期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 生物检测技术论文

生物检测技术论文精品(七篇)

时间:2022-10-06 11:48:03

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇生物检测技术论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

生物检测技术论文

篇(1)

关键词安全工程;农产品安全;检测技术;课程群

1特色方向课程群结构

湖南农业大学农产品安全与检测技术课程群的设置是基于安全工程本科专业培养计划,在保证公共基础课、专业基础课的前提下,根据学校实际情况开设体现学科优势和行业背景的特色课程群。该课程群的建设从理论到实践、从书本到科学前沿,比较完整地提供了一条特有的深入学习和掌握农产品安全与检测技术技能的平台[4-6]。农产品安全与检测技术课程群依次由理论课程、实验课程、实习课程和业余科研四部分组成。其中,理论课程包含专业必修课“农产品安全与检测技术”和专业选修课“农业安全生产与管理”,作为农业大国,在掌握农产品安全与检测技术的同时,学生获得我国农业安全生产现状及生产管理手段的知识信息是十分必要的,而“农产品安全生产与管理”正是针对我国农业发展现状为学生开设的一门辅助课程;实验课程为专业必修课“农产品安全与检测技术综合实验”;实习课程由农产品安全与检测技术综合实验、生产实习、毕业综合实习组成;业余科研包含学生独立自主申请科创实验项目和学生依托教师科研项目两大部分。

2实践技术

从由浅入深、理论到实践的技术角度分析,农产品安全与检测技术课程群以农产品安全与检测技术理论为基础设置不同深度的实践课程,针对不同层次,采用不同的实验技术方法教学。实践课程分为实验课程、实习课程和业余科研3个层次。1)实验课程为60学时的农产品安全与检测技术综合实验,第5学期开课,实验内容分成基本实验操作训练、农产品仪器分析检测技术、微生物检测基础技术3个单元,设置了滴定法操作、样品前处理、紫外/可见分光光度法、气相/液相色谱法、原子吸收分光光度法、凯氏定氮法、微生物菌落测定在内的13个实验内容[7],训练学生针对农产品安全检测技术的基本技能,培养学生的动手能力[8-9]。2)实习课程是1周的教学实习、3周的生产实习和12周的毕业实习,依次为第5、7、8学期开课。教学实习围绕农业与农产品安全检测的相关教学内容,实地参观农产品生产基地、农产品输送基地、农产品质量监测中心等机构,让学生熟悉生产实践流程。生产实习是安排学生到相关部门的工作岗位实习3周,进一步学习和锻炼学生的实践能力,培养学生实践技能。毕业实习则是要求学生进入到实习机构,在实习指导老师的指导下,围绕选题和开展12周的实验,通过实践完成毕业论文。3)业余科研分为自主性创新性实验项目和依托性教师科研项目。与其他实践课程不同,业余科研主要以希望进一步提升自身科研能力的学生为对象,不单独设置课程时间,要求学生利用课余时间,自主选择指导老师和课题方向。自主性创新实验项目要求学生从课题选择、项目申请书撰写、申报立项、中期答辩、项目结题全程独立完成,极大地锻炼了学生的科研思维和科研能力。依托性教师科研项目,则是学生与指导老师双向选择,择优参与到教师的科研项目中,并承担一定量的科研任务。通过3个层次的锻炼,学生从常规农产品安全与检测技术基础和经典检测技术实验,到生产实践单位参观、实习,再到独立自主或参与性的完成相关项目,在农产品安全检测技术方面的知识、技能、见解和实践等方面都能得到极大的提升,有利于学生在毕业后更好、更快地融入工作和后期科研深造中。

3教学手段

为了实现农产品安全与检测技术课程群的教学效果,建设“理论课—实验课—企事业单位参观、考察—科研项目”的完整过程和有深度的课程群,在教学过程中老师会针对不同过程采取不同的教学手段[10-12]。理论课以教师主讲和学生单元讨论的形式教学,闭卷考核。实验课内容丰富,以计量认证标准教学,针对农产品样品前处理、农药残留、重金属污染、真菌毒素、固有有害成分等方面开设对应的检测方法、手段和技术,以12个小组实验+1个独立考核实验的形式教学,小组实验要求将学生分成2人一组的固定小组,协作完成前12个内容的实验,独立实验要求学生在规定的课程时间内单独完成1个实验,在此过程中考核学生的独立思考和动手能力,实验课总成绩由小组实验占60%和独立实验占40%组成。企事业单位参观、考察,是在学生掌握了一定的理论基础知识和实验技能之后,进入农产品生产基地、运输基地、省/市级地方农产品检测部门机构进行短期的实地作业参观和考察的教学手段,将理论课堂融入社会生产中,赋予学生对于农产品安全检测技术更深层次的理解。这种教学模式以现场答疑和撰写实习报告的形式进行考查。科研项目包含学生自主立项和参与教师团队项目,分别由立项部门和指导教师单独对参与学生进行开题、中期汇报、结题等形式的考核及反馈。

4农产品安全动态

为加深学生理解农产品安全检测技术在保障农产品安全中的重要地位,使学生从宏观上把握农产品安全生产过程及发展动态,在特色课程群的应用过程中,针对理论和实践课程教学的进度安排,专业课程任课老师以及业余科研指导老师会从植物源性农产品和动物源性农产品两大范畴中选定追踪目标,从社会热点、新闻动态、前沿科技等方面,查阅文献资料,以两种形式检验学生对动态的掌握情况。其一,课堂中以小组为单位做PPT演讲报告;其二,个人或团队分主题撰写农产品安全动态报告论文。通过这些形式辅助学生获得农产品安全动态信息,分享和追踪前沿信息。

篇(2)

受限于当时的科学技术发展水平及人类的认知水平,分子生物学的发展经历了漫长的时代。1859年达尔文出版《物种起源》,提出了举世闻名的“自然选择”学说,成为了生物学发展的里程碑。但生物为什么能将性状遗传给下一代,如俗语说的“龙生龙、凤生凤、老鼠生来会打洞”,并没有得到阐明。随后,奥地利修道士孟德尔在观察了2.1万株不同性状的豌豆后,提出了遗传法则,瑞士生物学家弗雷德里希·米歇尔于1869年分离出了核酸,在其他科学家的努力下逐渐发现了染色体及其成对现象、观察到了细胞分裂过程中染色体的排布方式,并提出染色体携带遗传信息。1911年,遗传学家摩尔根提出了基因学说,阐明了基因在染色体上的分布,提出亲本将遗传信息传递给子代的过程中染色体重组形成独特新个体的理论。之后,科学家发现传递遗传信息的物质为DNA,研究了DNA的化学成分和基本结构,并发现DNA中四种碱基(鸟嘌呤:G、腺嘌呤:A、胸腺嘧啶:T、胞嘧啶:C)的含量比例是一定的。英国生物物理学家罗莎琳德·富兰克林在1951年拍摄到了核酸X射线衍射照片,在此基础上,1953年,美国科学家詹姆斯·沃森和弗朗西斯·克里克提出了DNA的双螺旋结构,该在《Nature》杂志上。1977年,科学家弗雷德里克·桑格、沃尔特·吉尔伯特等发明了DNA测序技术,开启了分子生物学发展的新篇章。

二、分子生物学相关技术的临床应用

随着分子生物学的发展,对于生物大分子的检测技术也在不断的更新,针对核酸的检测技术包括:Southernblot、Northernblot、荧光原位杂交(fluorescenceinsituhybridization,简称FISH)技术,定性聚合酶链式反应(PolymeraseChainReaction,简称PCR)、实时荧光定量PCR、一代测序技术及二代测序技术等;针对蛋白质的检测技术包括:Westernblot、酶联免疫吸附测定(EnzymeLinkedImmunosorbentAssay,简称ELISA)等。而精准医学及个体化治疗时代的到来,使得分子生物学的很多技术已经被越来越广泛的应用到医学的临床诊断,如孕妇唐氏筛查(21、18、13-三体综合征)、病毒感染分型及载量检测、肿瘤放化疗耐性基因检测、靶向药物基因检测、代谢综合征临床用药指导等。现代测序技术日臻完善,成本逐年降低,2014年6月30号,国家食品药品监督管理总局审查通过了二代测序技术(测序仪及检测试剂盒)用于胎儿染色体非整倍体(T21、T18、T13)检测。2015年6月8日,国家发展和改革委员会(简称发改委)了《新兴产业重大工程包》通知,新型健康技术惠民成为六大工程之一。首先,以遗传性耳聋和唐氏综合征等遗传性疾病基因筛查为重点,推进基因检测技术在遗传性疾病、肿瘤、心脑血管疾病和感染性疾病等重大疾病防治上的应用,促进健康惠民[1]。其次,快速推进基因检测技术在遗传性疾病大规模筛查上的应用,探索基因检测技术在个人基因组检测、基因身份证等新领域的产业化应用[1]。分子生物学技术成为了临床医学诊断、用药的支撑体系,伴随着个体化治疗理念的逐渐深入,需要大量的相关检测技术人才。但是传统的分子生物学教学并没有把相关的理论及技术体系与医学的实际应用有机的结合起来,造成了人才培养与实际需求的脱节,一方面生物学专业的本科毕业生面临着找工作困难的窘境,另一方面医学及相关检测机构需要大量的检测技术人员,但普通的生物学专业本科生达不到相关的要求。随着毕业生就业压力的增加,很多新生刚入学就面临着就业的迷茫,不知道毕业以后能从事什么样的工作,甚至很多有转专业的想法。因此,在进行专业授课时,尤其是分子生物学的授课时,改变既定的教学模式,适应社会发展的潮流就变得尤为重要了。

三、分子生物学课程讲授模式探索

分子生物学的内容抽象复杂、讲解困难,学生不易理解,所以我们选用了RobertWeaver编著的《MolecularBiology》作为分子生物学教材,该书语言流畅、内容丰富、科学性强,通过实验及结果分析得出相应的结论,易于理解;同时增加了学生的学习兴趣,有利于培养学生的科学思维方式[2]。在我从事分子生物学教学时,在开课之前进行了问卷调查,结果显示,超过60%的学生列举不出分子生物学相关技术的实际应用,更不了解其在医学领域的应用。课余时间跟学生交流时发现:很多学生对这门课没有清楚的认识,只是为了考试而学习,学生呈现出的问题是不知道学完分子生物学能做什么?将来能从事什么行业?针对学生的困惑,我改变了既定的教学模式,利用第一、二节课对分子生物学的技术体系及发展趋势进行概述,并且与实际的应用尤其是在医学上的应用进行了结合,解读了相关的法规、政策文件,使得学生对分子生物学有一个概括性的认识,增加学生学习的积极性。在讲到相关的分子生物学技术时,会对该技术的现实应用或最新前沿动态进行延伸,增加学生学习的信心。对于复杂的技术体系或理论体系,采取制作直观、生动的幻灯进行讲解,易于学生理解和掌握。同时鼓励学生课前预习,课后查阅相关资料,加深印象;并组织学生进行相关资料汇总、交流,在课堂上进行分组讨论,不仅增加了学生的学习兴趣,而且加深了认识。通过灵活的、理论联系实际的教学方式,学生对分子生物学的学习兴趣十分浓厚,积极性非常高,达到了预期的效果。但是在教学过程中也出现了一些问题,如分子生物学实验课与理论课的脱节,实验课提前完成,与理论学习没有同步进行,削弱了学生对相关实验的认识及理解。在讲到相关技术原理时,问答过程显示,大部分同学并不能把相关原理与所做实验进行有机的联系,没有起到加深认知的作用。建议在以后的教学过程中,理论讲授与实验操作紧密配合,便于学生理解。

四、分子生物学教学改革的一些建议

结合分子诊断技术的临床应用,对分子生物学的教学改革提出以下建议:(1)对于复杂的理论与技术体系,采用多媒体教学与板书相结合的方式,易于学生理解掌握。(2)掌握著名科学家研究过程中的一些典故,增加教学的故事性及趣味性,提高学生学习的兴趣。(3)加强分子生物学相关技术与实际应用的联系,增加学生学习的积极性。(4)传递分子生物学技术在临床应用的相关政策、法规,增加学生就业的信心。(5)相关技术的理论讲解与实验紧密结合,增加学生的理解深度。(6)理论联系实际,带学生参观医院的检测平台及医学检测机构的平台,使学生有更直观的认识。(7)推荐学生到医院及医学检测机构实习,完成毕业设计,不仅完成了毕业论文,而且使得学生提早接触社会,提高适应社会的能力[3]。

五、展望

篇(3)

关键词: 食品安全快速检测技术课程 教学改革 教学体系

食品安全快速检测技术是食品质量与安全、水产品质量与安全、农产品加工与贮藏、水产品加工与贮藏专业等学科相关专业本科生必修的专业课,也是我校本科食品质量与安全、食品工程专业的一门专业必修课。食品安全快速检测技术是研究和评定食品安全的一门技术性和实践性很强的应用学科。它是食品科学的重要分支,是在食品营养学、食品分析、食品卫生学、食品微生物学、食品生物化学和食品毒理学的基本理论指导下,运用现代科学技术和检测分析手段检测食品中与安全有关的物质的科学[1]。我通过多年的教学实践,从课程教学团队、理论教学内容、实验教学方法、考核方式等方面进行了食品安全快速检测技术的教学改革,形成了符合实际的教学体系。

一、建设高水平教学团队

教师是教学的核心力量,没有高水平的教师队伍,就没有高质量的教学效果。食品安全快速检测技术课程内容涉及面广泛,不仅涉及理化检验,还涉及免疫学、生物技术、微生物学等内容。为了提高本课程教学质量,建立课程教学团队,探索轮讲和共讲的课程教学模式。如讲到胶体金法快速检测部分内容时,让讲解食品免疫学导论的老师给学生讲解,该老师博士课题就是胶体金试纸条的制备,因此相关知识由他讲解,不仅讲得很透彻,而且给学生讲解了很多前沿知识,拓宽了学生的知识面。在涉及转基因食品的快速检测时,让讲解食品生物技术的老师上课,该老师博士研究的就是基因重组方面的相关课题。通过采用这种轮讲和共讲的课程教学模式,教学质量大大提高,因为每个老师都有自己的专长,因此相关知识讲解得就更透彻、精彩,学生普遍反映良好,评价每次理论课就是一场精彩的专业报告。

二、优化理论教学内容

(一)根据专业特点,合理安排理论教学。

教学内容要反映教学活动中传授的知识和技能的范围和性质,是开展教学活动的主要依据。传统的教学以内容专、深、细为主,对知识的细节陈述占据了大量的课堂教学时间,信息量少,结论、说明、讲解都是现成的,学生被动地听讲和记忆,很少预习、思考、评判和创新。目前,课程内容是根据课程特点,结合本专业人才培养目标、岗位工作任务、企业专家意见和行业企业发展需要,围绕学生就业的工作岗位及岗位所需要的知识、能力、素质要求进行分析后确定的。河南科技学院开设食品安全快速检测技术课程的专业是食品质量与安全。食品质量与安全专业的理论课为32学时,实验课为16学时,为了处理好“学时少”与“内容多”之间的矛盾,保证学生能更好地掌握课程的内容,教学需从实际出发,突出重点,借助各种教学手段,采用灵活多样的教学方法,保证完成教学任务。由于食品质量与安全专业学生学过食品分析的理论课程,因此我通过查阅教学大纲、以前笔记和咨询食品分析老师的方式,了解学生学过的内容,对学过的内容不再讲解,避免重复,重点讲述新内容。例如,对学生接触过的食品中营养成分的测定、有毒有害物质的常规测定方法,以及检验技术的基本知识等内容,课上将不再赘述。对学生没有接触的各类食品检验内容,如毒素、微生物、转基因、新鲜度的检验、掺杂掺假的检验等相关内容,相应增加教学时数,这样既增强了课程的实用性和趣味性,又促进了学生对专业技能的掌握,为下一阶段的实验操作打下了良好的基础。

(二)改进教学方法,强化教学效果。

在教学过程中,教学方法起着举足轻重的作用。采用正确的教学方法,能促进教学目标的实现。运用传统的教学方法,学生常常感到课程枯燥、难记忆,对课程内容不感兴趣,而对于本科教学而言,培养大批高素质、具有创新能力的实用型人才是教学的最终目标,所以,对传统的教学方法进行改革势在必行。将以信息技术、多媒体技术为代表的现代科技引入教学领域,提高了教学方法的有效性和灵活性,促进了教学改革的深入进行。灵活运用多种教学方法,可更好地处理传授知识、培养能力、提高素质三者的关系[2],具体做法如下:1.进行课前提问。课前利用几分钟时间进行提问,对上节主要内容进行回顾,同时引出新课的内容,这样学生可以温故知新,强化对知识的掌握,同时了解两次课之间的联系,有助于知识的融会贯通,强化学习效果。2.案例式启发教学。授课时,结合实际案例,将食品安全问题引入教学过程。例如,讲到黄曲霉毒素的快速检测时引入毒大米事件,讲到贝类毒素的快速检测时引入广东等地出现的织纹螺中毒事件,讲到转基因食品的快速检测时引入转基因大豆油,讲到农药残留的快速检测时,将海南的毒豆角事件联系起来,介绍农药的主要种类,以及农药速测卡的基本原理及优缺点,使学生感觉到所讲内容的重要性和实用性。在讲到兽药残留的快速检测时,引入“瘦肉精事件”,以及瘦肉精事件发生后,检测部门普遍使用的检测方法——金标免疫测定法,同时与日常的乙肝检测等联系起来,使学生对金标免疫试纸条的使用范围有更多的了解。了解其测定原理和方法,同时与经典方法进行比较,了解其优缺点,最后将最新研究动向融于其中,拓宽学生的知识面,激发学生的学习兴趣,活跃课堂气氛,增强学生的参与意识。3.巧用多媒体教学。在教学中合理使用信息及多媒体技术加强学生的感性认识。如:通过流程图、图片等,增加课堂信息量,解决“学时少”与“内容多”之间的矛盾,对一些实验条件无法达到,学生难以理解而操作要求又较高的实验项目,使用多媒体教学法能够显示出其独特的优势。教学中播放胶体金的制备过程、金标免疫试纸条、免疫渗滤实验、酶联免疫实验的视频资料,这些生动、形象的示范和讲解,让学生一目了然,快速了解如何制备胶体金和免疫层析试纸条,如何自己制作免疫渗滤装置,以及酶联免疫每一步的操作方法和注意事项,以便他们更快地掌握教学难点和重点。4.增加课堂讨论。在讲解完有毒有害物质的快速检测方法后,专门留一次课的课堂讨论,让学生针对目前所发生的食品安全事件,结合所讲内容、查阅资料,自己设计出一种快速检测方法。我发现,讨论课程是学生表现最活跃、最喜欢上的,课堂上,学生展示做好的PPT,提出解决问题的方法,老师和其他同学可以进行评价和补充,学生踊跃发言,尽情享受解决问题的快乐,并能将所学知识真正用于解决实践问题,达到学以致用的目的。

三、改进实验教学内容与方法

(一)建立科学的实验教学体系。

科学的食品快速检验实验教学体系,要以实验教学目标为依据,以学生实践能力和创新能力培养为主线,把知识、技能与素质融为一体,由初级到高级、由简单到复杂,分层次构建实验教学体系[3]。实验的整个体系包括基础性验证实验、综合性应用实验、设计性研究实验。选择较好题材的实验内容,按教学内容进行组合,单独制订实验教学计划和教学大纲,结合学校实验室的具体情况列出实验项目,实验顺序与理论教学内容相一致,每次理论课后,安排相关的实验内容,使学生在实验过程中加深对理论部分的理解,逐渐适应并掌握各项实验技能,其中包括农药残留的快速检测方法,化肥污染物硝酸盐的快速检测方法,兽药残留的快速检测方法,病害肉的快速检测方法,假冒伪劣食品的快速检测方法,毒素的快速检测方法等实验内容。百闻不如一见,为了让学生了解快速检测的现状,实验中一些实验器材购买的是市场上的快速检测试剂盒,如毒素的快速检测中购买的是酶联免疫试剂盒,农药的快速检测购买的是农药速测卡,兽药快速检测中购买瘦肉精金标免疫试纸条等。学生通过实验,不仅了解了实验的原理,而且认识了市场上的产品形式,对开阔视野、开拓思路具有积极的作用。

(二)充分利用实验时间。

结合课程实验特点,合理利用实验时间。一些实验项目在操作过程中学生需要等待的时间较长,为了充分利用宝贵的实验课时,在实验项目的间歇穿插其他内容或另一个项目,充分利用实验时间。例如:测定农业残留快速检测时,除了速测卡外,给学生展示农残快速检测箱,在利用金标免疫法测定兽药残留方法时,利用样品提取时间,给学生展示MIT商业试剂盒。在利用ELISA法测定黄曲霉毒素时,利用几次培养等待的时间,给学生展示吊白块快速检测试剂盒,食盐含碘量的快速检测试剂盒,水溶性非食用色素快速检测试剂盒等。这样既能充分利用有限的学时,又能防止学生在实验间隙无所事事,注意力不集中。

(三)实验样品多样化。

实验所用样品尽可能从市场上购买与日常生活关系密切的食品。例如,在农药残留快速检测时,从市场上购买容易出现问题的青菜、韭菜等样品;在兽药残留的快速检测实验中,从学校附近的菜市场购买不同摊贩的肉制品;在伪劣食品的快速检测实验时,从学校门口不同超市购买不同品牌的味精产品,让学生检验其质量,看是否符合国家标准的要求,比一比哪个品牌好,采用这种形式极大地调动了学生的实验积极性,增强了学生作为食品检验工作者的责任感。对食品快速检测课程教学改革采取的一些有益尝试,学生反应良好,普遍感到不仅学透了书本知识,而且与实际生产、生活紧密联系,为以后的就业打下了坚实的基础。

四、考核方法改革

传统的课程考核方式是以期末成绩为主,由于食品安全快速检测技术课程是一门实践性很强的课程,为了真正地反映学生对该门课的掌握程度,对课程进行考核时,把创新能力培养放在首位,着眼于学生知识素质能力的协调发展,改革课程考核和成绩评价方式。改变单一的以期末考试为主的考核方式,增加课堂小组讨论、代表发言、小论文,实操等分值,使课程的最终成绩能真正反映学生的知识、能力、水平。

五、课程网站建设

食品安全快速检测技术在食品检测中发展迅速,网上资料也有很多,各种快速检测方法层出不穷,为了让学生对该门课程有更多的了解,在教学过程中我搜集了与课程相关的很多教学素材,并进行精选,建设和完善了课程网站,将网站建设作为课堂补充,方便学生自学。实践证明,这给学生提供了一个增强师生互动的平台,深受学生喜爱,效果良好。

新世纪对人才的素质提出了更高的要求,为此教育工作者必须改革旧的教育观念,真正树立与课程相适应的体现素质教育精神的教育观念与方法,这样才能满足社会发展对人才的需求。

参考文献:

[1]庞向红,梁淑珍,王爱华.食品理化检验学课程的改革与实践[J].教学天地,2011(5):169-170.

篇(4)

关键词:光电传感器,光电检控技术,应用

 

0.引言

随着科学技术的迅猛发展和信息时代的到来,作为现代信息技术三大支柱技术之一的传感器技术,已然成为监测和控制领域获取物理信息的重要手段,在国民经济建设中占据着极其重要的地位。比如,在工农业生产领域,工厂的自动流水生产线,全自动加工设备,许多智能化的检测仪器设备,都大量地采用了各种各样的传感器;在矿产资源、海洋开发、生命科学、生物工程等领域传感器的应用也是无处不在。可以说,没有传感器这个载体,任何先进的科学技术要实现这样那样的功能是不可能的。

1.光电传感器及测控技术简介

1.1基本概念

光电传感器是以光电效应为基础,是一种将光信号(红外、可见及紫外光辐射)转变成为电信号的器件。论文参考网。光电传感器是在各种光电检测系统中采用光电元件作为检测元件的传感器,它一般由光源、光学通路和光电元件三部分组成。

按光电元件(光学测控系统)输出量性质可分二类,即模拟式光电传感器和脉冲(开关)式光电传感器。其中,模拟式光电传感器是将被测量转换成连续变化的光电流,它与被测量间呈单值关系,主要包括有透射(吸收)式、漫反射式、遮光式(光束阻档)三大类型;脉冲(开关)式光电传感器中,光电元件接收的光信号是断续变化的,因此光电元件处于开关工作状态,它输出的光电流通常只有两种稳定状态的脉冲形式的信号,多用于光电计数和光电式转速测量等场合。

光电检测技术:是利用光电传感器实现各类检测。它将被测量的量转化成光通量,再转化成电量,并综合利用信息传送和处理技术,完成在线和自动测量。它具有高精度、高速度、远距离和大量程、非接触式检测、寿命长、数字化和智能化的特点。

1.2光电传感器工作原理

主要是把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号,其物理基础是光电效应。它是由于物体吸收到光子能量后产生的电效应,通常把光电效应分为三类:

1.2.1外光电效应

在光线作用下能使电子逸出物体表面的现象称为外光电效应。基于该效应的光电器件有光电管、光电倍增管等。

1.2.2内光电效应

在光线作用下能使物体电阻率改变的称为内光电效应,又称光电导效应。基于该效应的光电器件有光敏电阻、光敏晶体管等。

1.2.3半导体光生伏特效应

在光线作用下能使物体产生一定方向电动势的称为半导体光生伏特效应。基于该效应的光电器件有光电池。

1.3光电传感器特点

1.3.1 检测距离长。

1.3.2 对检测物体的限制少

由于以检测物体的遮光和反射为检测原理,所以都可以对金属、玻璃、塑料、液体等几乎所有物体进行检测。

1.3.3 响应时间短

光本身为高速,并且传感器的电路全都由电子零件构成,所以不包含机械工作时间,响应时间短。

1.3.4 分辨率高

能够通过高级设计技术使投光光束集中在小光点上,或通过构成特殊的受光光学系统来实现高分辨率,也可进行微小物体检测和高精度的位置检测。

1.3.5可实现非接触的检测

可以无须机械性地接触检测物体实现检测,因此不会对传感器和检测物体造成损伤,因此,传感器能长期使用。

1.3.6可实现颜色辨别

通过检测物体形成的光的反射率和吸收率,根据被投光的光线波长和检测物体的颜色组合而有所差异。利用这个特性,可对检测物体进行颜色的检测。

1.3.7便于调整

在投射可视光的类型中,投光光束是眼睛可见的,便于对检测物体的位置进行调整。

2.光电传感器的研究应用

光电传感器可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。论文参考网。光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置中获得广泛应用。近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。本文就光电传感器最常见的应用实例来进一步说明。

2.1 在烟尘浊度监测仪上的应用

防止工业烟尘污染是环保的重要任务之一。为了消除工业烟尘污染,首先要知道烟尘排放量,因此必须对烟尘源进行监测、自动显示和超标报警。烟道里的烟尘浊度是用通过光在烟道里传输过程中的变化大小来检测的。如果烟道浊度增加,光源发出的光被烟尘颗粒的吸收和折射增加,到达光检测器的光减少,因而光检测器输出信号的强弱便可反映烟道浊度的变化。

2.2 光电池在光电检测和自动控制方面的应用

光电池作为光电探测使用时,其基本原理与光敏二极管相同,但它们的基本结构和制造工艺不完全相同。由于光电池工作时不需要外加电压;光电转换效率高,光谱范围宽,频率特性好,噪声低等,它已广泛地用于光电读出、光电耦合、光栅测距、激光准直、电影还音、紫外光监视器和燃气轮机的熄火保护装置等。

2.3 CCD图像传感器(电荷耦合器件)的应用

CCD传感器应用时是将不同光源与透镜、镜头、光导纤维、滤光镜及反射镜等各种光学元件结合,应用了光、机、电和计算机相结合的高新技术,作为一种非常有效的非接触检测方法,CCD被广泛用于在线检测尺寸、位移、速度、定位和自动调焦等方面。

2.3.1 利用CCD测量几何量,CCD诞生后,首先在工业检测中制成测量长度的光电传感器,物体通过物镜在CCD光敏元上造成影像,CCD输出的脉冲表征测量工件的尺寸或缺陷。

2.3.2 用于传真技术,文字、图象识别。例如用CCD识别集成电路焊点图案,代替光点穿孔机的作用。论文参考网。

2.3.3 自动流水线装置,机床、自动售货机、自动监视装置、指纹机。

2.3.4 CCD固态图像传感器作为摄像机或像敏器件,取代摄像装置的光学扫描系统(电子束扫描),与其它摄像器件相比,尺寸小、价廉、工作电压低、功耗小,且不需要高压。

2.3.5 M2A摄影胶囊(Mouthanus),由发光二极管做光源,CCD做摄像机,每秒钟两次快门,信号发射到存储器,存储器取下后接入计算机将图像进行下载。

2.3.6 CCD是数码相机的电子眼,它革新了摄影术,现在光可以被电子化地记录下来,取代了胶片。这一数字形式极大地方便了对图像的处理和发送,”诺贝尔奖评选委员会称赞说,“无论是我们大海中深邃之地,还是宇宙中的遥远之处,它都能给我们带来水晶般清晰的影像。”

2009年10月6日,瑞典皇家科学院在斯德哥尔摩宣布,将2009年诺贝尔物理学奖授予华人科学家高锟以及两名美国科学家韦拉德-博伊尔(Willard Boyle)和乔治-史密斯(George Smith),以奖励他们在光纤和半导体领域上的开创性研究。高锟的获奖理由为——“在光学通信领域光在光纤中传输方面所取得的开创性成就”。两位美国科学家的获奖理由为——“发明了一种成像半导体电路,即CCD(电荷耦合器件)传感器”。

3.结束语

光电传感器及检控技术两者间的有效结合,提高了工农业领域、军用器械等等领域的生产率,降低了生产成本。可以预见,随着信息技术和自动化技术的快速发展,光电传感器、微/ 纳米光电测控技术等在国民经济建设中将继续得到越来越广泛的应用。

【参考文献】

[1] 彭军.传感器与检测技术.西安:西安电子科技大学出版社,2003.

[2] 谢向花.光电传感器检测技术研究.中国科技信息,2005 年第7 期.

[3] 钟丽云.光电检测技术的发展及应用.激光杂志,2000年03期.

篇(5)

关键词 磺酰脲类除草剂残留 前处理技术 发展趋势

随着社会进步以及人们绿色环保理念的提高,磺酰脲类除草剂因高效、广谱、低毒和高选择性等特点,已成为当今世界使用量最大的一类除草剂[1,2] 。自美国杜邦公司上世纪80年代开发出第一个磺酰脲类除草剂——氯磺隆以来,磺酰脲类除草剂已有30多种产品问世,常见的有苄嘧磺隆、甲磺隆、氯磺隆、氯嘧磺隆、胺苯磺隆、苯磺隆、醚苯磺隆等[3]。这些磺酰脲类除草剂的基本结构由活性基团、疏水基团(芳基)和磺酰脲桥组成,其品种随着活性基团和疏水基团的变化而变化(图1)。

图1 磺酰脲类除草剂的基本结构

但是,随着磺酰脲类除草剂使用范围的逐步扩大,其在农作物和环境中的残留以及对人类健康的危害也日益显现,因此,对作物和环境中磺酰脲类除草剂残留的检测也提出更高的要求。目前,磺酰脲类除草剂残留检测技术主要集中在两大方面:一是前处理技术研究,二是快速检测技术研究。关于磺酰脲类除草剂残留检测技术研究的综述文章较多[4~7],从分析误差看,前处理技术是检测的重要环节,前处理技术既重要又薄弱,因此本文就磺酰脲类除草剂残留的样品前处理技术做一综述。

随着磺酰脲类除草剂残留检测技术向着简便、现场、快捷、成本低、自动化方向发展,其前处理技术也正向着省时、省力、低廉、减少有机溶剂、减少环境污染、微型化和自动化的方向发展。本文将磺酰脲类除草剂残留前处理技术分为两类:一类是传统前处理技术,另一类是新型前处理技术。

1 传统前处理技术

磺酰脲类除草剂残留传统前处理技术常用的有:液液萃取技术(liquid-liquid extraction,LLE)和震荡提取技术等,这些技术在实际操作中非常实用,虽然存在一些不足:操作时间长、选择性差、提取与净化效率低、需要使用大量有毒溶剂等,但目前在实验室工作中仍被广泛使用。

1.1 液液萃取技术

液液萃取技术又称溶剂萃取,即用不相混溶(或稍相混溶)的溶剂分离和提取液体混合物中分析组分的技术。此技术简单,不需特殊仪器设备,是最常用、最经典的有机物提取技术,关键是选择合适萃取溶剂。张淑英等[8]萃取土壤中豆磺隆选择二氯甲烷作为萃取溶剂,平均回收率达到75.5%~97.18%。黄梅等[9]使用液液萃取技术提取稻田水体中苄嘧磺隆与甲磺隆,之后用高效液相色谱法(HPLC)进行检测,结果显示方法的精确度和准确度较好。另外,毛楠文等[10,11]也使用此技术对磺酰脲类除草剂进行研究。此技术不足之处是易在溶剂界面出现乳化现象,萃取物不能直接进行HPLC、GC分析。

1.2 震荡提取技术

震荡提取技术也是一种常用磺酰脲类除草剂等农药残留的前处理技术,包括超声震荡提取、仪器震荡提取等。例如,毛楠文等[10]利用超声震荡等技术提取土壤中磺酰脲类和苯脲类除草剂,甲醇作为提取剂,平均加标回收率达到71.72%~118.0%。 崔云[11]总结震荡提取等技术提取土壤中不同种类磺酰脲类除草剂残留,并进行HPLC、GC等仪器分析,总结见表1。

2 新型前处理技术

磺酰脲类除草剂残留的新型样品前处理技术主要包括固相萃取技术(Solid Phase Extraction,SPE)、超临界流体萃取技术(Supercritical Fluid Extraction, SFE)、免疫亲和色谱技术(Immunoaffinity Chromatography,IAC)、分子印迹聚合物富集技术(Molecularly Imprinted Polymer, MIP)、液相微萃取技术(Liquid Phase Microextraction,LPME)、微波辅助萃取技术(Microwave-assistant Solvent Extraction, MASE)及支持性液膜(Sport Liquid Membrane, SLM)萃取技术、连续性流体液膜萃取技术(Continuous-Flow Liquid Membrane Extraction, CFLME)、离子交换膜萃取技术(Ion Exchange Membrane Extraction Method)和在线土壤柱净化(Online Soil Column Extraction, OSCE)等其他前处理技术。其中,SPE是这些新型前处理技术使用最广泛的一种。

2.1 固相萃取技术

SPE起始于20世纪70年代并应用于液相色谱中,是利用固体吸附剂吸附液体样品中目标化合物,再利用洗脱液或加热解吸附分离样品基体和干扰化合物并富集目标化合物。

SPE基本操作步骤见图2。分萃取柱预处理、上样、洗去干扰杂质、洗脱及收集分析物4步。岳霞丽等[12]使用美国Supelco公司3mLENVI-18规格固相萃取柱测定水体中苄嘧磺隆,检测限达到0.01mg/L。叶凤娇等[13]比较SupelcleanTMLC-18 SPE Tube(500mg, 3mL)和Oasis HLB SPE Tube(60mg, 3mL)2种不同规格固相萃取小柱的净化吸附和浓缩效果,并选择Oasis HLB SPE Tube测定12种磺酰脲类除草剂残留。将烟嘧磺隆等12种磺酰脲类除草剂样品用85%磷酸溶液调整pH值至2~2.5之后过柱,各组分回收率达到90%以上。在洗脱及收集分析物步骤,用含0.1mol/L甲酸的甲醇-二氯甲烷(1:9,v/v)溶液洗脱磺酰脲类除草剂,用两次小体积洗脱代替一次大体积洗脱, 回收率更高[7],或者用CH2Cl2可洗脱苄嘧磺隆[12]。

另外,Carabias-Maninez等[14]用SPE提取水样中酸性磺酰脲类除草剂残留,尝试选择不同吸附剂和洗脱剂,回收率70%~95%。Furlong等[15]利用SPE同时提取浓缩磺酰脲类和磺胺类农药残留并用HPLC-MS进行检测。Galletti等[16]对LLE、SPE 2种前处理技术进行比较,土壤和水中分离提取的绿磺隆、甲磺隆、噻磺隆、氯嘧磺隆回收率后者明显高于后者,噻磺隆更明显。

近年来,固相萃取在复合模式固相萃取、固相微萃取(SPME)、基质分散固相萃取(MSPD)[17,18]和新型固相萃取吸附剂4个方面展开新应用。

SPE前处理技术因其简单,溶剂用量少,不会发生乳化现象,可以净化很小体积样品(50~100μL),水样萃取尤其方便,易于计算机控制而得到广泛应用。不足之处是提取率偏低,多数要求酸性条件。因此,对于在酸性条件下易分解的磺酰脲类除草剂残留检测需要及时分析或进行酸碱平衡。

2.2 超临界流体萃取技术

超临界流体是物质的一种特殊流体状态,气液平衡的物质升温升压时,温度和压力达到某一点,气液两相界面消失成为一均相体系,即超临界流体。SFE是利用超临界流体密度大、粘度低、扩散系数大、兼有气体的渗透性和液体分配作用的性质,将样品分析物溶解并分离,同时完成萃取和分离2步操作的一种技术。超临界流体萃取技术20世纪70年代后开始用于工业有机化合物萃取,90年代用于色谱样品前处理,现已用于磺酰脲类除草剂等农药样品分析物的提取[19]。

近年来,SFE的使用已相当广泛。例如,史艳伟[20]采用SFE技术萃取土壤中苄嘧磺隆,不仅对SFE萃取压力、温度、时间等因素做具体分析,而且研究高岭土、蒙脱石和胡敏酸含量等对苄嘧磺隆萃取率的影响。郭江峰[21]在其博士论文中用超临界甲醇提取土壤中14C-绿磺隆结合残留,获得85%以上提取率。另外,Bernal等[22]利用有机溶剂、SFE和SPE 3种方法提取土壤中绿磺隆和苯磺隆。HPLC检测显示,SFE-CO2在绿磺隆和苯磺隆土壤残留测定中提取更加优越,回收率更高,达到80%~90%。Berdeaux[23]用SFE-CO2从土壤中萃取磺酰脲类除草剂绿磺隆和甲磺隆(甲醇或水作为改性剂),回收率均大于80%,结果与SPE技术相似或稍好。Kang等[24]用SFE技术萃取2种土壤类型中的吡嘧磺隆,以25%甲醇为改性剂,温度80℃,压力300atm,萃取时间30min,添加浓度0.40mg/kg,萃取率均达到99%。另外,Breglof等[25]用SFE技术与同位素跟踪法相结合研究甲磺隆、甲嘧磺隆和烟嘧磺隆残留,以土壤为基质,以2%甲醇为改性剂,回收率达到75%~89%(烟嘧磺隆除外,回收率为1%~4%)。

目前常用的超临界流体是CO2,廉价易得,化学性质稳定,无毒、无味、无色,易与萃取物分离,萃取、浓缩、纯化同步完成。SFE前处理技术在磺酰脲类除草剂残留提取中克服常规提取法的缺点[26],具有分离效率高、操作周期短(每个样品从制样到完成约40min)、传质速度快、溶解能力强、选择性高、无环境污染等特点。随着SFE技术与越来越多的快速检测技术联用,其在磺酰脲类除草剂残留的研究分析中具有较大潜力,尤其在多残留分析中,能够显著提高分析效率。

2.3 免疫亲和色谱技术

IAC是一种将免疫反应与色谱分析方法相结合的分析技术,是基于免疫反应的基本原理,利用色谱的差速迁移理论,实现样品分离的一种分离净化技术。分析时把抗体固定在适当载体上,样品中分析组分因与吸附剂上抗体发生的抗原抗体反应被保留在柱上,再用适当溶剂洗脱下来,达到净化和富集目的。特点是具有高度选择性。技术关键是选择合适的载体、抗体和淋洗液。例如,邵秀金[27]采用IAC和直接竞争ELISA法相结合对绿磺隆进行分析检测,选择pH7.2磷酸缓冲液作为吸附和平衡介质,80%甲醇作淋洗液,结果显示:IAC动态柱绿磺隆最高容量达到3.5μg/mL gel;样品中绿磺隆含量250倍;空白土壤样品添加0.1μg/g绿磺隆,平均回收率达到94.09%。另外,Ghildyal等也利用IAC结合酶联免疫法对土壤中醚苯磺隆进行分析检测[28]。

2.4 分子印迹聚合体富集技术

MIP是近年来迅速发展起来的一种分子识别技术,是利用MIP特定的模板分子“空穴”来选择性吸附聚合物,从而建立的选择性分离或检测技术。MIP对磺酰脲类除草剂具有很好的粘合能力。例如,Bastide[29]等用MIP富集提取绿磺隆、噻吩磺隆、氟磺隆、氯嘧磺隆、氟胺磺隆5种磺酰脲类除草剂残留,用4-乙烯基嘧啶或2-乙烯基嘧啶作为功能单体,乙烯基乙二醇二甲基丙烯酸酯作为交链,甲磺隆作为模板,结果显示MIP在极性有机溶剂中具有很好的识别能力,键和容量达到0.08~0.1mg/g,这种方法可以从水中富集75%以上的磺酰脲类除草剂残留。Zhu等[30]使用MIP键合甲磺隆,键合容量高,能够测定ng级的甲磺隆。汤凯洁等[31]采用苄嘧磺隆分子印迹固相萃取柱(MISPE)对加标大米中的苄嘧磺隆、甲磺隆、苯磺隆和烟嘧磺隆4种磺酰脲类除草剂残留进行净化和富集预处理,几种物质能直接被萃取柱中的印迹位点保留,杂质几乎不保留,表现出良好的识别性能。

2.5 液相微萃取技术

LPME是1996年Jeannot和Cantwell等提出的一种新型前处理技术[32]。LPME相当于微型化液液萃取技术,因样品溶液中目标分析物用小体积萃取剂萃取而得名。例如,吴秋华[18]将LPME与HPLC联用,分析水样中甲磺隆、氯磺隆、苄嘧磺隆和氯嘧磺4种磺酰脲类除草剂残留,检测限达到0.2~0.3ng/g,并且将基质分散固相萃取结合分散液相微萃取与HPLC联用分析土壤中上述4种磺酰脲类除草剂,检测限达到0.5~1.2ng/g。

2.6 微波辅助萃取技术

MASE是匈牙利学者Ganzler等提出的一种新型少溶剂样品前处理技术。MASE利用微波能强化溶剂萃取效率的特性,使固体或半固体样品中某些有机物成分与基体有效分离,并保持分析物的化合物状态[33]。MASE萃取时间短,消耗溶剂少,具有良好选择性,可同时进行多样品萃取,环保清洁,回收完全,越来越成为替代传统方法的新前处理技术。但使用时应对萃取溶剂优化,确保萃取过程和溶剂中分析物的稳定性[34]。现阶段MASE已广泛应用于磺酰脲类除草剂等农药残留前处理中[35,36]。

2.7 其他前处理技术

有支持性液膜萃取技术、CFLME、离子交换膜萃取技术、OSCE等。支持性液膜萃取技术,又叫膜法提取,是一种以液膜为分离介质,以浓度差为推动力的膜分离技术,萃取的化合物范围较窄,只能萃取形成离子的化合物,流速比较慢。例如,Nilve[37]用膜法提取测定水样中的磺酰脲类除草剂残留。CFLME是将LLE和SLM连接起来的一种技术,首先分析物萃取进入有机相(LLE),然后转入液膜支持设备形成的有机微孔液膜表面,最后通过液膜受体被捕获(SLM)。这一技术被用来萃取水中的胺苯磺隆和甲磺隆,胺苯磺隆回收率达到88%~100%,甲磺隆达到83%~95%[38]。CFLME技术和支持性液膜萃取技术均适合在线检测水中痕量磺酰脲类除草剂,方便快捷。不足之处是受体容量易受酸影响,而水样和土样中一般都有酸存在。离子交换膜萃取技术是一种采用离子交换膜作隔膜的萃取技术,通过离子交换膜(具有选择透过性的膜状功能高分子电解质)的选择透过性来实现对分离物的萃取技术。离子交换膜萃取技术对生物测定有良好的评估,萃取过程成本低,能耗少,效率高,无污染、可回收有用物质,与常规的分离萃取技术结合使用更经济。已在磺酰脲类除草剂残留的检测中得到应用[39]。 OSCE适合土壤样品中痕量污染物的萃取,方法有效、简单、快速。Lagana等[40]用OSCE萃取土壤中绿磺隆、苄嘧磺隆、烟嘧磺隆等6种磺酰脲类除草剂,其回收率达到63%~99%,比超声波萃取和MASE高,精确度最好。

3 小结

目前,在磺酰脲类除草剂残留前处理技术中,LLE和SPE仍占据重要位置,新型前处理技术并不能完全代替传统前处理技术,很多情况下样品前处理过程是在常规的传统前处理技术基础上与微型化、自动化、仪器化的新型前处理技术结合共同完成的。

磺酰脲类除草剂的痕量残留及其独特的理化性质,给该类农药残留的分析检测造成较大困难。为确保检测方法的灵敏性和准确性,前处理过程及技术显得尤为重要。近年来,随着SFE、MIP、CFLME及OSCE等新型前处理技术在实际工作中的应用和发展,仪器分析技术(如液-质联用、气-质联用等)、免疫分析技术(如荧光免疫技术、酶联免疫技术等)及生物传感器法、活体检测法、酶抑制法等磺酰脲类除草剂残留新型检测技术方法的不断涌现和快速发展,经济环保、微型化、自动化、仪器化的前处理技术及液-质联用等新型检测方法的发展已成为其首选和重要发展方向,多残留检测、在线实时检测、自动化检测等已成为国内外共同关注的焦点。

参考文献

[1] 邓金保.磺酰脲类除草剂综述[J]. 世界农药, 2003, 25(3):24-29,32.

[2] 张敏恒.磺酰脲类除草剂的发展现状、市场与未来趋势[J]. 农药, 2010,49(4):235-240, 245.

[3] 张一宾.磺酰脲类除草剂的世界市场、品种及主要中间体[C]. 上海:2009年中国磺酰脲类除草剂360°产业论坛, 2009.

[4] 魏东斌,张爱茜,韩塑睽,等. 磺酰脲类除草剂研究进展[J]. 环境科学发展, 1999, 7(5).31-42.

[5] 张蓉,岳永德,花日茂,等. 磺酰脲类除草剂残留分析技术研究进展[J]. 农药,2005, 44(9):389-390.

[6] 吕晓玲,佘永新,王荣艳,等. 磺酰脲类除草剂残留检测技术及其研究进展[J]. 分析测试学报, 2009, 7(28):875-880.

[7] 欧晓明. 磺酰脲类除草剂残留检测分析研究新进展[J]. 精细化工中间体, 2006, 1(36):1-6.

[8] 张淑英,苏少泉,杨长志. 土壤中豆磺隆残留的气相色谱测定[J]. 农药,2000,39(9):23-24.

[9] 黄梅,刘志娟,蔡志敏.高效液相色谱法检测稻田水体中苄嘧磺隆与甲磺隆及乙草胺残留量[J]. 湖南农业大学学报(自然科学版), 2005, 31(2):213-215.

[10] 毛楠文, 李方实. 高效液相色谱法同时测定土壤中残留的苯脲类和磺酰脲类除草剂[J]. 农业环境科学学报, 2008,27(6):2509-2512.

[11] 崔云,吴季茂,将可.磺酰脲除草剂的残留分析[J].上海环境科学, 1998,10(17):22-25,42.

[12] 岳霞丽,张新萍,董元彦. 固相萃取-高效液相色谱法测定水体中苄嘧磺隆的残留量[J]. 光谱实验室, 2006,2(23):321-323.

[13] 叶凤娇,孔德洋,单正军,等. 固相萃取-高效液相色谱法同时测定水中12种磺酰脲类除草剂[J]. 环境监测管理与技术, 2011, 2(23):36-40.

[14] Carabias M R, Rodriguez G E, Herrero H E. Simultaneous determination of phenyl and sulfonylurea herbicides in water by solid-phase extraction and liquid chromatography with UV diode array mass spectrometric detection[J]. Anal Chim Acta. 2004,517:71-79.

[15] Furlong E T, Burkhardt M R, Gates P M, et al. Routine determination of sulfonylurea, imidazolinone and sulfonamide herbicides at nanogram-per-liter concentrations by solid-phase extraction and liquid chromatography/mass spectrometry[J]. Sci Total Environ, 2000,248:135-146.

[16] Galletti G C, Bonetti A, Dinelli G. High performance liquid chromatographic determination of sulfonylureas in soil and water[J]. J Chromatogr A, 1995,692:27-37.

[17] Barker S A, Long A R, Short C R. Isolation of drug residues from tissues by solid phase dispersion[J]. Journal of Chromatography A, 1989,475:353-361.

[18] 吴秋华.液相微萃取前处理结合高效液相色谱法在农药残留分析中的应用[D]. 石家庄: 河北农业大学博士论文, 2011.

[19]徐宝才,岳永德,花日茂.超临界流体萃取技术在农药残留分析上的应用(综述)[J]. 安徽农业大学学报(社会科学版),1999,26.

[20] 史艳伟. 超临界CO2流体萃取土壤中苄嘧磺隆的研究[D]. 武汉:华中农业大学硕士论文, 2009.

[21] 郭江峰. 14C-绿磺隆(Chlorsulfuron)在土壤的结合残留特性研究[D]. 博士学位论文, 武汉: 华中农业大学图书馆,1997.

[22] Bernal J L, Jimenez J J, Herguedas A, et al. Determination of chlorsulfuron and tribenuron-methyl residues in agricultural soils[J].J Chromatogr A,1997, 778:119-125.

[23] Berdeaux O, Alencastro L F, Grandjean D, et al. Supercritical fluid extraction of sulfonylurea herbicides in soil samples[J].Int J Envion Anal Chem,1994,56(2):109-117.

[24] Kang C A, Kim M R, Shen J Y, et al. Supercritical Fluid Extraction for Liquid Chromatographic Determination of Pyrazosulfuron-Ethyl in Soils[J]. Bull Environ Contam Toxicol, 2006, 76(5): 745-751.

[25] Breglof T, Koskinen C. K, Kylin H. Supercritical fluid extraction of metsulfuron-methyl, sulfometuron-methyl and nicosulfuron from soils[J]. Int J Envion Anal Chem,1998, 70(1-4): 37-45.

[26] 戴建昌,张兴,段苓. 超临界萃取技术在农药残留分析中的应用研究进展[J]. 农药学学报,2002,4(3):6-13.

[27] 邵秀金. 绿磺隆残留免疫分析化学研究[D]. 扬州: 扬州大学硕士论文,2002.

[28] Ghildyal R, Kariofillis M. Determination of triasulfuron in soil:affinity chromatography as a soil extract cleanup procedure[J]. J Biophys Methods,1995, 30: 207-215.

[29] Bastide J, Cambon J P, Breton F, et al. The use of molecularly imprinted polymers for extraction of sulfonylurea herbicides[J]. Anal Acta, 2005, 542: 97-103.

[30] Zhu Q Z, Haupt K, Knopp D, et al. Molecularly imprinted polyer for metsulfuron methyl and its bingding characteristic for sulfonylurea herbicides[J]. Anal Chem Acta. 2002, 468: 217-227.

[31] 汤凯洁,顾小红,陶冠军,等.分子印迹固相萃取-液相色谱质谱联用对4种磺酰脲类除草剂残留的测定[J]. 分析测试学报, 2009(12)28:140-144.

[32] Jeannot M.A,Cantwell F F. Solvent microextraction into a single drop[J]. Analytical chemistry, 1996, 68: 2236-2240.

[33] 武汉大学主编.分析化学[M]. 第四版. 北京:高等教育出版社,2000,303-304.

[34] Li Y T, Campbell D A, Bennett P K. Acceptance criteria for ultratrace HPLC-tandem mass spectrometry quantitative and quality determination of sulfonylurea herbicides in soil[J]. Anal Chem, 1996, 68:3397-3404.

[35] Font N, Hernandez F, Hogendoorn E A, et al. Microwave-assisted solvent extraction and reversed-phase liquid chromatography-UV detection for screening soils for sulfonylurea herbicides[J]. J Chromatogr A,1998,798:179-186.

[36] Hogendoom E A, Huls R, Dijkman E, et al. Microwave assisted solvent extraction and coupled-column reversed-phase liquid chromatography with UV detection use of an analytical restricted-access-medium column for the efficient multi-residue analysis of acidic pesticides in soils[J]. J Chromatogr A, 2001,9 38: 23-33.

[37] Nilve G, Knutsson M, Joensson J A. Liquid chromatographic of sulfonylurea herbicide in natural waters after automated sample pretreatment using supported liquid membranes[J]. J Chromatogr, 1994, 688 (1-2):75-82.

[38] 张蓉. 几种磺酰脲类除草剂高效薄层析残留测定技术及应用[D]. 硕士学位论文, 武汉:华中农业大学图书馆,2003.

篇(6)

论文摘要:近几年信息中介机构不断出现,这种趋势是适应现代的产业发展而诞生的,有很强的时代性和实用性。通过信息直接的交流和沟通最终实现对于各个行业和部门之间的协调,最终达到信息完善和提高工作效率的目的。在本次研究中,通过信息中介对于现代农业产业的作用来分析信息中介中信息技术的应用。

信息中介机构逐渐的融入人们的生活,融入到各个行业中来,通过信息中介机构的带领,很多行业得到快速的发展,信息中介产业也得到了很快的发展,信息技术在其中的应用就显得非常的重要,信息技术无论是从农业、农业还是服务业中都起着至关重要的作用,信息中介机构让不同产业变得更加的完善,在一定程度上信息中介机构也对各个行业进行了结构的弥补,让行业体系更加健全,拥有了信息中介机构作为行业支撑行业发展和变化也更加的灵活和便捷。

1.农业产业中信息机构产业的发展和进化

人们了解生物生活状态及环境变化等情况是通过农业生物及环境信息的采集而来的,这是实施人工调控及管理决策的基本途径。一般传统的人工手动观测方法,难以实现精确农业对农业信息的需求,如准确、大量、及时、有效等。传统的信息采集方法如今已逐步被以计算机为中心的自动信息获取方法所代替,从而成为农业信息获取的主要手段。

农作物的生长环境信息主要包括农作物的需水量、需肥量、生产量、气候环境等信息。检测这些情况的主要技术有计算机视觉、传感器、微电极、显微图像等。目前,对于精细农业的实践研究国内外已在开展,大多数是从农田土壤特性的变异性开始研究的,研究的主要内容是集中对一些要素的快速采集方面,如土壤的养分及水分、电导率、土壤PH值、耕作阻力和耕作层深度等要素。对于土壤养分的快速测量,目前为止采用的测量仪器有3类,分别是基于光电分色等传统的养分速测技术的土壤养分速测仪;基于近红外技术通过土壤或叶面反射光谱特性直接或者间接进行农田肥力水平快速评估的仪器和基于离子选择场效应晶体管集成元件的土壤主要矿物元素含量测量仪器。

土壤的重要组成部分是土壤水分。精细农业中实施节水灌溉的基础是土壤水分的测量。土壤信息主要包括土壤质地、结构、有机物质含量等一系列的参数,这些参数对于特定土壤来说是基本固定不变的,一般是不需要测定多次的。对于土壤的含水量、含盐量、含养分量等是需要进行多次采集测定的,因为这些参数会随着时间的变化而变化。土壤水盐的电磁测定是基于土壤的节点型质,而介电常数又与土壤水分含量的多少有着密切的联系。在土壤介质中插入“L”型的波导棒,高频的电磁脉冲信号会从波导棒的前端传播到末端,且会在探头的周围产生电磁场,波导棒由于前端是出于开路状态的,脉冲信号则会因反射而又沿波导棒返回于前端。土壤的电导率可从检测脉冲输入与反射回的时间以及发射时间的脉冲幅度的衰减情况反映出来,从而计算出土壤水盐含量。土壤的电导率能不同程度的反映出土壤中盐分、水分、有机物含量等参数的大小。对于确定各种田间参数时空分布的差异来说有效的获取土壤电导率是具有一定意义的。 转贴于

2.农作物生产目标信息检测技术

农作物的生产目标信息主要有病虫害、农产品质量、成熟度等。农作物品质检测的技术主要有超声波、视觉技术、红外、激光、GPS、频谱、近红外检测、人工嗅觉及味觉和图像处理等。农作物品质反映三方面内容,一是农作物外表特征的外部品质;二是农作物基本物理性质的品质;三是农作物内部特征的内部品质。无损检测(即非破坏性检测)是在不破坏所测物品的化学性质及状态的前提下,为获取与所测物品品质有关的性质、内容等信息所采用的一种检测方法。农产品中采用的无损检测技术一般有电磁特性、声学特性、X射线与激光、可见光与近红外光谱、机器视觉技术等。而机器视觉检测技术是通过图像传感器获取农产品的图像,然后对图像进行转换成数字图像,利用计算机判别准则去对图像进行识别和理解,以达到分析图像并作出结论目的的一种技术。它可以对农产品的大小、形状、成熟度、颜色等内外品质进行无损检测。

3.信息中介机构的完善

在信息化发展的今天信息中介通过其自身的竞争力和发展力,信息化产业如雨后春笋出现在在各个行业中,是行业进步的推动剂也是行业发展的快速发展的必要条件,在一定程度上信息中介机构减少了行业间的操作步骤,节省时间提高工程效益,行业对于信息中介机构的要求也促进了信息中介机构的快速发展。在行业竞争和信息要求的不断升级中,信息中介机构不断的优化和完善。

4.结语

精确农业可合理利用有限的水土资源,提高农作物的产量,且又保护农业生态环境的可持续发展,是农业生产中的关键所在。精细农业的其他技术发展大大优先于田间信息的快速采集技术的研究。为了满足我国精细农业实施中不同用户多层次的需求,需对精确变量肥水处方的多源信息获取与诊断决策,进行研究分析,探讨方法。对于农村品的无损测试技术可快速获取农作物的优势、营养等基础上,对农作物的营养及水分胁迫特征信息的诊断和提取方法进行研究。

参考文献

[1]高进田,邝健安.网络时代房地产中介业生存基础剖析[J].云南财贸学院学报.2002,(01).

[2]徐弋.房地产中介企业信息化研究[D].武汉理工大学.2005.

篇(7)

关键词:食品科学技术 实践教学示范中心 教学改革

随着我国食品工业的快速发展,社会对食品科技创新人才提出了更高的要求,高校作为培养创新人才的重要场所,承担着越来越重要的任务[1,2]。实践教育是本科教学的重要环节,包括实验、实习、课程设计、毕业论文和大学生科技创新活动等环节[3]。实践教学中心是实践教学的主要场所,是培养学生动手能力、工程素质和创新能力的重要基地[4,5]。我校食品科学技术实践教学示范中心是湖南省实践教学示范中心,定位于食品类专业的实践教学,为食品科学与工程和食品质量与安全专业提供教学服务,培养创新型人才。

1 优化资源配置,加速条件建设

我校食品科学技术实践教学示范中心由食品工程工艺实验室和食品化学与微生物实验室按照“整合实践教学资源、构建科学的实践教学体系、创新实践教学内容、改革实践教学方法、强化实践教学管理”的思路整合而成。中心本着为食品科学与工程、食品质量与安全两个专业学生实践能力和工程能力培养服务,在大学科、宽口径的基础上建设实验室的原则,坚持统一规划、集中建设,实现仪器设备配置的最优化和实验室资源共享,保证实验室资源发挥最大效益。充分整合已有资源,依据学生需要掌握的专业技能,在果蔬食品加工、焙烤食品加工、畜产食品加工、粮油食品加工、食品工程与机械、食品化学、微生物学7个功能实验室设置食品化学及分离检测技术、食品生物学实验技术、食品工程与机械应用技术、食品工艺技术、食品质量与安全控制技术5个功能模块。近年来投入400余万元添置了食品物性测试仪、SPR、二氧化碳超临界萃取仪、液相色谱仪、气相色谱仪等大型仪器设备。

通过教学、科研仪器设备共享,不仅全面保证我校食品科学与工程、食品质量与安全专业本科实践教学项目的开展,而且满足了从事科研、对外技术交流与服务等方面的需要。

2 实验技术人才队伍的建设

实验技术人才队伍是高校开展实践教学、科研开发、社会服务以及实验室管理等方面工作的骨干力量,对提高教学质量和科研水平作用重大。专职实验技术人才队伍存在学历和职称层次低、人员结构不合理等问题,同时实验技术人才队伍地位不高,也导致队伍不稳定,难以引进较高层次的人才[6,7]。近年来,大量精密仪器设备投入使用,对实验技术人员提出了更高的要求。为此,中心根据实验教学和科研的需要,在加大人才引进力度的同时,通过实行理论教师与实验教师互融,实验队伍专兼结合,聘请龙头企业技术骨干担任兼职教师等措施优化队伍结构。专职实验教师以实验室管理为主,并担负部分实验教学的准备工作,部分近年来新引进的具有硕士学位的实验教师和精通大型、精密仪器设备的理论教师一起,共同负责大型、精密仪器设备使用和维护。校外兼职教师主要是校外教学基地技术骨干,主要负责学生校外实践教学。

3 改革教学方法和手段,构建多层次模块化实验教学体系

按照创新人才培养目标,树立以工程素养和创新能力培养为核心的教学观念,构建以学生为主体、教师为主导的实践教学体系,引导学生知识、能力和素质协调发展。深入开展实践教学体系和内容改革,根据学生能力需求设置实验项目,并将科研成果应用于实践教学中[8,9]。

将实验课与理论课独立设置整合成食品化学及分离检测技术等5个模块[2,10-13],其中食品化学及分离检测技术、食品生物学实验技术和食品工程与机械应用技术为专业基础模块,主要以验证性实验为主,重点掌握食品加工与分析过程中的基础知识;食品工艺技术及食品质量与安全控制技术为专业板块,多以综合性、设计性实验为主,重点掌握食品工艺过程单元操作知识与技能,形成以综合大实验为主、体现食品科学与工程特色的实践教学体系。通过实验教学体系改革,促进学生早期系统科研思维和工程素养的训练。学生由原来的选课变成选择项目,除食品科学与工程和食品质量与安全专业外,农学、园艺学等其他专业的加工实验也可在5门课程中选修相关实验项目。每门课程设置按基本技能、综合实验和创新实验3个层次设计,并设置了选修实验项目和自学项目[14,15]。

4 规范实验室管理,构建质量保证体系

注重过程管理,对实验教学的各个要素进行整体设计,优化实践教学环节。每门课程都规定了学生在选修本门实验课程前必须掌握的知识和技能,合理设计每个实验项目的知识点和技能要求,强化学生实践能力。采用多元化实验考核办法,采取平时实验成绩与考试成绩相结合、笔试和实际操作相结合的考核方式,重点考核学生知识或技能掌握情况。

中心制定了实验室开放制度、实验技术人员考核制度和实验室登记制度。在此基础上,一是狠抓实验课教学质量,二是狠抓生产实习,在生产实习安排方面实施导师负责制,三是狠抓毕业实习与毕业论文,毕业论文实行导师负责制,实施毕业论文督导与检查制度。实践教学效果明显,用人单位普遍反映学生动手能力强。

中心组织了“优化资源配置,强化技能培养,构建食品科学与工程专业实践教学新体系”“食品科学与工程专业实验教学改革与素质教育研究”“食品科学与工程专业食品工程类课程体系与实践教学体系改革与研究”等多项课题的研究,取得了阶段性成果,其中2项获校教学成果二等奖,2项获校教学成果三等奖。经过多年的探索与改革,构建了较合理的实践教学体系。

5 注重校外教学实习基地选择的代表性

实践教学体系除实验课外,还包括系列实践教学环节,如课程设计以及各种学科竞赛、大学生创新实验项目、本科生科研训练计划和教师科研项目等[9,10]。为避免“重科学、轻工程”的培养模式导致学生工程能力低的问题,通过在校外实践基地的生产实习、毕业实习来提高学生的工程能力。依据湖南省区域经济发展和食品工业的特点,选择有代表性的企业校外实践教学基地,其中4个基地被评为湖南省高校优秀实习教学基地,如生猪和柑橘是湖南省代表性农副产品,辣椒、湘莲等南方果蔬加工是湖南的特色产业,选择相关的龙头企业作为校外实习基地。在教学实习过程中,我们以核心教学实习基地为依托,兼顾其他教学实习基地,以此拓宽学生专业视角,加强理论联系实际能力,提高专业实践教学水平。

参考文献

[1]王维坚,张一,余平.食品科学与工程专业人才培养方案的研究与实践[J].吉林工商学院学报,2012,28(2):113-115.

[2]钟瑞敏,黄国清,肖仔君.食品工科专业核心实践技能培养体系的构建[J].实验室研究与探索,2010,29(10):118-121.

[3]张承,叶茗.创建国内一流的工程实践教学示范中心[J].实验室研究与探索,2008,27(9):73-75.

[4]刘静波,林松毅,王作昭.省级食品科学与工程专业实验教学示范中心建设[J].实验室研究与探索,2008,27(12):78-79.

[5]焦洪超,杨萍萍,崔言顺.国家级实验教学示范中心建设经验浅谈[J].中国现代教育装备,2013(3):20-22.

[6]李金林,杨国富,申玮.从创新教育理念探索高校实验室建设[J].高等理科教育,2005,63(5):69-70,86.

[7]吕远平,卢晓黎,贾利蓉.食品科学与工程专业实验室的建设与管理[J].实验室研究与探索,2007,26(4):138-140.

[8]王淑静,郝建民,柳洪洁.依托国家级实验教学示范中心,搭建创新人才培养平台[J].实验室科学,2010,13(2):1-2.

[9]杨祖幸,孙群,赖春霞.浅析我校国家级生物科学实验教学示范中心的建设[J].实验技术与管理,2008,25(4):107-110.

[10]Mark T. Morgan, Baraem Ismail,Kirby Hayes.Relative Importance of the Institute of Food Technologists (IFT) Core Competencies-A Case Study Survey[J].Journal of Food Science & Technology,2006,5(2):35-39.

[11]Jeffri Bohlscheid, Stephanie Clark.Career Preparedness Survey Outcomes of Food Science Graduates-A Follow-Up Assessment[J].Journal of Food Science & Technology,2012,11(2):8-15.

[12]Bor?a A, Muste S, Tofan? M, and Mure?an AE. The impact of practical training and professional development for students in enhancing European competences in food science and technology[J]. Bull UASVM Agric, 2012,69(2):486487.

[13]Rutland M and Owen-Jackson G.Current classroom practice in the teaching of food technology: Is it fit for purpose in the 21st Century?[C]. PATT 26 Conference, Technology Education in the 21st Century, Stockholm, Sweden, 2630 June, 2012.