期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 电源技术发展论文

电源技术发展论文精品(七篇)

时间:2022-09-24 19:32:08

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇电源技术发展论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

电源技术发展论文

篇(1)

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,从而可大大的提高工作频率,提高开关电源工作效率,设计出性能优良的开关电源。

总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。

参考文献

(l)林渭勋:浅谈半导体高频电力电子技术,电力电子技术选编,浙江大学,384-390,1992

(2)季幼章:迎接知识经济时代,发展电源技术应用,电源技术应用,N0.2,l998

篇(2)

案例教学法的可行性

案例教学法是一种先进的教学方式,教师根据工程生产实际给出若干案例,学生分成若干研究小组,在教师地引导下组织文献查阅、研究和讨论,在规定时间内完成案例的设计后,通过报告的形式汇报研究成果,汇报完成后由教师和学生共同进行对相关问题的讨论。在这种教学方式下,学生由被动的接受者转变为知识的发掘者,实现教师与学生、学生与学生间的互动。与传统教学方式相比,案例教学法的优势十分突出,大大改善了教学效果,因此已经在我国高校的课堂教学中得到应用。[6,7]电力电子技术在工业生产和国民生活中应用广泛,同时也综合了电子技术、电路、自动控制等多个学科,因此具有很强的工程性和综合性。同时,“电力电子技术”强调理论联系实际,因此必须重视实践性教学。在“电力电子技术”的教学中引入案例教学法,对于达到课程的实践性和综合性要求,调动学生学习的自觉性和主动性,提高学生自学能力和实践能力,改善教学效果,大有裨益。

案例教学法的实施过程

新型教学法的实施步骤为:1.提出课题(案例)将全班学生分为5个课题小组,小组可由教师划定,学生也可以自由组合。根据“电力电子技术”教学大纲和教学目标要求,选取实践性较强的5个案例,分配给5个课题小组,每个小组负责1个课题,课题的选择由各组自行协商。由于学生刚刚接触“电力电子技术”,因此教师在选择案例时需注意案例的难度,案例不能过于简单,需具有挑战性,但也不能难度过大,占用学生过多的时间,甚至令学生失去兴趣。经过实践,笔者给出的第一批5个案例为:级联式晶闸管整流器的设计、高功率因数PWM整流器的设计、SPWM逆变电源的设计、矩形波交流电源的设计、高频高压脉冲电源的设计。当然,案例的选择并不是一成不变的,为了防止部分学生向上一届学生索要案例设计结果,同时考虑到电力电子技术发展迅速,每一届教学中都将对案例进行修改或更换.2.研究学习各课题小组根据案例的要求,进行分工合作,首先要充分理解教材,判断案例涉及教材中的哪部分章节的内容,深入阅读教材,然后根据教师提供的文献资料及学习方法,通过图书馆、期刊网等文献检索工具的帮助,查阅相关文献,对课题进行拓展学习。由于课题涉及的电路、自动控制等方面的理论较多,需要学生阅读较多的文献。小组成员之间需要经常沟通和讨论,并进行材料的整合并为报告做准备。3.仿真研究由于学时以及实验条件所限,学生无法对每个设计出的电路进行实验研究,为了检验设计结果的正确性,可采用仿真验证的方法。目前,有多种仿真软件可以仿真电力电子电路,其中最常用的是Matlab/Simulink和PSIM。这两种软件已被许多教师用于课堂教学中,但学生动手使用的并不多,实际上,这两种软件易学易用,学生无需在学习软件的使用方法上花费太多的时间。在案例设计过程中,学生可以随时用设计的仿真程序验证设计的正确性;设计完成后,要给出不同拓扑结构、不同控制策略、不同电路参数和控制参数下的主要波形,并由此确定最佳拓扑和参数。在第二和第三阶段,学生可通过网络课程平台与教师交流。4.报告讨论报告和讨论是案例教学法的重要环节,一般安排在课程结尾阶段进行。由于学时的限制,为每个案例分配的时间为20分钟~30分钟。课题组推举一位报告人,报告人应在报告前做好PowerPoint讲稿,报告时用5分钟的时间介绍案例的要求和设计结果。余下时间由全体学生讨论设计的合理性,学生也可以提出各种问题,由报告人进行解答,报告人解答不了的,由该课题组的其他成员解答。教师在此过程中应对讨论的深度和广度加以把握,最后对案例设计的结果进行点评,并记录学生在报告和讨论过程中的表现,作为考核的依据。5.撰写小论文通过一个学期的学习与实践,每个学生提交一份与案例相关的研究性小论文,教师应要求每个课题组内各成员间的小论文内容有区别,即应侧重于自己所研究的那一部分。6.期末考核期末考核的成绩由三部分组成:报告和讨论过程中的表现以及小论文的质量。为了保证考核的公平性,教师在布置任务时要为课题组的每个成员分配不同的工作。以“SPWM逆变电源的设计”为例,可将案例拆分为若干子课题,如:单相逆变电源的设计、三相逆变电源的设计、常规SPWM调制方法研究、梯形波SPWM调制方法研究、鞍形波SPWM调制方法研究等几个子课题。在小组成员较多的情况下,可令其中一部分同学用Matlab/Simulink仿真,其余同学用PSIM仿真,这样不仅使每个学生都有相互独立的任务,还可将不同仿真软件得到的结果进行相互验证。

案例举例

篇(3)

[论文关键词]工学结合 立体化教学 促进就业 实现共赢

[论文摘要]工学结合、校企合作的教学模式是通信电源高职教学改革的需要,本文从多个角度阐述了工学结合的实践内容,提出了工学结合的教学方法及思路。工学结合把以课堂为主传授知识的教学环境与直接获得实际经验和能力为主的生产现场环境有机结合起来,极大地提高学生的实践动手能力,有利于培养适合行业、企业需要的应用型人才。

一、工学结合教学模式是高职教育改革的必然趋势

教高[2006]14号文件《关于实施国家示范性高等院校建设计划、加快高等职业院校改革与发展意见》明确指出,高职教育要坚持以“服务为宗旨,以就业为导向,走产学研结合的发展道路”的办学方针。工学结合、校企合作可以充分利用学校、企业和研究机构的教育资源和教育环境,以培养适合行业、企业需要的应用型人才为目的的教育模式,把以课堂传授知识为主的教学环境与直接获得实际经验和能力为主的生产现场环境有机结合起来。实践和推广工学结合、校企合作的教学的新模式,集中体现出以社会需求为导向、以专业特色求发展、以教学质量为基础的高职教育特色。

通信电源是移动通信设施的“心脏”,对通信事业发展起着举足轻重的作用。随着通信事业发展,移动通信已进入千家万户。联通、移动等通信行业企业新增建设了大量基站,目前通信基站大量使用了小容量的开关电源、小容量的蓄电池以及小容量的UPS等设备,而电源系统的维护在安全保障、可靠性等方面的有着相当严格的要求与规范,一旦通信电源发生故障而停止供电,必将导致通信中断。因此各大通信运营商对通信电源越来越重视,对高技能、高质量、高素质的电源专业人才有迫切需求。通信电源专业培养的学生有很多毕业后从事基站代维的工作,但基站电源的维护是一个将所学专业知识进行综合运用的过程,既需要有较扎实的理论知识,又要有很强的动手操作能力。然而,现实情况是,有些学生就业后一开始工作显得无所适从,上不了手,而很多通信运行企业难以招到合适的人才。

产生这一矛盾的原因,主要是我们的教育与企业实际仍然脱节,学院专业教学的就业针对性不强,学生实践能力和就业能力较弱。由于学校不甚了解社会对职业岗位的要求,专业知识教学与日新月异的通信新技术的发展不相适应,难于解决实训实施设备,缺乏职业技能培训手段,行业企业在职业教育尤其是职前教育中参与力度欠缺,校企结合紧密程度不足。因此,工学结合教学模式是高职教育改革的必然趋势

二、工学结合教学模式的主要实践内容

发展学校和行业、企业之间的多种形式的合作,逐步做到专业培养过程中每一个环节和通信企业电源专业技术需求紧密衔接。这样既有利于实训教学和学生就业,更重要的是能及时得到企业的反馈,促进办学、提高教育质量。工学结合教学新模式,可以从以下几方面内容实践:

(一)因时制宜开展课堂教学,与时俱进设置专业课程

教材的编制和选用既要注重理论性,更要注重实践性的分析,每年都要坚持修订和充实教材内容,增添新的课程,提升专业教学内涵,使学生的专业知识更广。学院实训基地目前已配有空调实训室、电力实训室(包括高低配、开关电源、UPS、交流配电瓶、通信用蓄电池等)、监控实训室和油机实训室。教学内容方面新增加了基站电源维护、概预算、工程设计、专业英语、CAD等课程以及交流电等电工专业课程,拓宽了学生的专业知识。有的放矢开展项目式的课程设计,在课程设计中,结合实际的工程案例,让学生了解实际的开发工程,了解市场信息及掌握专业发展动态,从而使学生真正做到学以致用。

(二)加强学校实训基地建设,不断完善和更新实训基地设备设施

实训基地的设备设施与通信行业企业相配套,随着通信电源技术发展而不断更新,保持设施和设备的先进性,不断改善学校实训实习的环境。学生进入实训基地就像置身与企业工作现场,使整个教学过程完全贴近企业生产第一线,贴近社会实际。加强学生通信电源基本技能训练,传输设备相关技能训练,交换、软交换设备相关技能训练,基站、天馈设备相关技能训练,宽带、数据设备相关技能训练,相关仪表仪器测量专业技能训练。通过各种基本技能的实训,使学生具有扎实的专业功底,以适应今后社会通信事业发展的需要。

(三)着力提高教师素质

专业教师不但要在专业知识更新和理论上不断进修充电,而且学院还要利用寒、暑假安排专业课教师到通信企业以普通员工身份顶岗实习,每年不少于一个半月,通过教师实习,与企业加深接触,体验市场和企业的实际需求,从而对我们学生的培养及适岗培训课程设置有深刻的体会。同时,安排教师参加各种新技术培训,了解和掌握通信领域前沿科技发展脉搏,了解企业所需,收集各种案例,用于教学。

(四)加强产学研结合的实践教学

遵循以学生就业、服务信息产业的宗旨,学院与有关企业紧密合作,建设通信职业技能鉴定站、通信行业企业通信电源培训基地,同时积极推动各大运营商在院校电源培训基地的组建。建立和健全师资库,聘请通信行业专家和企业生产技术骨干来院授课,使通信电源教学更贴近实际。学院每年利用暑假组织和安排通信电源专业教师到对口企业实习,从而掌握了大量第一手资料,增强了教学的针对性和前瞻性。还邀请浙江卧龙灯塔电源有限公司工程师讲授蓄电池活化方面的内容,学生学到书本上学不到的知识。

(五)推进“任务驱动”教学法,推广案例教学

鼓励学生自发组建项目小组,根据各项目小组的特长,承接相应的项目设计、施工、在指导老师的辅助下,完成从设计到施工的整个过程。让学生带着来源于企业的“任务”展开教学活动,引导学生由简到繁、由易到难、循序渐进地完成一系列“任务”,从而得到清晰的思路和熟练的方法,解决问题,得出结论。同时积极鼓励和引导学生参加电力机务员高级工考试和电工证考试,获得各种技能。加强对校外实习学生的走访,深入企业调研,合理分析培养目标岗位群体和要求。教学方法主要有:

1.工学交替教学法 及时开发与企业同步的实训实践项目,创造真实的企业环境和工作情境,通过移动等通信运营商,建立通信电源实训基地和校外实习合作伙伴等措施,使得通信电源课程更加完善,设备更新速度与企业同步,企业锻炼机会增多。

2.案例教学法 在社会越来越重视创新性、应用型人才的背景下,利用行业背景收集大量真实企业案例,经过课程组教师精心设计,开设案例讨论课,提高学生分析问题和解决问题的能力,加深对课程的理解,有利于理论知识与实际经验结合和转化。

3.体验式教学法 利用行业背景和校企之间的良好合作,在大量的企业培训课程中使其与学校教学有机融合,使学生接受企业文化熏陶、获得一线一手培训内容,同时让企业员工更多了解学生,增强社会影响力。

4.互动式教学法 倡导教师与学生之间进行平等的对话和讨论。教师和学生通过实训实习获得的感受和体会相互交流,取长补短,达成共识,共同提高。不同的教学内容和教师所采取的互动式教学方法的具体形式可以有所不同。

三、工学结合教学模式的理论意义及应用价值

工学结合的教学设计不同于以往一般的课堂授课——实验室实验——企业实习模式,是高职教育一种新的教学改革思路。新教学模式强调四性:即增强专业设置的针对性、增强课程内容的实用性、增强教学过程的实践性、增强学校和企业的伙伴合作性。以学生获得知识技能为切入点,联合企业专家遴选出本课程所对应的岗位典型工作任务,结合校内外实训实习基地的条件,以学生认知和技能的获取为依据进行。在综合机务员技能鉴定大纲的指导下,通过设计典型工作任务,创造虚拟的企业环境和工作情境,灵活施行“校内——校外——校内——校外”的教学方式,结合企业实时动态,形成立体化教学内容。建立校外通信能源实训基地,提高实验实训课比例,设备更新与企业同步,学生到企业锻炼机会增多,增加实践经验、加强实践和理论的反复验证。开发实验实践项目,培养特色鲜明的学生。通过完善电源实训中心功能,包含系统维护功能,系统分析、系统设计、工程施工等实践功能,增加学生的动手实践感知能力,提升了其可持续发展的能力,较好解决了通信电源专业培养生员紧贴社会和企业需求,对社会、企业、学院、学生是多赢的教学改革成果。

通信电源专业是浙江邮电职业技术学院在1958年建校之初创办的专业,是学院乃至全国的重点基础专业。学院2004年升格为高职院校以后,通信电源专业成为学院首批重点专业之一。学院除了每年向社会输送通信电源高职学生90人左右,还承担大量的浙江省移动、电信等各大通信运营商及代维公司电力机务人员的培训、鉴定、竞赛等任务。近年来,学院紧贴社会和企业需求,围绕工学结合的教学模式,探索教学改革,取得了显著效果。

(一)创造了真实的企业情境,设计全面的实践项目,把以课堂为主传授知识的教学环境与直接获得实际经验和能力为主的生产现场环境有机结合起来,极大的提高学生的实践动手能力,有利于培养适合行业、企业需要的应用型人才。

(二)积极开展校企合作,在双赢、互利基础上为通信企业搭建培训平台。基地为学校提供了科研项目、签“订单”培养学生,提供教学实习等,学校为基地提供培训业务,开展科研,输送优秀毕业生等,以此促使教学、科研全面提升,带动招生、就业良性循环。由于企业培训与日常教学有机融合,推行体验式的企业案例教学,开设案例讨论课,感受企业文化,加深课程理解,有利于理论经验向实际经验的转化。

(三)以工学结合为切入点,采用工学交替教学模式,增强学生学习目的性、能动性,进一步培养其实践技能和职业能力,及早自我规划职业生涯,有利于学生实践能力的锤炼、实践经验的积累,以及创新精神的培养,最终培养出真正符合社会需要的高素质技能型人才。

近三年来,有效的教学手段和完善的教学实践环境大大促进了课程的建设。其中,通信电源课程荣获浙江省“精品课程”,用人单位对本专业学生的综合职业能力的认可度大幅提升,通信电源专业毕业生一次就业率达到95%以上,真正实现了学生、社会、学校多方共赢的良好局面。

参考文献:

[1] 国家教育部,财政部教高.关于实施国家示范性高等院校建设计划、加快高等职业院校改革与发展意见[Z],2006.

篇(4)

论文关键词:通信行业通信电源管理

论文摘要:在通信行业中,人们通常把电源比喻为通信系统的心脏。近年来,电信网全方位快速发展,同时也给从事电源维护管理工作的人员提出了许多新的问题。由于电源设备正处在新老并存、逐步更新换代的时期。基于此,本文就通信电源的维护和管理方面谈几点想法。

0引言

由于历史发展的原因,当前通信电源供电体制基本上是以集中放置、集中供电方式为主,有人值守、故障维修为主。而电源的负载,如传输、交换、数据、移动等专业的维护方式正朝着集中监控、集中维护、少人或无人值守方向发展。通信基站是通信网络系统中的重要组成部分,保证任何情况下的正常供电,是保证通信网络安全运行的重要环节。为此各通信基站内均配备了较先进的电力电源供电系统,包括开关整流设备、免维护蓄电池、油机等。这些设备是保障供电稳定和连续性的重要设备,对这些设备维护的好坏,不仅影响电源系统设备的寿命和故障率,而且直接涉及通信网络的平稳运行。

1通信电源概述

从远古时代以来,阳光、空气、食物和水一直是人们赖以生存的必需品,而今在科学技术飞跃发展的时代,电也已成为人们的必需品。因为有了电,我们的生活才有了欢乐。正是由于通信系统的安全优质运转,无处不在的通信电源则是坚实的基础和根本保障。实施集中监控管理是网络技术发展的必然趋势,是现代通信网的要求,也是企业减员增效的有效措施。各种电源设备要智能化、标准化,符合开放式通信协议。若电源系统不能输出规定电流,电压超出允许波动范围,杂音电压高于允许值时间并持续10s以上者均判定为系统故障。原交流系统中的电压、频率或波形畸变超出规定范围持续时间大于60s者均判定为故障。为此,要保证通信电源系统的可靠性,有条件的通信部门应尽量从两个不同的地方引入2路市电输入,并设置2路市电电能自动倒换装置;所用设备要选用可靠性高的高频开关整流设备,采用模块化、热插拔式结构以便于更换,并合理配置备份设备。任何新技术、新设备未经充分验证、试运行前均不得进入供电系统。供电方式要大力推广分散供电,使用同一种直流电压的通信设备采用两个以上的独立供电系统,这也是今后通信网络容量和规模不断扩大、各种新业引入的新要求。为了尽量缩短设备的平均故障修复时间,要经常分析运行参数,预测故障发生的时间并及时排除。还要提高技术维护水平,采用集中维护、远程遥信、遥测维护。在实施过程中,三遥点的设置要合理,绝不是越多越好,要以可靠性、实用性为基本原则,宜简勿繁。

2电源系统使用中应重视的问题

电源系统目前广泛使用高频开关电源系统设备,其智能化程度高,电池采用了免维护蓄电池,这虽给用户带来了许多便利,但在使用过程中还应在多方面引起注意,确保使用安全。

2.1按电源系统的使用要求和功率余量大小来分,在使用中要避免随意增加大功率的额外设备,也不允许在满负载状态下长期运行。工作性质决定了电源系统几乎是在不间断状态下运行的,增加大功率负载或在基本满载状态下工作,都会造成整流模块出故障,严重时将损坏变换器。自备发电机的输出电压、波形、频率和幅度应满足电源系统对输入电压的要求,另外发电机的功率要大于开关电源设备的额定输入功率,否则,将会造成电源系统设备工作异常或损坏。

2.2电池应避免大电流充放电,理论上充电时可以接受大电流,但在实际操作中应尽量避免,否则会造成电池极板膨胀变形,使得极板活性物质脱落,电池内阻增大且温度升高,严重时将造成容量下降,寿命提前终止。在任何情况下都应防止电池短路或深度放电,因为电池的循环寿命和放电深度有关。放电深度越深循环寿命越短。在容量试验或放电检修中,通常放电达到容量的30%-50%就可以了。2.3铅酸蓄电池的容量和电解液的比重是线性关系,通过测量比重可以了解电池的存储能量情况。阀控式密封蓄电池是贫液电池,且无法进行电解液比重测量,所以如何判定它的好坏,预测贮备容量已成为当今业界的一大难题。用电导仪测电池的内阻是判定蓄电池好坏的一种有参考价值的方法,但尚不能准确测定电池的好坏程度。目前,最可靠的方法还是放电法。在可靠性、经济性、可使用性、维护性等方面综合比较,应选用四冲程油机为原动机发电机组。四冲程油机结构简单,采用多缸均衡做功、增压等一系列成熟技术适合于大容量机组的要求。其噪音小、污染小、性价比高。使用中把机组产生的热量排到室外,保证机组周围环境湿度不超过指标要求。

3电源系统的维护与检修

当电源系统出现故障时,应先查明原因,分清是负载还是电源系统,是主机还是电池组。虽说开关电源系统主机有故障自检功能,但它对面而不对点,对更换配件很方便,但要维修故障点,仍需做大量的分析、检测工作。另外如自检部分发生故障,显示的故障内容则可能有误。对主机出现击穿、断保险或烧毁器件的故障,一定要查明原因并排除故障后才能重新启动,否则会接连发生相同的故障。再好的设备也有寿命期,也会出现各类故障,但维护工作做得好可以延长寿命并减少故障的发生,不要因为高智能、免维护而忽略了本应进行的维护工作,预防在任何时候都是安全运行的重要保障。高频开关电源设备在正常使用情况下,主机的维护工作量很少,主要是防尘和定期除尘。特别是气候干燥的地区,空气中的灰粒较多,灰尘将在机内沉积,当遇空气潮湿时会引起主机控制紊乱造成主机工作失常,并发生不准确告警。另大量灰尘也会造成器件散热不好。一般每季度应彻底清洁一次。其次就是在除尘时检查各连接件和插接件有无松动和接触不牢的情况。由于整流器对瞬时脉冲干扰不能消除,整流后的电压仍存在干扰脉冲。蓄电池除有存储直流电能的功能外,其等效电容量的大小与蓄能电池容量大小成正比。因此,维护检修蓄电池的工作是非常重要的,虽说蓄电池组目前都采用了免维护电池,但这只是免除了以往的测比、配比、定时添加蒸馏水的工作。但因工作状态对电池的影响并没有改变,不正常工作状态对电池造成的影响没有变,所以蓄电池的工作全部是在浮充状态,在这种情况下至少应每年进行一次放电。放电前应先对电池组进行均衡充电,以达全组电池的均衡。放电过程中如有一只达到放电终止电压时,应停止放电,继续放电须先排除落后电池后再放。核对性放电不是追求放出容量的百分比,而是关注并发现和处理落后电池,经对落后电池处理后再作核对性放电实验。这样可防止事故,以免放电中落后电池恶化为反极电池。平时每组电池至少应有8只电池作标示电池,作为了解全电池组工作情况的参考,对标示电池应定期测量并做好记录。在日常维护中需经常检查的项目有:清洁并检测电池两端电压、温度;连接处有无松动腐蚀现象,检测连接条压降;电池外观是否完好,有无壳变形和渗漏;极柱、安全阀周围是否有酸雾逸出;主机设备是否正常等。免维护电池要做到运行、日常管理周到、细致和规范,保证设备保持良好的运行状况,从而延长使用年限;保证直流母线经常保持合格的电压和电池的放电容量;保证电池运行和人员的安全可靠。这是电池维护的目的,也是电池运行规程中包括的内容和运行规则。当电池组中发现电压反极、压降大、压差大和酸雾泄漏的电池时,应及时采用相应的方法恢复和修复,对不能恢复和修复的电池要换掉。但不能把不同容量、不同性能、不同厂家的电池联在一起,否则可能会对整组电池带来不利影响。对寿命已过期的电池组要及时更换,以免影响到电源系统和设备主机。参考文献:

[1]樊勤.通信电源的管理与应用[J].内蒙古科技与经济2006(3).

篇(5)

现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

一、电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

二、现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

三、高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

篇(6)

【关键词】 智能 变电站 优势

根据国家电网公司《智能变电站技术导则》,智能化变电站是采用先进的传感器、信息、通信、控制、智能等技术,以一次设备参量数字化、标准化和规范化信息平台为基础,实现变电站实时全景监测、自动运行控制、与站外系统协同互动等功能,达到提高变电可靠性、优化资产利用率、减少人工干预、支撑电网安全运行,可再生能源“即插即退”等目标的变电站,是数字化变电站的升级和发展。智能变电站作为智能电网运行与控制的关键主要表现为衔接智能电网发电、输电、变电、配电、用电和调度六大环节,在智能电网中变换电压、接受和分配电能、控制电力流向和调整电压起着重要作用,是智能电网“电力流、信息流、业务流”三流汇集的焦点,对建设坚强智能电网具有极为重要的作用。

1 智能化变电站与数字化变电站的区别

智能化变电站与数字化变电站有密不可分的联系。数字化变电站是智能化变电站的前提和基础,是智能化变电站的初级阶段,智能化变电站是数字化变电站的发展和升级。智能化变电站与数字化变电站的差别主要体现在以下3个方面:

(1)数字化变电站主要从满足变电站自身的需求出发,实现站内一、二次设备的数字化通信和控制,建立全站统一的数据通信平台,侧重于在统一通信平台的基础上提高变电站内设备与系统间的互操作性。而智能化变电站则从满足智能电网运行要求出发,比数字化变电站更加注重变电站之间、变电站与调度中心之间的信息的统一与功能的层次化。智能变电站在整个电网中的位置如图1。

(2)数字化变电站己经具有了一定程度的设备集成和功能优化的概念,要求站内应用的所有智能电子装置(IED)满足统一的标准,拥有统一的接口,以实现互操作性。IED分布安装于站内,其功能的整合以统一标准为纽带,利用网络通信实现。数字化变电站在以太网通信的基础上,模糊了一、二次设备的界限,实现了一、二次设备的初步融合。而智能化变电站设备集成化程度更高,可以实现一、二次设备的一体化、智能化整合和集成。

2 智能变电站的特征

智能化变电站的设计和建设,必须在智能电网的背景下进行,要满足我国智能电网建设和发展的要求,体现我国智能电网信息化、数字化、自动化、互动化的特征。智能化变电站应当具有以下功能特征:

(1)紧密联结全网。从智能化变电站在智能电网体系结构中的位置和作用看,智能化变电站的建设,要有利于加强全网范围各个环节间联系的紧密性,有利于体现智能电网的统一性,有利于互联电网对运行事故进行预防和紧急控制,实现在不同层次上的统一协调控制,成为形成统一坚强智能电网的关节和纽带。智能化变电站的“全网”意识更强,作为电网的一个重要环节和部分,其在电网整体中的功能和作用更加明显和突出。

(2)支撑智能电网。从智能化变电站的自动化、智能化技术上看,智能化变电站的设计和运行水平,应与智能电网保持一致,满足智能电网安全、可靠、经济、高效、清洁、环保、透明、开放等运行性能的要求。在硬件装置上实现更高程度的集成和优化,软件功能实现更合理的区别和配合。应用FACTS技术,对系统电压和无功功率,电流和潮流分布进行有效控制。

(3)高电压等级的智能化变电站满足特高压输电网架的要求。特高压输电线路将构成我国智能电网的骨干输电网架,必须面对大容量、高电压带来的一系列技术问题。特高压变电站应能可靠地应对和解决在设备绝缘、断路开关等方面的问题,支持特高压输电网架的形成和有效发挥作用。

(4)中低压智能化变电站允许分布式电源的接入。在未来的智能电网中,一个重要的特征是大量的风能、太阳能等间歇性分布式电源的接入。智能化变电站是分布式电源并网的入口,从技术到管理,从硬件到软件都必须充分考虑并满足分布式电源并网的需求。大量分布式电源接入,形成微网与配电网并网运行模式。这使得配电网从单一的由大型注入点单向供电的模式,向大量使用端分布式发电设备的多源多向模块化模式转变。与常规变电站相比,智能化变电站从继电保护到运行管理都应做出调整和改变,以满足更高水平的安全稳定运行需要。

(5)远程可视化。智能化变电站的状态监测与操作运行均可利用多媒体技术实现远程可视化与自动化,以实现变电站真正的无人值班,并提高变电站的安全运行水平。

3 智能变电体系结构

根据IEC61850标准可将智能变电站分为过程层、间隔层和站控层,各层内部及各层之间采用高速网络通信连接。在整个通信系统中其通讯网络可以分为:站控层和间隔层之间的站控层通讯网以及间隔层和过程层之间的过程层通讯网。这样使得整个变电站系统就会更加紧凑,节省资源(如图2)。

4 智能化变电站的问题

目前,智能变电站、数字化变电站对JIEC61850与61970标准的综合协调问题解决不充分,智能化的实施主要局限在自动化系统本身,对于计量部分没有充分考虑。变电站没有形成更多的智能应用,缺乏检验,试验评估体系,生产上主要依赖设备生产厂家,总体上处于试验阶段。

5 结语

在智能化技术发展的推动下,智能化的变电站通过电力流、业务流、信息流的一体化融合,实现多元化电源和不同特征电力用户的灵活接入和方便使用,极大提高电网的资源优化配置能力,大幅提升电网的服务能力,带动电力行业及其他产业的技术升级,满足我国经济社会全面、协调、可持续发展要求涉及到电网发、输、配、售、用的各个环节。在构建坚强智能电网中具有巨大的优势,相信在不远的将来,智能变电站的应用将有力的加快我国智能电网建设的步伐。

参考文献:

[1]钟群超.智能能化在变电所中的应用[D].硕士学位论文.浙江大学,2012.

[2]吴忆,连经斌,李晨.智能变电站的体系结构及原理研究.华中电力,2011,3(24).

[3]刘振亚.智能电网技术[M].北京:中国电力出版社,2010:13.

[4]Q/GDW 394-2009,330kV-750kV 智能变电站设计规范[S].

[5]庞红梅,李淮海,张志鑫 等.110kV 智能变电站技术研究状况[J].电力系统保护与控制,2010,38(6):146-150.

篇(7)

【关键词】电火花加工;DDS;AD9851;脉冲电源

引言

电火花加工是利用工作液中的两极间不断产生脉冲性的火花放电,依靠每次放电时产生的局部、瞬时高温把金属材料逐次微量蚀除下来,从而切割成形的特种加工方法,又称放电加工或电蚀加工[1]。脉冲电源作为电火花加工机床的主要组成部分,为击穿加工介质提供所需要的电压,并在间隙击穿后提供能量以蚀除金属,其性能的好坏直接决定了加工设备稳定性和生产效率的高低[2]。传统的电火花加工脉冲电源有RC式、电子管式和晶体管式等多种形式[3]。弛张式RC脉冲电源是电火花加工中最早使用的脉冲电源,结构简单、使用可靠,特别是能够产生脉冲宽度很小的窄脉冲,但是在放电过程中脉冲能量不可控。随着电子技术、计算机技术和控制技术的发展,现在开发的脉冲电源正向着智能化、节能化、安全化的方向发展[4]。而在微电子技术发展的带动下,DSP芯片的应用得到迅速发展,因此基于DSP芯片的开关电源拥有着广阔的前景,成为今后开关电源的发展趋势。单片机芯片控制的脉冲电源就是其中之一。本文以AD9851[5]为核心,结合AT89S52微处理控制器芯片的共同作用,产生高频可调的脉冲波形,满足电火花微细加工的要求。同时,为保证加工的实时性和准确性,采用A/D芯片进行数据采集和转换,并反馈回单片机中进行数据处理,调节产生的脉冲及控制电极动作。

1.脉冲电源的单片机控制原理

本脉冲电源采用单片机芯片来控制脉冲的产生,采用晶振和定时器来形成矩形波。由单片机控制的脉冲发生器的硬件电路与软件编程设计简单,调试方便,集成度高,而且抗干扰性强,并采用大功率MOSFET器件的斩波电路来获得高频脉冲,可显著地提高电源的独立性,改善电火花电源的加工性能。脉冲电源原理图如图1所示。

图1 电火花加工用脉冲电源原理图

单片机芯片输出相应的脉冲控制信号送给驱动电路,控制功率电子开关管的开通和关闭,对直流电源进行斩波形成预定脉宽和脉间的功率脉冲序列,最后把这种功率脉冲序列加到放电加工间隙,从而实现电火花加工。在加工的过程中,通过电压电流传感器检测加工电流的大小来调整脉冲的频率和幅值,从而实现稳定的加工。

2.硬件设计

2.1 高频脉冲信号的产生

因为电火花加工的精度基本要求在微米级以上,因此必须使控制的单脉冲输出能量要在10-6~10-7J之间[6],这就要求每次的脉冲放电的时间很短,即保证脉冲的频率足够高,脉冲宽度需达到1μs以上。为了在加工零件时有充足的消电离时间,同时防止短路(因放电间隙中有电蚀产物搭接或伺服进给系统瞬时进给过多或所致)和电弧放电(因排屑不及时,集中在某一局部点放电,局部热量累积,导致温度升高,恶性循环),所以要有足够的脉冲时间。

本脉冲信号发生器选用了AD9851芯片和AT89S52微处理控制器,同时采用功率场效应管(MOSFET)作为高频功率开关管。AD9851的脉冲频率可以调节,能够产生最大的脉冲频率为180MHZ,为一款高频高精度脉冲发生DDS芯片。可以由电路来控制它的输出脉冲频率,其电路简单,体积较小,可节省PCB板面积。脉冲信号产生的原理如图2。

图中AT89S52的引脚Pl.0~P1.7连接到AD9851的D0~D7脚,作为AD9851的并/串行数据输入端口。同时P2.0、P2.1作为I/O口输出数据控制AD9851的FQ_UD、W_CLK。在该设计中采用单片机AT89S52对DDS置数,应用并行置数的方式。选用30M有源晶振为外部时钟源,可保证DDS输出信号的频率精度和稳定性。

图2 脉冲信号产生的原理图

上电后,单片机首先对DDS、LCD等进行初始化,设置完毕后向单片机发出应答,接着单片机读取内部存储器中的数据作为系统缓存器的数据,把DDS的频率数据先转换成BCD码送到LCD显示,延时一段时间后启动DDS芯片,AD9851输出相应频率的频谱纯净的正弦信号。经外部无源低通对输出滤波后,从引脚VINP写入AD9851内部高速比较器,最后由引脚VOUIP输出得到精确稳定的方波。然后进入键盘扫描程序,判断是否有按键按下,如有按键按下单片机则执行停止动作、送显示、或改变输出信号频率控制字的值等操作。该系统输出信号稳定性、精度都相当高。

因单片机工作电压只需+5V,与电火花加工电源都是较高电压,为提高了系统的抗干扰能力,加入光耦隔离部分起强弱电隔离作用。在每个集成芯片的电源输入端接有电容,把电路板上模拟地与数字地分开,同时尽量采用较粗的地线。这些措施可很好地抑制高频电源对集成芯片的影响及交流电源的干扰。

2.2 脉冲驱动放大电路的设计

功率放大器的核心是大功率场效应管,其关键是否能把脉冲宽度压缩到10-6~10-7s量级。大功率场效应管与大功率三极管相比,具有输入动态范围大、阻抗高、抗辐射能力强、温度稳定性好等优点。因AD9851输出最大只有2.5V的脉冲幅值,无法驱动MOSFET的栅极,所以需外加一脉冲驱动放大电路来放大脉冲,驱动电路如图3所示。其工作过程为:在输入端V是高电平时,VT1导通,电流经三极管VT1,二极管VD1以及电阻R3向场效应管的输入电容快速充电,栅极电位迅速升高,达到开启电压使漏源端导通,此时VT2处在截止状态。相反,当输入端Vi变为低电平时,VT2导通而VT1转为截止,充满电的输入电容经VT2对地快速放电,使场效应管的漏源端迅速关断。

图3 脉冲驱动放大电路

3.软件编程

软件编程主要是依据AD9851的不同控制字方式,在芯片内写入不同功能的控制字。其重点就是计算频率控制字,如AD9851参考时钟为30MHz,同时开启6倍频器时,则输出频率f= (32位控制字×180MHz)/232。本系统采用并行输入方式,软件流程图如图4所示。

图4 软件流程图

上电后先初始化AD9851及微处理器AT89S52,由键盘输入需要信号的频率,送入内存并将其转换为BCD码送到LCD显示,延时一段时间,通过将AT89S52的P2.1口置位,使AD9851的写入信号端W_CLK有效,连续5个W_CLK上升沿后,即完成全部40位控制数据的输入,然后将AT89S52的P2.0口置位,即频率更新控制信号端FQ_UD有效,40位数据会从输入寄存器被写入频率和相位控制寄存器,更新DDS的输出频率和相位,同时把地址指针复位到第一个输入寄存器,等待着下一组新数据的写入。

4.结语

采用DDS芯片来设计电火花加工脉冲电源,能大大减小电源体积,简化结构,并在一定范围内可以方便地调节电火花加工的电参数。应用AD9851芯片和相应辅助电路来产生脉冲信号,脉冲频率值得到大大地提高,并可以在线调节脉冲宽度与重复频率,从而获得较好的电火花加工精度和可靠性。

参考文献

[1]刘晋春,赵家齐,等.特种加工[M].第5版.机械工业出版社,2014:8-61.

[2]蒋毅,赵万生,顾琳,等.微细电火花加工脉冲电源及其脉冲控制技术[J].上海交通大学学报,2011:1684-1689.

[3]赵刚.电火花线切割加工节能脉冲电源的研究[D].哈尔滨工业大学硕士论文,2006:2-6.

[4]高毅.基于电火花加工机床脉冲电源的研究现状与发展趋势[J].科技信息,2008:78-79.

[5]杜欢阳,安莹.DDS器件AD9851在信号源中的应用[J].现代电子技术,2004,27(24):11-12.