专业来进行设计。在工作中应事无巨细,应善于反思和总结工作中的经验和教训。
在结构计算阶段,就是根据方案阶段确定的结构形式和体系,依据规范上规定的具体的计算方法来进行详细的结构计算,规范上的方法有多种,关键是结合工程的实际情况来选择合适的计算方法,以楼板为例,就有弹性计算法,塑性计算法及弹塑性计算法。所以选择符合工程实际的计算方法是合理的结构设计的前提,是十分重要的。
在施工图设计阶段,就是根据结构计算的结果来用结构语言表达在图纸上。首先表达的东西要符合结构计算的要求,同时还要符合规范中的构造要求,最后还要考虑施工的可操作性。这就要求结构设计人员对规范要很好的理解和把握。另外还要对施工的工艺和流程有一定的了解。这样设计出的结构,才会是合理的结构。
4.规范、手册及标准图集在具体工作中的应用:结构设计的准则和依据就是各种规范和标准图集。在进行不同结构型式的设计时必须要紧扣不同的规范,但这些规范又都是相互联系密不可分的。在不同的工程中往往会使用多种规范,在一个工程确定了结构形式后,首先要根据《建筑结构可靠度设计统一标准》来确定建筑的可靠度和重要性;然后再根据《中国地震动参数区划图》,《建筑抗震设防分类标准》《建筑抗震设计规范》确定建筑在抗震设防方面的规定和要求,在荷载的取值时要按照《建筑结构荷载规范》来确定,这是建筑总体需要运用的规范。在工程的具体设计方面,涉及到砌体部分的要遵循《砌体结构设计规范》的规定;涉及到混凝土部分的要遵循《混凝土结构设计规范》的规定;涉及到钢筋部分的要遵循《钢筋焊接及验收规程》和《钢筋机械连接通用技术规程》的规定;在基础部分的设计时需要遵循的是《建筑地基基础设计规范》的规定。最后在结构绘图时则要符合《建筑结构制图标准》的要求。
在各种结构设计手册中,给出了该结构形式设计的原理,方法,一般规定和计算的算例以及用来直接选用的各种表格。这对于深刻理解和具体设计各种结构形式具有良好的指导作用。我们推荐最好能参照设计手册来手算典型的结构形式。
就服装结构设计起始阶段的教学而言,课程内容大多数属于专业理论知识,如若依旧按照传统教学模式进行教学,那么中职生将会感到索然无味,兴趣全无。由此可见,教师一定要联系生活实际,利用通俗的形式,让中职生轻松的学习专业知识,如可以引导中职生动手操作或者画设计图,让其动手操作的过程中亲身感受与学习服装结构设计的理论知识。此外,在兴趣激发环节,教师可组织开展中职生与教师之间的各种专业问题的探讨与交流,多方面了解中职生在学习过程中对服装专业的兴奋点,接着结合兴奋点及课程内容之间的促进作用,借助实际教学、创设情境、质疑、探讨与研究等的不同方式,挖掘他们潜在的学习热情。同时,动手操作可以促使中职生始终保持对服装结构设计课程学习兴趣的一种绝妙方式,不仅可以让中职生的认识力与思维力得到提升,还能发展中职生勇于探索的精神。
2创造性开展教学,多角度引导思考
借助有效的教学形式促使中职生构建一个完善的服装结构设计知识结构,提升中职生的专业技能,发展他们的创造能力。应以教学、传授知识及提高能力三者为组织课程开展的重点,构建教、学、做3合1的课程教学模式,这样能够让中职生对课程内容进行不同角度的思考,提升教学方法的多元化创新。把平面纸样设计跟立体裁剪进行结合运用到课程教学过程中也是一种非常不错的尝试。有很多的企业都选择采用平面制图后立体裁剪调整这一方式来开展制版工作,此种生产模式的优势已被实际所检验。因此,在课堂教学活动中,借助平面和立体的有机结合可以让教学效果更为显著。并且,教学活动的多元性,也能提升中职生思维能力,让课堂教学更加有效。(1)多媒体教学的多元性。选择多媒体的教学方式穿插到教学当中,借助录像、幻灯片与图片等的不同形式,能很好地增强课堂的感染力,对教学目标的完成具有直接作用,可以让中职生具有更强烈的参与欲望,发展中职生的思维能力。(2)制图教学的多元性。制图活动作为一个相对完备的课堂质量检验过程。制图教学即可对中职生的理论知识及专业能力进行有效检测,又能在绘图过程发现问题、提出问题及解决问题,让中职生了解知识、掌握知识,增强他们的分析力与应用力。(3)语言表达的多元化。服装专业教师口头表达的水平,将直接地影响到课堂教学的质量。高水准的口头表达能够巧妙地唤起中职生的学习欲望,促使他们创造性地学习。
3结语
城市轨道交通停车场主要功能是承担地铁车辆的运用、停放、列检及周月检等工作。一般有以下几个建筑单体组成:综合楼、运用库、洗车库、变电所、污水处理站、人行天桥和门卫。综合楼用于日常办公和食住等功能;运用库用于地铁车辆停放和检修保养等功能;洗车库用于地铁车辆清洗;变电所负责给整个停车场供电;污水处理站主要处理停车场内污水净化排放;人行天桥用于工作人员跨轨道通行,车辆正常运营时,行人不能随意穿越轨道。场地地质概况由上至下主要有以下土层:新填土4~5m深,高压缩性;淤泥0.4~5.5m深,fak=50kPa,高压缩性;粘土0.6~7.4m深,fak=65kPa,高压缩性;淤泥质土1~8.7m深,fak=55kPa,高压缩性;粉质粘土1~7.2m深,fak=200kPa,中压缩性;强风化泥质砂岩未揭穿,fak=300kPa,低压缩性。
2停车场主要单体结构设计总结
停车场内房屋结构安全等级为二级,结构设计使用年限为50年。根据《建筑工程抗震设防分类标准》GB50223-2008,除变电所为重点设防类外,其余均为标准设防类建筑[7]。根据《建筑抗震设计规范》GB50011-2010,本实例工程属于抗震设防烈度为6度,设计基本地震加速度0.05g,地震设计分组为第一组[8],结合地方管理规定和场地地震安全性评价报告,场区特征周期0.35s,地震影响系数最大值0.0765,场地土类别为Ⅲ类。工程材料选择:主体结构混凝土等级采用C30,地下室结构采用P6抗渗等级防水混凝土,二次浇捣构件(如构造柱和圈梁等)混凝土等级采用C25,钢梁钢柱采用Q235B钢材。主要建筑单体结构布置和基础选型如下:综合楼建筑面积约7000m2,总高度为22.35m,五层钢筋混凝土框架结构,局部有地下室,柱网布置开间7.8m,进深7.2m,抗震等级四级,主要柱截面600×600,主要梁截面300×700。选用直径500预应力混凝土管桩桩承台基础,持力层粉质粘土。
运用库建筑面积2万平方米单层工业厂房,采用门式刚架结构,钢柱钢梁抗震等级四级,柱网跨度15m+28m+26.4m+26.8m,柱距离6m,主要柱截面H600×350×8×16,主要梁截面H(1000~700)×350×12×20。柱下基础选用直径400预应力混凝土管桩桩承台基础,轨道道床基础选用直径400预应力混凝土管桩桩筏基础,持力层粉质粘土。洗车库和污水处理站为一层钢筋混凝土框架结构,局部两层,抗震等级四级,主要柱截面500×500,主要梁截面300×800。选用直径400预应力混凝土管桩桩承台基础,持力层粉质粘土。变电所为两层钢筋混凝土框架结构,其中一层为半地下室电缆夹层,抗震等级三级,主要柱截面400×400,主要梁截面300×900。选用直径400预应力混凝土管桩桩承台基础,持力层粉质粘土。人行天桥独柱钢筋混凝土框架结构,柱网布置跨度7m+13m+12m+8.5m,抗震等级四级,主要柱截面500×1200,主要梁截面400×1200。选用直径600钻孔灌注桩桩承台基础,持力层粉质粘土。
3结构设计难点分析
(1)根据场地地质概况的描述,本场地淤泥及淤泥质土较厚,新填土达4m深,场地地面沉降不稳定,柱下基础和库房内无砟整体现浇道床,对基础沉降极其严格,选用何种加固处理措施,是结构设计难点之一。
(2)运用库为大跨度工业厂房,采用何种结构体系,是本工程结构设计难点之二。考虑施工周期和经济指标,本工程采用钢梁钢柱门式刚架结构体系。
(3)刚架梁梁连接节点计算时,高强螺栓计算中和轴位置的确定是本工程结构设计难点之三。查阅相关资料,中和轴位置的确定有两种假定:①中和轴在受压翼缘中心,假定模型:在弯矩作用下,把梁根部截面弯矩简化为作用于梁上、下翼缘的力偶,同时把梁受拉翼缘和端板作为独立的T形连接件看待,忽略腹板的扶持作用。此假定螺栓受力与端板厚度关系很大,设计计算较为繁琐;②中和轴在端板形心,假定模型:高强螺栓外拉力总是小于预拉力,在连接受弯矩而使螺栓沿栓杆方向受力时,被连接构件的接触面一直保持紧密贴合,认为中和轴在螺栓群的形心轴上。根据《端板连接高强度螺栓群中和轴位置研究》试验论文结果,螺栓群中和轴介于其端板形心与受压翼缘内侧中心线之间,当所受弯矩越小,则中和轴越接近端板形心轴,越大则越接近受压翼缘[9]。
4配合施工遇到的问题分析
(1)围墙开裂。分析原因:新填土4m高,围墙距离护坡边仅1m,施工工期较紧,施工单位无法用大型机械分层碾压,填土密实度达不到设计要求。解决措施:①围墙基础选用刚性较大条形基础,防止不均匀沉降,此方案施工较快,造价便宜。②选用换填处理或水泥搅拌桩加固围墙基础下新填土,减小不均匀沉降量,此方案施工周期较长,造价偏贵。综上所述,本工程选用第一种解决措施。
(2)运用库库内柱式检查坑,轨道下混凝土短柱出现偏柱、歪柱等现象。分析原因:短柱设计由结构和轨道两个专业,施工也分别由两家单位施工。解决措施:①混凝土短柱设计为钢柱,直接安装。②混凝土短柱由一家施工单位施工。建议日后设计采用第一种解决措施。
(3)人行天桥柱下管桩无法施工。分析原因:人行天桥跨轨道设置,场地内轨道区域下被地路专业设计水泥搅拌桩加固。解决措施:①天桥柱下基础改为钻孔灌注桩;②检验水泥搅拌桩加固后地基承载力,如不够采用,采用CFG桩加固后采用柱下独立基础。结合现场工期需要,本工程采用钻孔灌注桩基础方案。综上所述,结构设计时,充分运用结构设计难点分析结果,指导结构设计;配合施工时,遇到以上问题,经分析原因,采取我们选用的处理措施,得到明显改善效果,保质保量,按时完成土建施工。目前,本工程已投入使用2年,没有出现任何问题,得到业主单位一致认可。
5结构设计建议
(1)运用库库房内轨道道床为无砟整体现浇道床,对基础沉降极其严格,铁路规范要求控制在20mm以内,如果道床下地质情况不好,建议采用预应力混凝土管桩桩筏基础。
(2)运用库为一层钢结构工业厂房,采用何种结构形式,需根据结构计算和经济比较。结合本工程实例,试算比较后,得出如下经验:柱跨28m,采用混凝土柱+钢梁排架结构和钢梁钢柱门式刚架结构较经济,综合考虑施工工期,选钢梁钢柱门式刚架较适用。
(3)刚架梁梁连接节点设计时,综合考虑各种因素,高强螺栓群计算中和轴宜选端板形心。
(4)场地平整有大量新填土,新填土下有较厚的淤泥和淤泥质土,计算单桩承载力时一定要考虑桩侧负摩阻力。
(5)结合配合施工中的问题,建议结构设计时改进以下措施:①场地内高填方区围墙应做刚性较大的条形基础,以避免围墙不均匀沉降开裂;②运用库库内柱式检查坑,轨道下混凝土短柱出现偏柱、歪柱等现象,影响传力和结构安全,建议混凝土短柱设计为钢柱,直接安装即可;③被其他专业加固的场地区域,柱下基础结构设计时,建议选用钻孔灌注桩。
6结束语
就目前的发展来看,我国的桥梁结构设计的倾向如下:比较注重强度而忽视耐久性;重视强度极限而忽视使用极限;重视结构的建设而忽视结构的维护,这样的设计倾向直接导致了桥梁工程事故的不断发生,不利于和谐社会的发展。我国的桥梁设计理论和结构构造体系还有诸多需要完善的地方,在桥梁设计过程中,尤其在桥梁施工和使用期安全性上改进的空间还是比较大的。在结构设计中首先要选择科学合理、经济的方案,其次是结构分析与构件和连接的设计,还要运用规范的安全系数或可靠性指标给结构的安全性以最大的保障。
2我国现代桥梁结构设计的注意事项
2.1对于结构的耐久性问题要重视
在我国的桥梁建设过程中,很多时候都缺少建设前期所需要准备、视察及考证等工作,这是一大问题。周围的环境会在很大程度上影响到桥梁的建设和使用,不仅包括由于车辆超载而出现的疲劳情况,还包括桥梁结构本身的老化和损伤。我国从上世纪九十年代有些研究者就针对桥梁结构的耐久性进行了研究,但多集中在桥梁的材料及统计等方面,而对桥梁结构及设计的研究却是忽视的,还缺少以设计及施工人员为出发点改善桥梁的耐久性。设计人员所关注结构的计算方法比较多,而容易忽视总体构造的设计和一些细节处的把握。结构耐久性的设计应该有别于其他普通的结构设计,就现阶段而言,我国桥梁结构的耐久性研究应转变为定量分析而不是传统的定性分析。诸多研究实践表明一座桥梁是否能够安全使用,结构的耐久性发挥了很大的作用,经济性也包含在其中。
2.2充分重视桥梁的超载问题
超载会造成桥梁疲劳应力幅度加大、损伤加剧,严重的情况下还可能引发结构破坏事故。桥梁的超载不仅会引发疲劳问题,还可能造成桥梁内部损伤难以及时恢复,进而使得桥梁在正常荷载下的工作状态产生一定的变化,将威胁到桥梁的安全性和耐久性。所以设计人员应加强分析超载所带来的严重后果,最大限度的加强桥梁的稳定性。
2.3重视对疲劳损伤的研究
动荷载是桥梁结构所承受的车辆荷载和风荷载的主要方面,其会在结构内产生循环变化的应力,除了会引起结构的振动外,结构的累积疲劳损伤也是不可忽视的方面。在桥梁建设中所使用的材料实际上均匀性和连续性都不是很理想,诸多微小的缺陷夹杂其中,在循环荷载作用下,它们会不断发展、合并进而形成损伤,最终形成宏观裂纹。一旦宏观裂纹没有得到很好地控制,就会产生材料、结构的脆性断裂。疲劳损伤在初始阶段被察觉的可能性比较小,所产生的严重后果却是毁灭性的。所以应该加强疲劳损伤的研究工作。
2.4积极借鉴国外的经验和成果
我国桥梁设计中存在结构使用性能差、耐久性和安全性差等诸多问题,这和现阶段我国的施工质量和管理水平不高是分不开的,但问题已然存在,并且在短时间无法得到有效解决,设计人员对此问题要有一个清醒的认识,在设计时对上述问题充分考虑到,运用恰当的设计方法、恰当的安全系数使桥梁的使用性能达到要求的标准,这才是设计的关键。尤其是桥梁的耐久性和安全性问题与结构体系、使用材料选择不合理、结构细节处理不当有着千丝万缕的联系。针对我国设计中存在的问题应积极借鉴国外的有益经验,PBD就是其中之一。PBD即为性能设计,涵盖了结构设计的众多方面,如变形、裂缝、振动、耐久性等。PBD研究不仅保证了桥梁结构在使用中的安全性,还具有很多优良的使用性能,这其中包括寿命和耐久性、耐疲劳性、美观等。对此,我国应该积极借鉴其优良方面的性能,并结合我国桥梁设计的实际和使用过程中的具体情况来最终寻找适合我国的设计。
3对我国现代桥梁结构设计的建议
总而言之,我们在对桥梁结构的耐久性、疲劳损伤以及桥梁超载问题进行必要研究的同时,还可以把研究面放得更宽一些,诸如结构系统的可靠度、模糊随机可靠度等,这样做的目的都是为了加强桥梁结构设计的使用性、安全性及耐久性。下面就选择几个方面就行分析,希望为研究人士提供参考。
3.1结构系统的可靠度分析
结构系统可靠度分析其实不是一项容易的研究课题,具有一定的复杂性,近年来不少研究者对其从不同方面进行了研究,并且取得了一定的研究成果。例如利用系统系数,主要针对结构各种破坏水平所对应的极限状态不同,计算系统可靠度并进行结构设计的方法;利用蒙特卡洛法应用重要抽样技术最终将结构系统的可靠度计算出来。另外还有研究者对系统可靠度界限进行深入的研究。总而言之,在进行系统可靠度的研究上难度系数比较大,内容也包罗万象。在研究上还是有一定的上升空间的。
3.2在役结构的可靠性评估与维修决策问题
对在役建筑结构的可靠性评估与维修决策正成为建筑结构学的边缘学科,它既包括结构力学、断裂力学、建筑材料科学、工程地质学等比较基础的理论,还离不开施工技术、检验手段、建筑物的维修使用状况等方面的内容。值得注意的一个方面是对于在役结构的可靠性评估的研究,经典的结构可靠性理论也可在此过程中得到更为广泛、更有深度的进步和发展。
3.3模糊随机可靠度的研究
模糊随机可靠度理论研究作为工程结构广义可靠度理论研究的重要内容,在不断健全的模糊数学理论与方法的推动下,会得到不断的完善和发展。
4结束语
根据建筑物投入使用中的需求进行设计,这种理念称为概念设计。先对场地进行考察,得出一个宏观的设计方案,再将方案中的各结构进行探讨,得出优化方案,这种设计方法具有科学合理、节省时间的优点,在现代建筑中得到了广泛使用。高层建筑结构特殊,对抗震性能的要求高于其他建筑,概念设计通过对设计结构中的承载力进行分析计算,对不符合规范的主要承重部位进行加固。混凝土结构在高强度的压力作用下很容易出现裂缝,内部钢筋材料也会出现弯曲情况,促成这种质量问题的因素一方面是材料选取不合理,更重要的是设计方案不够科学,高层结构概念设计中容易出现的问题主要分为以下几方面:
1.1结构不合理、性能缺少验证。在高层建筑设计中同时要考虑多种因素,保证结构承载力的前提下尽量减少造价成本,需要将建筑结构从总体至细节进行优化。优化工作多数是将设计图纸中的一些参数进行计算分析,适当的加固墙体厚度,常出现缺少对地基承载力的实际考察情况。高层建筑的抗震能力规定在中等强度地震时建筑物不会产生高危裂缝,并可通过修补达到预期效果,在发生高强度的地震时建筑物保证结构不出现坍塌。地震发生的几率很小,一旦发生具有极大的毁灭性,高层建筑抗震性能只停留在设计层面,从数据上分析已经达到了国家要求,但各施工地点基层土壤矿物质组成存在差异,松软程度也就不同,缺少验证,真正发生危险时其稳定性很难保证。
1.2结构设计缺少创新。高层建筑结构复杂,设计过程中受多种因素限制,为同时满足多种需求,工程设计师都施行保守方案,缺少创新精神。钢筋混凝土材质的墙体承载能力与结构有很大联系,在剪力墙设计方案中,应充分借鉴国外先进技术,基于传统结构进行创新,解决承载力不足的问题,同时使高层建筑整体结构更符合大众审美,减少造价支出。概念设计在结构优化上的运用还受很多施工技术以及设备使用方面的限制,阻碍建筑工程行业进步。
1.3受力分布不均匀。高层建筑上下层的结构是不同的,为保证自身重力不会对建筑物造成破坏,基层修筑中会应用到大量的钢筋混凝土材料,加固底层的同时削弱上层,可减轻对地基的压力,同时建筑物承受风力和地震破坏的能力更强。进行概念设计过程中,没有充分考虑转换层占据的空间和对受力平衡的影响,承重柱满足了承载上层压力的要求,但墙体产生的剪力不能与内部的应力平衡,作用在水平方向时形成了破坏力。概念设计中缺少优化环节导致这一现象的产生,很难保障整体结构的稳定性。
1.4概念设计中常见问题的解决方案。设计过程中不可脱离实际情况,在前期准备工作中对建筑场地进行详细的测量,将地区可能出现的自然灾害进行模拟实验,根据测试结果对设计结构进行优化。充分考虑建筑物的自重,满足对抗震性能的要求,同时在结构上进行改进,应用力学知识,节省建筑过程中的原材料使用。合理修筑剪力墙,结构在成体建筑中起到承重作用,但不能破坏空间整体性,注重格局的设计,将各单元的楼梯间进行分别设计,根据不同区域的需求,可将方案进行更改,保证整体结构统一又各有特点。在楼体外观的设计中加入符合当地人文特色的元素,使建筑物更具有中国特色。应用概念设计法时加强后期的优化工作,注重从宏观到细致的过渡,设计方案要具有灵动性,应对施工进展过程中的突况工程师要及时进行探讨,对原有结构做出更改,保障施工连续进展。设计测量工作中会涉及到很多变量,对这些数据进行反复测量,确定合理的浮动范围,作为施工开展的有力依据。
2结构选型的问题
2.1结构的超高。在抗震规范与高规中,对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A级高度的建筑外,增加了B级高度的建筑。因此,必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑甚至超过了B级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。
2.2控制柱的轴压比与短柱问题。在钢筋混凝土高层建筑结构中,往往为了控制柱轴压比而使柱的截面很大,而柱的纵向钢筋却为构造配筋。即使采用高强混凝土,柱断面尺寸也不能明显减小。限制柱的轴压比是为了使柱子处于大偏压状态,防止受拉钢筋未达屈服而混凝土被压碎。柱的塑性变形能力小,则结构延性就差,当遭遇地震时,耗散和吸收地震能量少,结构容易被破坏。但是在结构中若能保证强柱弱梁设计,且梁具有良好延性,则柱子进入屈服的可能性就大大减少,此时可放松轴压比限值。
3结构计算与分析
3.1计算模型的选取。对于常规结构,可采用楼板整体平面内无限刚假定模型;对于多塔或错层结构,可采用楼板分块平面内无限刚模型;对于楼板局部开大洞、塔与塔之间上部相连的多塔结构等可采用楼板分块平面内无限刚,并带弹性连接板带模型;而对于楼板开大洞有中庭等共享空间的特殊楼板结构或要求分析精度高的高层结构则可采用弹性楼板模型。在使用中可根据工程经验和工程实际情况灵活应用,以最少的计算工作量达到预期的分析精度要求,既不能不分情况一概采用刚性楼板模型,造成小墙肢计算值偏小,不安全;也没必要都采用弹性楼板模型,无谓地增大计算工作量。
3.2抗震等级的确定。对常规高层建筑,可按《高层建筑混凝土结构技术规程》(JGJ3-2002,J186-2002)第4.8节规定确定抗震等级,与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级;对于复杂高层建筑还应符合第10章的规定;对于地下室部分,当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可根据具体情况采用三级或更低等级。
3.3非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑地震作用和风荷载较大,必须严格按照新规范中增加的非结构构件的处理措施进行设计。
4结论
1.1钢结构设计防腐方面的问题及对策
钢材受自然因素影响较大,一旦长时间暴露在室外环境中,就极易被锈蚀,不仅钢材的外观会深受影响,钢材的质量也会大打折扣。因此,在钢结构建筑设计中钢材防腐问题也是必须引起高度重视。当前,钢结构建筑设计中对于防腐方面问题的解决方法通常是采用涂抹防腐涂料的措施。设计人员会根据钢结构建筑的要求选用合适的防腐涂料,并要求施工人员在施工中严格按照相关要求规范进行操作。此外,对于钢结构构件也有不同的要求,例如有的构件在出厂前需要涂刷一层底漆。在钢材上涂抹防腐涂料就目前来看是最为有效的防腐措施。但是这样做只是基础性的防腐,因而为了提高钢结构的防腐效果,就必须选用耐候钢作为钢结构建筑的首选材料,并利用热浸镀锌技术对其进行处理,利用镀层,达到保护钢结构不被腐蚀,尤其是应加强有机涂料配套技术的应用,以及阴极保护技术的应用,才能更好地确保其防腐性能得到有效的提升。
1.2钢结构设计在物理方面的问题及对策
1.2.1噪声问题及对策
噪声问题是现代建筑中最为常见的问题之一,且一直没有得到彻底的解决。怎样有效降低噪声已经成为当前建筑学中的重要研究课题之一。人类耳朵能够听到许多种声音,而这些声音又大致能够分为两类,一类是无害悦耳的声音,例如音乐声、鸟鸣声等;另一类则是有害的噪声,例如各种机械发出的轰鸣声,刺耳的喇叭声等。一般情况下,建筑使用功能的不同对隔音的效果要求也不同,例如大型商场建筑,其隔音效果要求较低;寻求安静的住宅建筑隔音效果要求就较高,这就需要设计人员根据建筑使用功能以及隔音效果的不同要求进行专门的设计。在钢结构建筑设计中所采用的隔音措施主要有:使用隔声门、隔声窗,并在建筑或需隔音的房间外墙上使用隔声性能较好的材料。根据建筑使用功能的不同,其对吸音的效果要求也不相同。例如音乐厅类型的建筑,其主要使用功能就是让人类的耳朵吸收发出的音乐声,所以在音乐厅类型的建筑中通常会在顶棚增加反射板用来反射声音,若是音乐厅中的声音无法反射,那么人类的耳朵所听到的声音就会有缺失,甚至是听不到声音。当前,解决吸音问题的主要措施有两种:第一种是科学的设计吸声结构,例如孔石膏板吊顶。第二种是采用先进的吸声材料,例如玻璃、岩棉等吸声性能较好的材料。
2建筑工程中钢结构设计的稳定性与设计要点
2.1建筑工程中钢结构稳定设计的特点
建筑工程中钢结构稳定设计的特点主要表现为:第一,钢结构的多样性。建筑工程中钢结构设计方面的问题直接影响着钢结构的稳定性,特别是承荷载力大的钢结构部位,在进行这类钢结构部位设计时必须进行多方面的考虑,并对钢结构的稳定性进行认真分析、探究。第二,钢结构的整体性。钢结构建筑是由多种构件共同组成的一个整体,任何一个构件所具有的作用都是不容忽视的,若是当任意一个构件出现问题,例如失稳、变形等情况,那么必定会对其他构件造成影响,最终导致钢结构整体稳定性出现问题。
2.2钢结构稳定性的计算方法
(1)整体刚度计算。在现行的钢结构计算规范中,通用的计算方法是轴心压杆稳定计算方法,其主要采用是折减系数方法和临界压力求解法。其中,临界压力由欧拉公式给出。(2)整体稳定性分析。钢结构建筑是由多种构件共同组成的一个整体,其整体稳定性受各种构件的制约较大,各构件之间是否具有良好的稳定性,是确保钢结构整体稳定性的前提基础。所以,应对其整体稳定性进行分析。(3)其他特点的稳定计算。钢结构的各种组成构件又能分为两大类,为弹性构件和柔性构件,因而,在进行钢结构稳定性时应重视这一特点。由于柔性构件容易发生变形,进而导致钢结构内部也发生变化,最终对钢结构整体稳定性产生严重的影响,所以,必须重视柔性构件的分析。
2.3钢结构稳定性的分析方法
(1)静力法。静力法的分析原理是结合已经出现了微小变形后的一些结构受力的条件,并根据这些条件来建立相对平衡的微分方程。通过建立的微分方程仔细的计算出构件受力的临界相关荷载。在实际中应用静力法构件平衡微分方程时,应遵循相关设定,具体表现为:直杆构件应该为截面,其压力应始终遵循之前的轴线进行作用。(2)动力法。当钢结构的结构体系处于平衡状态下时,若是受到一定的干扰,那么整个结构体系就会产生振动,这时应采用动力法对钢结构的稳定性进行分析。钢结构整体稳定性与其所承受的荷载有着密切关联,在钢结构出现变形以及钢结构振动加速时,这种联系更加紧密。若是钢结构所承受的荷载值低于钢结构自身稳定性的极限荷载值时,会出现加速度和之前的钢结构变形的具体方向相反的状况。(3)能量法。若是在实际应用中钢结构载着保守力并且已经具备结构变形的相关受力条件,那么就能以此条件构建总体势能。如果要计算钢结构的总体势能,则必须满足一个前提条件,即钢结构处于相对平衡的状态下。
3结语
关键词:轿车车身;有限元模型;优化设计
现如今,轿车已经成为了我们生活中必不可少的交通工具。一个国家的汽车制造水平,也一定程度上反映了这个国家的科学技术水平。在发达国家,汽车的普及率非常高,平均每个家庭拥有2-3辆不同的轿车,然而,在中国,汽车的普及率却远远低于发达国家。由于汽车在我国的巨大市场潜力以及汽车制造行业对我国经济发展的大力推动,汽车产业已经成为了国民经济的支柱型产业。[1]但是,我国现在汽车制造业的制造水平,与发达国家的汽车制造水平相比,仍然存在比较大的差距。而车身又是汽车组成中相当重要的一部分,车身的好坏会对汽车本身产生直接影响,因此,如何优化设计汽车车身结构,成为了一个非常重要的命题。
1汽车车身结构设计对整车的影响
汽车车身对于整车结构来说,处于相当重要的地位,无论是重量还是制造成本,都在整车当中占了极大的比重。一辆车的美观性,舒适性以及安全性需要由车身的结构设计特点来决定,车的操作的稳定性和动力性需要由车身结构的外形以及特性来决定,由此可见,汽车车身的发展,决定了汽车整车的发展。
2现代汽车车身结构特点以及设计要求
(1)轻量化是目前车身设计中的主流。在激烈的市场竞争中,能够设计出质量更轻便,成本更低的汽车,已经成为了一种强有力的竞争手段。(2)车身结构设计中最优先考虑的舒适性和安全性。目前承载式车身结构已经成为车身设计中的主流,主要原因就是这种结构不仅能给驾驶者带来舒适的驾驶感受,同时也能给予驾驶者一定程度上安全的保障。(3)凭借现代汽车开发技术,优化设计过程,需要尽可能缩短车身结构的开发周期。缩短整车的开发周期,对于汽车制造商来说,不仅能够极大地节省研发成本,还能在瞬息万变的市场中,提高自己的生存能力。(4)设计与分析并行。在汽车设计的过程中,车身结构分析全程贯穿其中,在设计的同时进行分析,这样设计出来的方案,无需再做太大的改动。车身的开发周期又被大大的缩短了。(5)无时无刻不在优化的思想。随着人们生活水平的不断提高,消费者对于汽车各项性能方面的要求不断提高,这也促使了汽车生产商需要不断地提高自身的竞争力,在设计中引入优化的设计思想。(6)现代车身结构设计要满足如下几个方面的要求:车身结构的动力性能要求;理想的碰撞特性;轻量化和低成本;遵循总布置尺寸约束;基于平台的系列设计;满足车身制造要求,易于维护和拆装方便。[2]
3有限元
3.1概念及应用
在汽车CAD/CAE技术中,有限元分析方法和软件技术非常的重要。汽车结构复杂,对它进行性能研究以及设计的优化,有限元是最合适的选择。在工程技术方面,对于不规则的几何体,支撑情况比较复杂的结构以及零部件的计算和分析,有限元都有着相当大的优势。因为这些优势,它在多种交通工具的设计中都能得到普遍的应用。
3.2有限元运用在车身结构设计中
汽车的车身对于整车来说,非常重要,但是它的制作需要的材料和制造模具需要的成本都很高,之后的改变造型也很困难。所以需要在设计的初期用有限元的方法对车身的结构以及需要的零部件进行计算,算出它的使用强度的使用寿命,极大地减轻了人力物力财力,因此车身结构有限元方法在汽车生产商中非常受欢迎。有限元建模在汽车结构中主要起到了简化汽车结构的几何模型、确定制造所需要的材料的属性、单元的选择以及网格的划分、用来连接和装配有限元的模型的作用。汽车结构的有限元模型一般分为板壳的单元模型、梁的单元模型和板梁结合的单元模型这三种。
3.3有限元建模的基本流程
如果要用有限元进行结构分析,首先要建造有限元的汽车模型,建立不同的模型,最后分析出来的结果也不一样,因此有限元分析结果的可信用程度,最终是由建立的分析模型决定的。在建立模型的时候,既要准确的反应汽车的实际特性和结构,又要尽可能的简化,这样才可以保证在花费最少的计算资源的情况下得出最精确的结果。一般有两种建模方法:一是用CAD软件建立整个的CAD模型,然后将模型中单个的零件的文件转变成CAE能够识别的格式,将其导入CAE中,经过修正以及网格的划分,得到单个的CAE模型。另一种方法是利用CAE软件中的建模功能直接在CAE中建立与实际尺寸相同大小的零件模型,然后通过同样的方法来得到整个结构的CAE模型[3]。如果要制造复杂的曲面造型,用CAD造型软件会比CAE软件更方便一些。
4车身结构优化设计
优化设计是一门新型的学科,可以建利用有限元分析方法,将结构设计从被动的校验设计转变为主动的改善设计,提高设计的快速性和准确性,可以大大缩短产品的设计周期,从而提升产品的质量。结构优化现在大部分都采用准则法。准则法提出优化设计要满足的一些准则,用迭代法来求出满足这些准则的解。[4]优化准则法最突出的特点就是迭代次数少,而且设计变量的增加对其影响不大,所以计算效率很高,同时也有利于编程。但是它在建立迭代公式的过程中要经常引入一些假设,这些假设常常与研究的问题的特点有关,所以它的通用性也受到了一些限制。
5结语
车身结构设计,和有限元的建模分析工作,涉及了各方面的专业知识,包括材料学、结构力学、优化理论等等。而且由于国内关于这方面的研究工作刚刚起步,自主开发缺乏经验,能力较弱。因此在汽车车身结构设计方面,在我国还有相当大的发展空间。本文对汽车车身机构设计的特点以及有限元模型的一些基本论述,以及车身优化结构设计的讨论,对我国的汽车制造工业的发展,具有一定的参考价值。
作者:史笑夫 郭蔷 单位:华晨汽车工程研究院
参考文献:
[1]高书娜.轿车车身结构分析与设计技术研究[D].重庆:重庆大学,2006.
[2]陈洪亮.轿车车身结构力学特征及轻量化设计[D].武汉:武汉理工大学,2009.