学术刊物 生活杂志 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 卫星通信论文

卫星通信论文精品(七篇)

时间:2022-09-25 21:43:57

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇卫星通信论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

卫星通信论文

篇(1)

MAC层有MAC-Idle、MAC-Shared、MAC-DTM、MAC-Dedicated四个状态[4]。它们之间的转换图如下。

1.1MAC-Idle状态MAC-Idle状态中不存在TBF,MES监视CCCH上子信道的相关传呼。MES可能采用DRX(非连续接收)监视CCCH。在MAC-Idle状态,上层可请求传输一个上层PDU(协议数据单元),这就会触发在PDCH上建立一个TBF并由Idle状态转入MAC-Shared状态,或者有可能通过RRC流程或者是RLC/MAC流程在DCH上触发建立一个TBF,MES会在完成建立DCH后由Idle状态转入MAC-Dedicated状态。

1.2MAC-Shared状态在MAC-Shared状态中,MES分配无线资源提供TBF用于在一个或多个PDCH上产生点到点连接。TBF用于在网络和MES之间单向传输上层PDU。在MAC-Shared状态,上层可请求传输一个上层PDU,这就会通过RRC流程在DCH上触发建立一个TBF,这将会使MES由MAC-Shared状态转入MAC-DTM状态。当上行链路和下行链路中的TBF都被释放时,MES返回到MAC-Idle状态。当重新配置PDCH到DCH的所有无线承载,释放完PDCH上所有的TBF并建立第一个DCH时,MES将会由MAC-Shared状态转入MAC-Dedicated状态。

1.3MAC-DTM状态在MAC-DTM状态MES将无线资源分配给一个或多个DCH和一个或多个PDCH。在MAC-DTM状态当所有在PDCH上上行或下行的TBF都被释放之后,MES进入MAC-Dedicated状态。在释放了所有的DCH之后,MES进入MAC-Shared状态。在释放了所有的PDCH和DCH之后,MES进入MAC-Idle状态。

1.4MAC-Dedicated状态在MAC-Dedicated状态MES分配无线资源以提供一个或多个DCH(专有信道)。在释放掉所有的DCH之后,由MAC-Dedicated状态转入MAC-Idle状态,当从DCH到PDCH(分组数据物理信道)的所有无线承载都被重新配置以后,MES将会在释放完所有的DCH并在PDCH上建立第一个TBF时由MAC-Dedicated状态转入MAC-Shared状态。

1.5MAC层对组呼的支持由于GMR-1系统的MAC层不支持组呼功能,所以要对MAC层做一些改变。我们设计了组呼模块,它和单呼模块是并列的关系。根据逻辑信道的映射和MAC层的状态来区分单呼和组呼两个模块通道。组呼工作在电路域,只跟DCH有关,跟PDCH无关[5]。所以在MAC状态机中加入两个状态,分别是MAC-Ready-Gcc(组呼控制)状态和MAC-Dedicated-Gcc状态。工作在MAC-Dedicated-Gcc状态下的主/被叫移动台,正常接收MACDATA,状态不变;在释放掉所有DCH后,由MAC-Dedicated-Gcc状态转入MAC-Idle状态。主叫移动台发起组呼时,RRC层利用原语参数配置MAC层状态;接收下行报文时,MAC层根据MAC-Dedicated-Gcc状态将消息递交给上层组呼模块。图4是主叫用户的组呼MAC转移图。被叫侧成员移动台根据接收到的NCH逻辑信道通知MAC层转入MAC-Dedicated-Gcc状态,工作在组呼模块。流程如图所示。图5是被叫成员移动台组呼MAC状态转移图。集群组呼中,网络要向多个成员移动台发送寻呼通知消息,因此需要采用广播的方式发送。我们增添NCH为组呼通知信道。由于系统资源有限,这里我们借用未配置的CBCH逻辑信道的位置来配置NCH逻辑信道,NCH逻辑信道的突发结构和调制解调编解码方式与CBCH逻辑信道保持一致。例如,如果BCCH指派CBCH使用第一帧,则NCH使用2、3、4帧,如果BCCH指派CBCH使用第1、2帧,则NCH使用3、4帧,余此类推。

2MAC层PTT竞争随机接入回退策略

当组呼讲话方释放组呼上行信道时,讲话方用户在上行DACCH(专有随路控制信道)信道上发送“UPLINK_RELEASE”消息,表明讲话完毕。当一个组呼中有几个用户要同时讲话时,会产生讲话权的竞争。组呼成员也可能有不同的优先级,这时候需要一种竞争策略来解决[6]。以下举例为组呼信道采用8时隙结构,编码的话音为2.4kbits/s。网络收到讲话方上行信道的“UPLINK_RE-LEASE”消息以后,在组呼信道的下行信道的DACCH上向所有组呼移动台发送“UPLINK_FREE”消息,表明上行信道空闲,允许新的讲话方使用上行信道。需要讲话的组呼用户,在下行信道上收到“UP-LINK_FREE”消息以后,采用直接强占和随机接入相结合的方式,在组呼上行信道发送“UPLINK_AC-CESS”消息,消息被封装在NT5上,直接抢占第一帧,随后的随机时间选择为T,回退的最大帧数为F,则T=40ms*F。考虑到2比特的用户优先级,让优先级高的用户有较大的概率竞争成功,设用户优先级为m,退的次数为n,回退的最大帧数为F,则F=(m+5)*n,其中m=1,2,3;n≥1。

当n=0的时候,四个级别的用户都抢占第一帧,此时F=1。用户优先级m和回退次数n与回退最大帧数F关系部分如表1所示。下面以用户优先级m=0为例,随后的随机时间选择为200ms(5帧),400ms(10帧),600m(15帧),和800ms(20帧)总计2s秒钟的时间争用上行信道,方法如图6所示。按下PTT移动台,在最初开始的一帧直接发送“UPLINKACCESS”请求,若有碰撞,随机占用之后的5帧之一发送“UPLINKACCESS”请求,若还有碰撞,随机占用后续10帧之一发送“UPLINKAC-CESS”请求,还有碰撞,随机占用后续15帧之一发送“UPLINKACCESS”请求,一直到,随机占用后续20帧之一发送“UPLINKACCESS”请求,任意帧周期,当下行链路由“UPLINKFREE”转换成“UPLINKGRANT”时竞争结束。任何一个按下PTT的移动台直接抢占最初的一帧发送“UPLINKACCESS”,在后续的2秒钟的时间内又可以竞争上行信道四次,竞争期间,如果收到网络在下行信道上发送“UPLINK_GTANT”,则竞争结束。

当网络成功收到一个“UPLINK_ACCESS”消息以后,在组呼信道的下行DACCH信道上发送“UP-LINK_GRANT”消息,用于告知竞争成功用户可以使用上行信道,其它用户不再进行竞争,直到再次收到“UPLINK_FREE”消息为止。这里我们考虑的是有竞争冲突时,保证优先级高的用户有较大的概率竞争成功。通过以上的描述,分析计算可得。从公式可以看出,优先级高的用户,产生冲突的概率低,这样就很好的保证了优先级高的用户有较大的概率竞争成功。假设一个优先级为0、3的用户,其竞争产生冲突的概率曲线如图7所示。从图中可以看出,优先级高的明显比优先级低的冲突概率小,当n的取值逐渐变大,p越小,当n为5时,概率几乎为零了。事实上,n值不能取很大,应为值越大,虽然冲突概率很小,但是从PTT按下到响应这个时延过大,这不是我们所期望的。所以这个退避算法兼顾了n值不能太大,冲突概率小。

3结语

篇(2)

1.1系统网络结构从网络结构上,系统可划分为终端和综合信关站两大部分。终端包含用户识别模块,综合信关站由收发系统、业务控制系统、卫星信号监测管理、移动交换中心等网络部件组成,系统网络体系结构见图2。用户话音和数据通过业务信道在终端和信关站之间传输,当系统内部终端之间相互通信时,由信关站转发信号,传输路径经历了2跳卫星链路。当卫星终端与网外用户通信时,信号经历1跳卫星链路由信关站的移动交换中心GMSC(GatewayMobileSwitchingCenter网关移动交换中心)与PSTN、PLMN(PublicLandMobileNetworks公共陆上移动网络)和SMC(SortMessageCenter)建立连接。同步轨道卫星通信系统单跳延迟大约270毫秒。

1.2卫星移动终端SMT(SatelliteMobileTerminal)SMT是基于“北斗”的卫星移动通信试验系统的用户终端,用户使用SMT接入试验网得到所需的通信服务。为区别试验网内不同的用户,使用用户识别模块UIM(UserIdentityModule)予以识别。每个移动终端都有各自的卫星设备识别号SMEI(SatelliteMobileEquipmentIdentity)。每个移动用户都有自己的卫星移动用户识别号SMSI(SatelliteMobileSubscriberIdentity),分别存储在UIM上和SHLR(SatelliteHomeLocationRegister)上。

1.3综合信关站SGS(SynthesizeGatewayStation)

综合信关站由收发系统、业务控制系统、卫星资源监测与管理、移动交换中心等网络部件组成。

1.3.1收发系统GTS(GatewayTransceiverSystem)它受控于GSC,包含射频子系统和信道处理子系统。射频子系统完成卫星射频信号和中频或基带信号之间的转换功能,信道处理子系统完成信道调制/解调、帧处理、交织/解交织、编码/译码和信道映射等功能。它完成GSC与无线信道之间的转换,实现SMT和GTS之间通过卫星传输及相关控制功能。

1.3.2业务控制系统GSC(GatewayServiceControl)GSC是地面信关站的控制部分,它处于GTS和移动业务交换中心GMSC之间。一个GSC可以连接和控制几个GTS,在试验系统中只有一个GTS。它的主要功能是无线信道的管理、实施呼叫和通信链路的建立和拆除,移动台切换管理,话务量统计等。

1.3.3卫星资源监测与管理SRMM(SatelliteResourceMonitor&Management)卫星资源监控与管理完成对卫星资源的监控与协调管理工作,包括了:卫星频谱与信号监测、卫星工作状况监测与系统管理、运行状况与工作模式管理、信关站与地面运控网进行信息交互与处理、天线与射频状态监视。

1.3.4移动交换中心GMSC(GatewayMobileServiceSwitchingCenter)移动业务交换中心由软交换SS(SoftSwitch)、AAA(AuthenticationAuthorizationAccounting)服务器、操作维护中心OMC(Operation&MaintenanceCenter)、卫星接入网关SAG(SatelliteAccessGateway)、地面接入网关TAG(TerrestrialAccessGateway)等实体组成。①软交换SS(SoftSwitcher)完成移动呼叫接续、控制、无线资源和移动性管理等功能,是卫星移动通信试验网的核心,同时也是与地面固网和实验网的接口设备。②AAA服务器认证:用户在使用网络系统中的资源时对用户身份的确认。授权:网络系统授权用户以特定的方式使用其资源。计费:网络系统收集、记录用户对网络资源的使用,以便向用户收取资源使用费用,或者用于审计等目的。AAA服务器含卫星归属位置寄存器SHLR(SatelliteHomeLocationRegister)与地面移动网的HLR类似,SHLR是用来存储本地用户位置信息的数据库,每个卫星移动用户必须在某一个SHLR登记,不同之处是试验网将卫星移动设备标识寄存器集成到SHLR之中。登记的主要内容有:用户号码、移动设备号码、位置信息、业务信息等。试验系统暂不考虑卫星访问位置寄存器SVLR(SatelliteVisitorLocationRegister),但设计时应该留有扩充的空间。③地面接入网关TAG地面接入网关实现与地面PSTN,PLMN和短消息中心的接口,信令转换,业务合成、分解、存储和传输的实体。地面接入网关实现试验系统与地面其它网络的多种业务转换和互通。④卫星接入网关SAG卫星接入网关是业务控制分系统GSC和移动交换中心GMSC的接口实体。⑤操作管理中心OMCOMC是网络拥有者对全网进行监测和操作的功能实体。

1.4系统接口定义

1.4.1UIM-SMT接口卫星移动终端SMT到用户识别模块UIM接口,SMT在注册、实现双向鉴权、加密、信息存储时要与UIM交互信息和数据。

1.4.2S-Um接口S-Um接口又称SMT-GS卫星空中接口,是卫星移动试验网的主要接口之一。对卫星移动通信而言,大部分信令都是和SMT相关,S-Um接口传递的信息包括了无线资源管理、移动性管理和接续管理等。S-Um接口与卫星移动通信试验系统采用的体制密切关联,相互决定。

1.4.3Am接口Am接口是信关站内部GTS和GSC之间的内部接口。

1.4.4A接口A接口是卫星地面信关站和GMSC之间的接口,该接口携带关于信关站的管理、呼叫处理和移动性管理等信息。采用SIP和RTP协议分别传输信令和业务数据,通过TCP/IP承载传输。

1.4.5R接口R接口为GMSC与AAA之间的接口,GMSC通过该接口向AAA服务器和SHLR查询被叫卫星移动用户的选路信息,以便确定呼叫路由,呼叫时对用户进行鉴权,并在呼叫结束时向AAA发送计费信息。试验系统的SHLR与信关站放在一起。

1.4.6P接口为综合信关站的地面接入网关与地面网络的接口,传递业务及控制信息。

1.5系统通信体制为了适应卫星资源,试验系统采用CDMA通信体制。前向信道(卫星到终端)和反向信道(终端到卫星)各占用不大于8MHz频谱带宽。见图3。前向和反向信道采用扩频方式,将2.4kbps的数据经成帧、编码、交织、加密处理后,由扩频序列将频谱展宽。前向信道由以下信道组成:PICH(PilotChannel):前向导频信道,为参考信道,终端由它获取相干解调及同步信息;SCH(SynchronizationChannel):同步信道,发送定时参数,系统参数;PCH(PagingChannel):寻呼信道,用于寻呼用户,发送短消息和系统消息;BCH(BroadcastChannel):广播信道,为终端提供广播业务;DSCH(ForwardDedicatedSignalChannel):前向专用信令信道,传送专用信令,在通信过程中传输交换信令;TCH(TrafficChannel):业务信道,承载语音和短消息业务,试验系统使用1~30条。反向信道由以下信道组成:RACH(RandomAccessChannel):反向随机接入信道,用于终端发起呼叫、被叫和注册时传输信令;RTCH(ReversedTrafficChannel):反向业务信道,承载语音和短消息业务;RDSCH:(ReversedDedicatedSignalChannel):反向专用信令信道,用于通信过程中交换信令。前向信道采用正交的Walsh码区分用户和控制信道,码片速率4.9152Mcps,调制方式为QPSK,信道编码为1/3卷积编码。反向信道采用随机码区分用户,码片速率4.9152Mcps,调制方式为HPSK,信道编码为1/3卷积编码。

2系统工作原理

系统的工作原理见图4。用户终端对语音、数据、短消息进行信息处理、基带处理、射频处理形成频率为L的射频信号后,由天馈单元发向卫星。卫星接收到用户所发的信号后,进行放大、变频、滤波等处理,经C波段天线发向信关站。在综合信关站中,由专用C波段天线接收卫星发来的入站信号,经低噪放、下变频处理成中频信号(70MHz),经中频分路后送往两个16路解调器,解调后数据接入本地局域网,通过信令处理与软交换完成与对方用户的连接,建立通信信道。信息经信关按协议处理后送往交换机,交换机将数据送往两个16路调制器,调制器完成对数据的信息处理、基带处理、扩频调制后,形成中频为70MHz的已调合路信号(2个中频,各含16路),送往中频合路器,合路后经上变频处理成S波段信号,经高功率放大(HPA)后,由S波段天线发向卫星。卫星收到信关站所发的信号后,进行放大、变频,处理成频率为L1/L2的射频信号发向用户。用户端接收到卫星所发来的微弱信号后,经低噪放(LNA)、变频处理成频率为70MHz的中频信号,经解调、信道处理、信息还原后得到对方所发的语音、数据、短消息等信息格式。终端接入流程举例,见图5。

3结束语

篇(3)

SOQPSK-TG信号可以在OQPSK的基础上由CPM的形式表示。二进制序列映射为NRZ码序列后进行预编码,再将所得信息插值,经过脉冲成形滤波后积分得到相位调制信息,利用正余弦查找表取得基带同相和正交分量,最后通过正交调制可以获得SO-QPSK-TG信号。SOQPSK-TG与BPSK,QPSK,GMSK信号功率谱比较,如图1所示。由于SOQPSK-TG调制方式相对传统BPSK、QPSK调制方式消除了载波相位±π/2或±π的突变现象,相对于GMSK调制方式,载波相位不仅可以在±π/2内连续变化,还可以保持不变。因此从图1中可以看出SOQPSK-TG调制方式功率谱密度更为紧凑,滚降速度快,频谱利用率高,因此能够满足目前卫星通信领域对频谱性能的要求。又因为其具有恒包络特性,放大器的非线性对其解调影响不大,因此功率利用率高,满足卫星对低功耗的要求。

2SOQPSK-TG的极化分集接收

经过高斯信道传输后的卫星接收信号可表示为,本文设计的极化分集接收系统首先通过ADC将接收的两路圆极化信号(左旋极化、右旋极化)转换为数字信号,然后经过自动增益控制环路(Au-tomaticgaincontrol,AGC)、差模环(Differentialmodeloop,DML)、最大比合并(Maximumratiocombining,MRC)、共模环、定时同步环路,得到解调信号,整体框图如图2所示。

2.1自动增益控制环路卫星通信信道衰落使得接收信号的包络会产生起伏,幅度变化可以相差几十分贝,本文给出的MRC算法、载波恢复算法和时钟恢复算法都要求输入端的两路信号幅度保持恒定不变,可见AGC在系统中至关重要。因此需要通过AGC调节接收信号的增益,使接收机输出电压恒定或基本不变,提高系统性能。其数学模型如下A(n+1)=A(n)+βR-A(n)x(n[])(8)式中:A(n)为AGC的调节增益,R为增益门限,β为增益步长。经过当前时刻增益A(n)所得的信号A(n)x(n)与门限R作比较,若小于门限则会增大下一个时刻的增益A(n+1),同理若大于门限则减小下一时刻的增益,使输出信号基本维持在门限附近。增益步长β越小,幅度收敛越慢,捕获时间越长,误差越小,即波形失真越小;反之β越大,收敛越快,捕获时间越短,误差越大。

2.2差模环到达接收机的两路信号由于相位或本振频率不一致会引入一定的相位偏移和频率偏移,而MRC算法要求两路信号同频、同相后才能加权合并,取得增益,因此必须完成两路信号的同频同相处理。两路信号经过下变频、低通滤波后通过鉴相器将所得的误差信号分为两路,通过环路滤波器后以相反的极性调整数字控制振荡器(Numericalcontrolledoscillator,NCO),使两路信号以相反的方向被推到同一个公共频率上,实现两路信号的同频同相锁定。SOQPSK-TG信号的差模环算法模型推导如下,设经过AGC后的两路信号分别。

2.3最大比合并常用的极化分集接收合并方式有3种:等增益合并、选择合并和最大比合并。本文采用分集增益最佳的最大比合并算法[25],其原理是通过AGC所获得的加权系数对两路信号进行加权合并,使信噪比较大的一路获得较大的权值,信噪比较小的一路获得较小的权值。设so为合并输出信号电压,αi为各支路加权系数,si为各支路输入信号电压,N为支路个数。假设各支路噪声不相干,因此合并输出噪声功率n2o应为各支路输入噪声功率n2i之和,可得合并输出信噪比γo为当且仅当各支路信号电压与加权噪声功率之比相等时,输出达到最大值,此时分集增益为N。

2.4共模环卫星相对地面的高速运动会使信号载波产生多普勒频率分量,这就要求接收机有较强的频移捕获能力、较快的同步速度以及较高的同步精度。本文采用同相正交环算法对载波进行恢复。

3仿真验证

仿真条件:信号中频f0=32MHz,下变频后载波fR=fL=4MHz,每周期采样点数Nc=32,采样率fs=128MHz,码元个数Num=800,每个码元采样点数Ns=64,接收信号为正弦起伏包络,起伏范围为20dB,两路输入信号频差Δf=2.56kHz,相差Δφ=π/4,多普勒频移fd=6.4kHz,噪声为高斯噪声,信噪比SNR=15dB,各环路仿真结果见图3~10。上述仿真结果表明,自动增益控制环路能够较好地恒定输入电平,如图3,4所示;差模环、共模环能够准确跟踪两路输入信号频差、相差及多普勒频移,如图5~8所示;最大比合并模块能够使得信噪比较差的一路得到补偿,如图9所示;最后的解调结果如图10所示,在最大起伏为20dB条件下,通过分集接收实现了正确解调。为进一步验证本文所提算法性能,图11给出了分集接收SOQPSK-TG卫星通信系统与传统BPSK卫星通信系统的性能对比结果。对比结果表明,极化分集SOQPSK-TG传输系统明显优于传统BPSK系统,在最大起伏为20dB条件下,可获得5~10dB平均信噪比增益。

4结束语

篇(4)

卫星通信技术则是由使用围绕地球的同步/非同步的通信卫星来做一个中间站进行一种远距离通信的实现方式。它本质上是由微波通信以及航天技术之上发展新颖的无线通信的技术,而卫星通信技术自身采用的无线电频率为微波频段。从而产生的卫星通信技术,它的主要特点就是传输的距离远,且频率高。也因为卫星通信频带宽,且频率高,变化范围大的重要优点,卫星通信技术在我国的军事建设和经济发展等方面都具有深远的意义。

我国的现今卫星通信技术的发展在扩展新的频段,加强先可用的频段的利用率以及现在公用干线的通信网都应该一步步转向跟随宽带化的发展趋势,能够准确地利用卫星通信技术来建立我国的卫星宽带业务以及数字化通信网络。所以对于卫星通信网技术而言应该逐渐的走向小型化的、智能化的未来方向。从目前我国的计算机科技的水平来看,假设把设备功能全部换由软件来进行操作实现,那么由于软件的特点也就是需要按照一条条的指令来运行,就算我们采用多处理器的方式来进行协助共同运算,也没有办法真正保障高频率情况下的处理能够及时有效,也使得软件无线电技术在卫星通信领域中的使用范围明显受到限制。基于以上原因,以下设计想法是为了能够让软件无线电技术能真正应用在卫星通信方面。

首先我们所有的设备都需要经过模块化处理,各个模块分开保证控制功能,以及各个模块之间的高速数据的交换问题。而信道设备以及接口设备的内部结构信道设备包括调制解调器、信道的编译码器和置乱器等,在总的CPU的控制之下,信道设备的具体参数值可以做到由软件来进行定义处理。而将无线射频的设备、信道设备和接口设计在卫星通信技术中也是十分关键的存在。再来考虑到了卫星通信技术有着多址方式,业务类型广以及其频率高且变化区域广等各种优点,在信道设备和接口设备的设计选用模块化的设计构思。各个模块应该能够各自拥有能定义自身功能的各个软件接口,而选用的软件接口更应保证标准化以方便各个不同供应商的生产。然后在各个模块的具体设计上面,也要根据具体运算量大小,选择不同的软件接口功能。再来根据具体的各类应用环境,更加灵活地修改和使用数据帧结构,并且保证以软件协同硬件两相结合的方式实现。最后就是设备功能和系统功能的定义要靠网络管理系统来最终实现。

伴随着因特网大面积普及及现在移动网络的迅猛发展,卫星通信技术绝对会在未来迎来更进一步的发展机会。现在我国逐渐采用自主研发的通信卫星为主体,来建立完善的卫星通信系统。软件无线电技术作为一个可利用在卫星通信方面的技术来说,也一定会伴随卫星通信的脚步,成为加速我国科技发展的重要技术。

2结语

篇(5)

关键词:移动雷达;应急通信;卫星通信

Thesatellitecommunicationofmobilemeteorologicalradarsystem

DouYiwen(BeijingmeteorologicalBureau,Beijing100089)

Abstract:Inordertotranslatemobileradar'sdatatoserverofBeijingmeteorologicalBureau.Thistextcomparedadvantagesanddisadvantagesofwirelesscommunication'smethod.Theaboveanalysisnaturallyleadsustothesystemofthesatellitecommunicationcreated.Theresultsshows:thesystemcansatisfythecommunicationrequirementofmobileradar.Thesystemhasagoodexampleforcreatingemergencycommunication.

Keywords:Mobileradar;Emergencycommunication;Satellitecommunication

1引言

随着气象信息自动采集的不断发展,自动采集数据越来越成为气象信息采集的主流。新一代天气雷达系统,可以进行较大范围降水的定量估测,获取降水和降水云体的风场信息等,在短时灾害性天气预报和应急服务中发挥巨大的作用,特别是对风害和冰雹相伴随的灾害性天气的监测和预警[1]。为了把移动雷达实时数据传输到北京市气象局,通信方式的选择成为信息采集的重要环节,目前气象应用通信方式有很多种。如CDMA/GPRS/3G、北斗卫星、无线局域网(WLAN)、专线等,还有下面要讨论的基于亚洲卫星通信线路。移动雷达对通信的主要需求是网络质量可靠;带宽至少要达到双向2Mbps;移动雷达采集数据地点不固定。如何满足移动雷达的要求是本系统需要解决的问题。

2通信方案的设计

2.1气象信息传输通信方式对比分析

目前气象应用通信方式有很多种,如CDMA/GPRS/3G、北斗卫星、无线局域网(WLAN)、专线等。由于天气雷达数据量大,要求网络质量高,固定地点天气雷达的数据传输一般都是利用专线传输。表1是常用无线通信方式传输气象数据的对比。无线局域网传输距离短,安全性差,一般只能作为数据的传输中继;北斗卫星是我国自主研制的卫星导航定位系统,安全性高,用于传输字节少如自动站等的数据比较适合;CDMA/GPRS,运行成本低,但是其通信速率要求低,不能满足雷达数据传输要求;3G下行速率理论值是2.8Mbps,实际传输效果没有达到此值,而且网络质量与基站覆盖有很大关系。天气雷达如果地点固定,而且在市内或县城内,使用专线较好,有充足的时间建立专线的话,应用2Mbps专线传输雷达数据是一种好的选择。卫星通信作为天气雷达数据的备份是一种最佳选择,因为它的网络带宽、移动性、实时性、开通周期等方面都能满足要求。

2.2卫星通信特点分析

卫星通信是以人造通信卫星作为中继的一种微波通信方式。卫星通信的优点:通信距离远,建设成本与通信距离无关;不受地理环境影响;广播方式,卫星覆盖区域内的任何点可实现通信;通信容量大;可自发自收。卫星通信的缺点:信号极弱(毫微微瓦级),对技术和设备的要求较高;时延;多址问题;存在单一故障点;雨衰。

3卫星通信的应用

综合考虑雷达数据传输的速率在2Mbps以上,支持视频、移动、应急等方面的要求,选择亚洲卫星通信是本系统的最佳选择。本系统采用等效口径为0.95m的偏馈型椭圆抛物面天线,天线面使用四片碳化纤维面板组成。天线系统工作在Ku频段。天线控制系统内置高性能信标接收机,可在5分钟内自动对星,通过对中卫一号、亚洲二号、亚洲三号、亚洲四号四个卫星两种极化方式的上百次测试,寻星准确率100%,配置40W功放时具备传输速率大于等于3Mbps,保证传输速率大于等于2.048Mbps,完全具备传输多路话音、2路视频图像、2路数据的业务能力。图1就是本系统建立的移动雷达卫星网络结构图。从图中可以看到移动雷达系统采集数据到数据处理服务器(192.168.3.5/24)或模拟语音经过语音网关,通过网络交换机和IP加速器(192.168.3.3/24),由调制设备(192.168.3.2/24)调制信号传输到卫星,再由卫星接收站传送到地面,通过调制解调器(192.168.3.10/24)和IP加速器(192.168.3.11/24)指向路由器(192.168.3.1/24,192.168.2.1/24),由路由器转发到防火墙(192.168.1.1/24),在防火墙上作语音网关和数据服务器NAT地址转换。最后在服务器(192.168.2.254/24)上可以看到雷达系统上传的数据,在电话终端上可以进行语音通话。这个网络是双向的,不仅数据可以双向传输,而且在北京市气象局可以监控到卫星通信系统的状态。本系统因为经费有限,建立了电话通信模式,并留有视频接口。

图1移动雷达卫星网络结构图

4结论

本系统采用的亚洲卫星通信系统具有一键对星功能,天线能够自动展开/收藏,自动定位、自动捕获和自动跟踪卫星,5分钟内完成寻星任务并建立卫星通讯链路。在传输速率、网络安全、天线对星时间、网络接口、应急通信等方面都能满足实时雷达传输数据的要求。

致谢:国家气象信息中心网络室和视频与卫星室、西安瑞兴通信有限公司、北京市人工影响天气办公室、北京市气象信息中心、北京市大气探测技术保障中心在系统建设中给予的大力支持。

参考文献

[1]张海虹,钱建伟.新一代多普勒天气雷达简介[J].科技咨询,2009(18):205-205.

[2]刘霁宇.北斗卫星SCADA通信组网方案[J].黑龙江科技信息,2009(24):50-50.

[3]谈振辉,乔晓瑜.短距离低功率无线通信接入系统[J].2009,15(4):39-43.

[4]罗艳碧,张令通.无线通信网络发展趋势研究与分析[J].科技创新导报,2009(19):238-237.

[5]周治宇,陈豪.未来全球宽带无线通信系统构想[J].空间电子技术,2009(2):1-7.

[6]闵士权.关于构建国家应急卫星通信网的思路[J].航天器工程,2009,18(3):1-7.

[7]周任飞.基于TD-SCDMA的雷达情报数据无线传输研究[J].信息系统工程,2009,9:70-73.

[8]邓玉芬,张博,沈明,等.基于北斗卫星的海洋测量数据传输系统[J].海洋测绘,2009,29(4):67-69.

[9]王毳,赵齐.卫星宽带IP技术研究[J].无线电通信技术,2009,35(4):16-19.

[10]徐江,杨凡,王视环.卫星通信多址接入方式的比较和分析[J].电力系统通信,2004(10):49-53.

征稿启事

《网络与信息》杂志是经国家科技部和国家新闻出版总署批准的国内外公开发行的计算机网络应用类专业媒体,CNKI中国学术期刊全文数据库收录期刊、中国学术期刊综合评价数据库统计源期刊、中国核心期刊(遴选)数据库收录期刊、ASPT来源刊、中文科技期刊数据库全文收录期刊、全球中文电子期刊协会入编期刊、2007及2008年网络传播分类阅读国内外TOP10期刊。

《网络与信息》为月刊,每月9日出刊。大16开全彩色精美印刷,每期定价10元,邮发代号82-58。

国内统一连续出版物号:CN21-1380/TP

国际标准连续出版物号:ISSN1008-0252

主要刊登计算机技术、网络与通信技术、信息化建设、信息管理、工程评估、项目咨询与管理、电子商务、会计电算化、计算机辅助教学及管理、网站开发及管理、无线网络技术及应用、信息安全技术等方面的论文及文章。

投稿须知

1.来稿严禁抄袭,文责自负,切勿一稿多投。凡在本刊发表之作品,如双方无特殊约定,一经发表自动视为作者已将该作品的著作权全部转让给《网络与信息》杂志社。

本刊已被CNKI中国学术期刊全文数据库、中国学术期刊综合评价数据库、中国核心期刊(遴选)数据库、中文科技期刊数据库、龙源期刊网、全球中文电子期刊协会收录,其作者文章著作权使用费与本刊稿酬一次性给付。如作者不同意文章被收录,请在来稿时向本刊声明,本刊将做适当处理。本刊亦有权不予刊登不同意收录的论文。

2.文稿要求层次分明、条理清晰、论点明确、数据可靠、文字准确简练。

3.文稿署作者真实姓名、工作单位、电话、通信地址、邮政编码和电子信箱。

4.来稿请按标题(不超过20字,必要时可加副标题)、作者、单位(外加圆括号)、摘要(不超过150字)、关键词(3-5个)、正文和参考文献的顺序撰稿。若是基金项目,请注明课题全称和批准文号。

5.本刊有权对拟用文稿作文字上的修改、删节处理,对图表有权按规范、标准等要求作技术处理;凡不同意者,请在来稿时申明。

6.杂志每版的字数为2200左右(不包括图表,如有图表则字数酌减)。

7.来稿请注明“投稿《网络与信息》”字样,并以Word格式发送到:,同时注明投稿者姓名、单位、邮编和地址、电话、E-mail,以便联系和邮寄样刊。

8.编辑部收到作者稿件后,5天内给作者反馈稿件处理情况。

联系方式:

电话:024-31318681

篇(6)

    论文摘 要:消防通信规划是城市消防规划中的重要内容,本文论述了目前我国消防通信规划的现状及编制中存在的问题,详细介绍了消防部队信息通信体系建设的现状和未来发展趋势,分析了当前消防通信规划编制和实施中的重点问题,为消防通信规划编制工作提供参考建议。

    1、前言

    随着我国应急救援体系的发展,消防部队已逐步成为城市主要的应急救援力量,广泛参与到自然灾害、事故灾难、社会安全事件等公共突发事件的应急救援处置中,并承担了部分非紧急的社会救助任务。消防通信是消防部队开展灭火救援行动的根本保障,是未来城市应急救援体系中信息通信的主要组成部分。美国911恐怖袭击事件中警察和消防员未建立统一的通信手段而造成的惨痛教训凸现出城市消防通信规划的重要性,所以在城市消防规划编制过程中合理规划和部署消防通信的建设和发展,在规划方针的指导下逐步建立和完善城市消防通信体系,是消防部队在执勤备战和灾害救助中全面发挥应急救援能力的根本保障。

    2、消防通信规划的现状

    消防通信规划的编制主要由城市规划设计单位和消防部门共同完成。由于城市建设和通信技术的高速发展,各地消防通信系统也在不断的扩展和升级,消防通信建设所依据的《消防通信指挥系统设计规范》等规范文件的要求与目前的应用现状相差较大,内容滞后且不全面,对规划编制的指导意义不够充分,一些通信指挥系统虽已达到火灾报警、火警受理、灭火救援通信调度等应用的基本要求,实际中却不能满足新形势下消防部队应急救援通信指挥的需求。并且由于消防通信规划的专业性较强、技术要求高、涉及的领域广泛繁多、基础设施建设发展不均衡等方面的原因,使消防通信规划的编制工作难以有效和深入开展,造成部分城市消防通信规划的内容空泛、缺乏深度、可操作性较差,不能切实有效的指导城市消防通信建设和发展。此外我国的应急管理体系建设起步较晚,部分消防通信规划内容仅片面集中于火灾事故方面,缺乏城市应急救援总体发展的综合考虑,造成消防通信建设与城市应急救援体系建设脱节。

    3、消防通信建设现状

    消防部队的信息通信建设按照公安部消防局信息化建设的总体规划部署和具体要求展开,实施主要依靠当地政府财政拨款、当地公安部门和电信部门的通信网络建设以及消防部队自身的信息化装备建设来完成,目前各级消防部队均已形成了相对独立的消防信息通信体系。以下将从基础通信网、消防通信指挥中心、消防综合业务信息系统等几个消防规划中涉及的重点方面具体展开论述。

    3.1 基础通信网络

    基础通信网络是消防通信和城市应急通信的基础设施,网络的建设直接决定了消防部队的信息应用能力,所以基础通信网络的发展是消防通信规划的重点。目前消防部队依托公安信息网、公众电信网、无线超短波通信网、卫星通信网等多种通信网络传输语音、图像和数据,形成了一套较为完整的消防通信网络体系,以下归纳为计算机通信网、有线通信网、无线通信网、卫星通信和短波通信网等几部分介绍。

    3.1.1 计算机通信网

    目前消防部队各级单位均已接入了以公安信息网为基础的计算机通信网,这一网络是消防部队数据通信的基础网络,承担灭火救援指挥调度、消防综合信息管理等大部分信息系统的数据传递,并可实现IP语音电话和视频传输等多媒体应用。为保证调度指挥等重要信息的可靠传递,部分节点间还建立了指挥调度专线和备份网路。在消防通信规划中应按照当地公安信息网和消防部队自身信息通信的建设情况以及各级消防部队的信息通信需求,合理规划消防计算机通信网,确保网络的全面接入和可靠畅通。

    3.1.2 有线通信网

    有线通信网包括报警电话接入和报警信息查询专线、指挥调度专线、办公市话网和公安专线网等通信网络,是城市各级消防队站获知灾害事故发生和传递调度指挥命令的基础信息通信网络。其中报警电话接入专线是用于接受公用电话网的报警和城市消防远程监控系统的火警信号及相关信息的通信线路。报警信息查询专线是用于获取报警电话的位置、装机人身份等信息的数据专线。指挥调度专线是用于连接火警受理终端、各消防站以及各相关联动单位的通信专线。办公市话网和公安专线网是消防部队内部各级部门之间和与公安机关之间通信的办公电话网。有线通信网是传统的消防通信基础网络,目前各城市基本完成了消防有线通信网的建设,在消防通信规划中应以未来网络容量和性能的改进及发展等内容为主,确保消防有线通信网的完备可靠,保证消防部队对灾害事故快速响应和出动调集命令的有效传达。

    3.1.3 无线通信网

    无线通信是消防部队在灭火救援展开和进行过程中用于灾害现场信息传递的主要通信方式。目前各级消防部队普遍配备了用于现场通信的350MHz超短波无线常规通信设备,并利用转信台扩展网络覆盖的范围。大部分城市还依托当地公安无线集群通信系统建立了消防集群通信网,北京、上海等地还建设了具备网络容量大、通话质量高、应用功能多等特点的数字集群通信网。消防部队以超短波无线通信为基础构成了由城市消防通信指挥网、现场指挥网和灭火救援战斗网组成的三级无线通信网络,并且利用GPRS、CDMA、3G等公众移动通信技术以及超短波、微波数传设备等多种手段建立无线数据通信网,用于传输灭火救援现场的图像和数据信息。此外公众移动电话网也是消防部队重要的辅助通信手段。合理规划城市消防无线通信网,构建可靠的无线通信体系是消防部队在灭火救援过程中战斗力有效发挥的根本保证。

    3.1.4 卫星通信和短波通信

    在地震、泥石流等大型自然灾害救援或野外应急救援中,依赖中继站的常规无线通信网往往会受到传输距离和范围、电力供给、极端环境影响等方面的局限,不能满足消防部队信息通信的需要,此时卫星通信和短波通信等应急通信方式成为救援现场最有效的信息通信手段。目前公安部消防局已对消防卫星通信体系做出总体的规划和部署,并推进消防卫星通信网的建设,一些城市的消防部队先后配备了“动中通”卫星通信设备、便携卫星站、短波电台等应急通信装备,在玉树地震和舟曲县特大泥石流等自然灾害救助和部分大型跨区灭火应急救援中显现出极强的应急通信保障能力。消防卫星通信和短波通信是应急通信体系中的重要部分,是城市有效抵御极端灾害的基础保障设施。

    3.2 消防通信指挥中心

    消防通信指挥中心是消防部队信息通信和作战指挥的中枢,具有受理报警、灭火救援指挥调度、信息情报支持等功能,负责火灾及其它灾害事故的接处警受理和消防救援力量的调度指挥。按照公安部“三台合一”的要求,目前我国大部分地级以上城市均已设置了包括治安、交通、消防在内的接处警指挥中心,建立了统一的集中受理和多部门联动的接处警平台,一些城市还进一步将医疗救护、安全生产等应急救援相关的领域纳入其中,并形成城市综合应急救援指挥中心。部分通信指挥中心还具备使用手机定位技术和GIS技术确定报警人的位置、使用短信平台受理报警、即时监控救援力量的行动状态、通过图像监控系统获取灾害发生区域的现场状况和交通状况等功能。在消防通信规划中应针对本地的实际情况,综合考虑未来城市应急救援体系的发展,确定消防通信指挥中心的建设发展方案。

    移动消防通信指挥中心是设置在专门的通信指挥车中并集成了消防通信指挥相关功能的移动指挥平台,通常包括调度指挥台、辅助决策信息系统、多种无线通信系统、火场图像系统、视频会议系统、现场广播、供电及照明等其他辅助设备,是众多救援力量参与的复杂灾害事故处置现场中通信指挥的关键因素。按照城市规模和应急救援体系的建设情况,配置不同功能组件和不同移动及通信能力的消防通信指挥车是消防通信规划中的重要问题。

    3.3 消防综合业务信息系统

    消防综合业务信息系统是包括了灭火救援指挥、消防监督管理、部队管理和消防公众服务等多种应用功能的信息系统集成,是消防通信中应用软件的主要部分。按照消防部队信息化建设总体规划和部署,各级消防部队将逐步推广和应用包括消防基础数据平台、消防公共服务平台及各消防综合业务信息系统等部分的一体化业务平台。目前各地统一按照公安部消防局部署方案的要求,逐步开展了消防监督管理、部队管理和公众服务等信息系统的推广和应用,而对于消防基础信息平台、灭火救援指挥系统等面向灭火救援指挥和管理的信息系统,因受到基础信息数据库和通信基础设施建设情况的局限,各地的应用程度差异较大。在消防通信规划中,应将建立和完善城市地理信息、火灾风险信息、危险源信息、水、电、生产、医疗救护信息等内容的城市应急救援基础信息数据库,以及按照城市应急救援的具体需求开展消防指挥调度系统、消防指挥决策系统、重大危险源评估系统、模拟演练等系统的应用纳入到消防通信规划中重点建设。

    4、未来发展趋势

    随着信息通信技术的高速发展,众多高性能的通信技术将逐步应用于消防通信领域中,不断推进消防通信的发展。目前第四代移动通信技术已进入实验性应用阶段,在不久的将来势必将成为消防通信体系中高质量传输数据信息的重要手段。信息通信硬件设备的发展,使信息通信装备的通信性能和移动性能不断提升,设备成本将更加低廉,未来随着多媒体单兵信息装备的深入应用,使灾害救援现场各级指战员具备强大的信息通信能力,数字集群通信、卫星通信、微波数据通信等通信设备也将广泛装备到各级消防部队中,逐步成为普遍配备的常规通信手段。随着城市灾害联网监控系统的建设,消防通信指挥中心可以智能感知火灾等灾害事故的发生并及时获取相关灾情信息,极大的提高消防部队对灾害事故响应能力。此外物联网、遥感技术、传感器技术、Ad Hoc网络等应用于消防领域,可以即时、全面、深入的获得灭火和应急救援现场的灾情状况和救援实力状况,实现天空地一体的消防通信体系和数字化指挥调度体系。在消防通信规划中,应结合未来通信新技术的发展,合理规划和部署城市消防通信建设。

篇(7)

论文摘 要:消防通信规划是城市消防规划中的重要内容,本文论述了目前我国消防通信规划的现状及编制中存在的问题,详细介绍了消防部队信息通信体系建设的现状和未来发展趋势,分析了当前消防通信规划编制和实施中的重点问题,为消防通信规划编制工作提供参考建议。 

1、前言 

随着我国应急救援体系的发展,消防部队已逐步成为城市主要的应急救援力量,广泛参与到自然灾害、事故灾难、社会安全事件等公共突发事件的应急救援处置中,并承担了部分非紧急的社会救助任务。消防通信是消防部队开展灭火救援行动的根本保障,是未来城市应急救援体系中信息通信的主要组成部分。美国911恐怖袭击事件中警察和消防员未建立统一的通信手段而造成的惨痛教训凸现出城市消防通信规划的重要性,所以在城市消防规划编制过程中合理规划和部署消防通信的建设和发展,在规划方针的指导下逐步建立和完善城市消防通信体系,是消防部队在执勤备战和灾害救助中全面发挥应急救援能力的根本保障。 

 

2、消防通信规划的现状 

消防通信规划的编制主要由城市规划设计单位和消防部门共同完成。由于城市建设和通信技术的高速发展,各地消防通信系统也在不断的扩展和升级,消防通信建设所依据的《消防通信指挥系统设计规范》等规范文件的要求与目前的应用现状相差较大,内容滞后且不全面,对规划编制的指导意义不够充分,一些通信指挥系统虽已达到火灾报警、火警受理、灭火救援通信调度等应用的基本要求,实际中却不能满足新形势下消防部队应急救援通信指挥的需求。并且由于消防通信规划的专业性较强、技术要求高、涉及的领域广泛繁多、基础设施建设发展不均衡等方面的原因,使消防通信规划的编制工作难以有效和深入开展,造成部分城市消防通信规划的内容空泛、缺乏深度、可操作性较差,不能切实有效的指导城市消防通信建设和发展。此外我国的应急管理体系建设起步较晚,部分消防通信规划内容仅片面集中于火灾事故方面,缺乏城市应急救援总体发展的综合考虑,造成消防通信建设与城市应急救援体系建设脱节。 

 

3、消防通信建设现状 

消防部队的信息通信建设按照公安部消防局信息化建设的总体规划部署和具体要求展开,实施主要依靠当地政府财政拨款、当地公安部门和电信部门的通信网络建设以及消防部队自身的信息化装备建设来完成,目前各级消防部队均已形成了相对独立的消防信息通信体系。以下将从基础通信网、消防通信指挥中心、消防综合业务信息系统等几个消防规划中涉及的重点方面具体展开论述。 

3.1 基础通信网络 

基础通信网络是消防通信和城市应急通信的基础设施,网络的建设直接决定了消防部队的信息应用能力,所以基础通信网络的发展是消防通信规划的重点。目前消防部队依托公安信息网、公众电信网、无线超短波通信网、卫星通信网等多种通信网络传输语音、图像和数据,形成了一套较为完整的消防通信网络体系,以下归纳为计算机通信网、有线通信网、无线通信网、卫星通信和短波通信网等几部分介绍。 

3.1.1 计算机通信网 

目前消防部队各级单位均已接入了以公安信息网为基础的计算机通信网,这一网络是消防部队数据通信的基础网络,承担灭火救援指挥调度、消防综合信息管理等大部分信息系统的数据传递,并可实现ip语音电话和视频传输等多媒体应用。为保证调度指挥等重要信息的可靠传递,部分节点间还建立了指挥调度专线和备份网路。在消防通信规划中应按照当地公安信息网和消防部队自身信息通信的建设情况以及各级消防部队的信息通信需求,合理规划消防计算机通信网,确保网络的全面接入和可靠畅通。 

3.1.2 有线通信网 

有线通信网包括报警电话接入和报警信息查询专线、指挥调度专线、办公市话网和公安专线网等通信网络,是城市各级消防队站获知灾害事故发生和传递调度指挥命令的基础信息通信网络。其中报警电话接入专线是用于接受公用电话网的报警和城市消防远程监控系统的火警信号及相关信息的通信线路。报警信息查询专线是用于获取报警电话的位置、装机人身份等信息的数据专线。指挥调度专线是用于连接火警受理终端、各消防站以及各相关联动单位的通信专线。办公市话网和公安专线网是消防部队内部各级部门之间和与公安机关之间通信的办公电话网。有线通信网是传统的消防通信基础网络,目前各城市基本完成了消防有线通信网的建设,在消防通信规划中应以未来网络容量和性能的改进及发展等内容为主,确保消防有线通信网的完备可靠,保证消防部队对灾害事故快速响应和出动调集命令的有效传达。 

3.1.3 无线通信网 

无线通信是消防部队在灭火救援展开和进行过程中用于灾害现场信息传递的主要通信方式。目前各级消防部队普遍配备了用于现场通信的350mhz超短波无线常规通信设备,并利用转信台扩展网络覆盖的范围。大部分城市还依托当地公安无线集群通信系统建立了消防集群通信网,北京、上海等地还建设了具备网络容量大、通话质量高、应用功能多等特点的数字集群通信网。消防部队以超短波无线通信为基础构成了由城市消防通信指挥网、现场指挥网和灭火救援战斗网组成的三级无线通信网络,并且利用gprs、cdma、3g等公众移动通信技术以及超短波、微波数传设备等多种手段建立无线数据通信网,用于传输灭火救援现场的图像和数据信息。此外公众移动电话网也是消防部队重要的辅助通信手段。合理规划城市消防无线通信网,构建可靠的无线通信体系是消防部队在灭火救援过程中战斗力有效发挥的根本保证。 

3.1.4 卫星通信和短波通信 

在地震、泥石流等大型自然灾害救援或野外应急救援中,依赖中继站的常规无线通信网往往会受到传输距离和范围、电力供给、极端环境影响等方面的局限,不能满足消防部队信息通信的需要,此时卫星通信和短波通信等应急通信方式成为救援现场最有效的信息通信手段。目前公安部消防局已对消防卫星通信体系做出总体的规划和部署,并推进消防卫星通信网的建设,一些城市的消防部队先后配备了“动中通”卫星通信设备、便携卫星站、短波电台等应急通信装备,在玉树地震和舟曲县特大泥石流等自然灾害救助和部分大型跨区灭火应急救援中显现出极强的应急通信保障能力。消防卫星通信和短波通信是应急通信体系中的重要部分,是城市有效抵御极端灾害的基础保障设施。

3.2 消防通信指挥中心 

消防通信指挥中心是消防部队信息通信和作战指挥的中枢,具有受理报警、灭火救援指挥调度、信息情报支持等功能,负责火灾及其它灾害事故的接处警受理和消防救援力量的调度指挥。按照公安部“三台合一”的要求,目前我国大部分地级以上城市均已设置了包括治安、交通、消防在内的接处警指挥中心,建立了统一的集中受理和多部门联动的接处警平台,一些城市还进一步将医疗救护、安全生产等应急救援相关的领域纳入其中,并形成城市综合应急救援指挥中心。部分通信指挥中心还具备使用手机定位技术和gis技术确定报警人的位置、使用短信平台受理报警、即时监控救援力量的行动状态、通过图像监控系统获取灾害发生区域的现场状况和交通状况等功能。在消防通信规划中应针对本地的实际情况,综合考虑未来城市应急救援体系的发展,确定消防通信指挥中心的建设发展方案。 

移动消防通信指挥中心是设置在专门的通信指挥车中并集成了消防通信指挥相关功能的移动指挥平台,通常包括调度指挥台、辅助决策信息系统、多种无线通信系统、火场图像系统、视频会议系统、现场广播、供电及照明等其他辅助设备,是众多救援力量参与的复杂灾害事故处置现场中通信指挥的关键因素。按照城市规模和应急救援体系的建设情况,配置不同功能组件和不同移动及通信能力的消防通信指挥车是消防通信规划中的重要问题。 

3.3 消防综合业务信息系统 

消防综合业务信息系统是包括了灭火救援指挥、消防监督管理、部队管理和消防公众服务等多种应用功能的信息系统集成,是消防通信中应用软件的主要部分。按照消防部队信息化建设总体规划和部署,各级消防部队将逐步推广和应用包括消防基础数据平台、消防公共服务平台及各消防综合业务信息系统等部分的一体化业务平台。目前各地统一按照公安部消防局部署方案的要求,逐步开展了消防监督管理、部队管理和公众服务等信息系统的推广和应用,而对于消防基础信息平台、灭火救援指挥系统等面向灭火救援指挥和管理的信息系统,因受到基础信息数据库和通信基础设施建设情况的局限,各地的应用程度差异较大。在消防通信规划中,应将建立和完善城市地理信息、火灾风险信息、危险源信息、水、电、生产、医疗救护信息等内容的城市应急救援基础信息数据库,以及按照城市应急救援的具体需求开展消防指挥调度系统、消防指挥决策系统、重大危险源评估系统、模拟演练等系统的应用纳入到消防通信规划中重点建设。 

 

4、未来发展趋势 

随着信息通信技术的高速发展,众多高性能的通信技术将逐步应用于消防通信领域中,不断推进消防通信的发展。目前第四代移动通信技术已进入实验性应用阶段,在不久的将来势必将成为消防通信体系中高质量传输数据信息的重要手段。信息通信硬件设备的发展,使信息通信装备的通信性能和移动性能不断提升,设备成本将更加低廉,未来随着多媒体单兵信息装备的深入应用,使灾害救援现场各级指战员具备强大的信息通信能力,数字集群通信、卫星通信、微波数据通信等通信设备也将广泛装备到各级消防部队中,逐步成为普遍配备的常规通信手段。随着城市灾害联网监控系统的建设,消防通信指挥中心可以智能感知火灾等灾害事故的发生并及时获取相关灾情信息,极大的提高消防部队对灾害事故响应能力。此外物联网、遥感技术、传感器技术、ad hoc网络等应用于消防领域,可以即时、全面、深入的获得灭火和应急救援现场的灾情状况和救援实力状况,实现天空地一体的消防通信体系和数字化指挥调度体系。在消防通信规划中,应结合未来通信新技术的发展,合理规划和部署城市消防通信建设。 

 

5、问题和建议 

消防通信的发展应与城市应急救援体系各方面的发展情况及相关领域的具体情况协调统一。由于通信技术的发展速度较高,消防通信规划编制中应准确预见未来城市消防通信的需求,在首先确立适合消防通信发展总体框架基础上灵活的选择兼容性好、生命力强并具备开放和统一标准的技术和设备,有效避免重复建设,并尽量降低系统升级换代和改造的成本。发展中还应重视基础通信设施建设,切忌盲目追求新技术和热点技术。可靠度和抗灾能力是消防通信系统中不能忽视的问题,应充分考虑应急状况下缺乏电源供给、设备损坏、大量用户占用等特殊情况的系统运行,合理划分系统中紧急与非紧急应用的分工、采取冗余和备份设计、增设应急状态的专用模式等手段提高系统可靠程度和对灾害的抗击能力。此外消防通信系统设计中还应充分考虑到互联网、公安网、公众话务网、政务网等多个独立通信网络中各种系统间数据的融通,设计中应尽量将系统各具体应用建立在统一的平台和网络中,并采用一些安全稳妥的连接手段,共享和交换各网络间的信息数据。 

 

参考文献 

[1] gb50313.防通信指挥系统设计规范[s]. 

[2] 张昊.论重特大灾害消防应急通信技术[j].消防科学与技术,2011,30(2):132-136 

[3] 莫晓漪.现代城市消防规划的若干问题[j].广西民族大学学报,2007,(8):117-121. 

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。
发表咨询 加急见刊 文秘咨询 杂志订阅 返回首页