时间:2022-09-25 21:43:57
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇卫星通信论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
MAC层有MAC-Idle、MAC-Shared、MAC-DTM、MAC-Dedicated四个状态[4]。它们之间的转换图如下。
1.1MAC-Idle状态MAC-Idle状态中不存在TBF,MES监视CCCH上子信道的相关传呼。MES可能采用DRX(非连续接收)监视CCCH。在MAC-Idle状态,上层可请求传输一个上层PDU(协议数据单元),这就会触发在PDCH上建立一个TBF并由Idle状态转入MAC-Shared状态,或者有可能通过RRC流程或者是RLC/MAC流程在DCH上触发建立一个TBF,MES会在完成建立DCH后由Idle状态转入MAC-Dedicated状态。
1.2MAC-Shared状态在MAC-Shared状态中,MES分配无线资源提供TBF用于在一个或多个PDCH上产生点到点连接。TBF用于在网络和MES之间单向传输上层PDU。在MAC-Shared状态,上层可请求传输一个上层PDU,这就会通过RRC流程在DCH上触发建立一个TBF,这将会使MES由MAC-Shared状态转入MAC-DTM状态。当上行链路和下行链路中的TBF都被释放时,MES返回到MAC-Idle状态。当重新配置PDCH到DCH的所有无线承载,释放完PDCH上所有的TBF并建立第一个DCH时,MES将会由MAC-Shared状态转入MAC-Dedicated状态。
1.3MAC-DTM状态在MAC-DTM状态MES将无线资源分配给一个或多个DCH和一个或多个PDCH。在MAC-DTM状态当所有在PDCH上上行或下行的TBF都被释放之后,MES进入MAC-Dedicated状态。在释放了所有的DCH之后,MES进入MAC-Shared状态。在释放了所有的PDCH和DCH之后,MES进入MAC-Idle状态。
1.4MAC-Dedicated状态在MAC-Dedicated状态MES分配无线资源以提供一个或多个DCH(专有信道)。在释放掉所有的DCH之后,由MAC-Dedicated状态转入MAC-Idle状态,当从DCH到PDCH(分组数据物理信道)的所有无线承载都被重新配置以后,MES将会在释放完所有的DCH并在PDCH上建立第一个TBF时由MAC-Dedicated状态转入MAC-Shared状态。
1.5MAC层对组呼的支持由于GMR-1系统的MAC层不支持组呼功能,所以要对MAC层做一些改变。我们设计了组呼模块,它和单呼模块是并列的关系。根据逻辑信道的映射和MAC层的状态来区分单呼和组呼两个模块通道。组呼工作在电路域,只跟DCH有关,跟PDCH无关[5]。所以在MAC状态机中加入两个状态,分别是MAC-Ready-Gcc(组呼控制)状态和MAC-Dedicated-Gcc状态。工作在MAC-Dedicated-Gcc状态下的主/被叫移动台,正常接收MACDATA,状态不变;在释放掉所有DCH后,由MAC-Dedicated-Gcc状态转入MAC-Idle状态。主叫移动台发起组呼时,RRC层利用原语参数配置MAC层状态;接收下行报文时,MAC层根据MAC-Dedicated-Gcc状态将消息递交给上层组呼模块。图4是主叫用户的组呼MAC转移图。被叫侧成员移动台根据接收到的NCH逻辑信道通知MAC层转入MAC-Dedicated-Gcc状态,工作在组呼模块。流程如图所示。图5是被叫成员移动台组呼MAC状态转移图。集群组呼中,网络要向多个成员移动台发送寻呼通知消息,因此需要采用广播的方式发送。我们增添NCH为组呼通知信道。由于系统资源有限,这里我们借用未配置的CBCH逻辑信道的位置来配置NCH逻辑信道,NCH逻辑信道的突发结构和调制解调编解码方式与CBCH逻辑信道保持一致。例如,如果BCCH指派CBCH使用第一帧,则NCH使用2、3、4帧,如果BCCH指派CBCH使用第1、2帧,则NCH使用3、4帧,余此类推。
2MAC层PTT竞争随机接入回退策略
当组呼讲话方释放组呼上行信道时,讲话方用户在上行DACCH(专有随路控制信道)信道上发送“UPLINK_RELEASE”消息,表明讲话完毕。当一个组呼中有几个用户要同时讲话时,会产生讲话权的竞争。组呼成员也可能有不同的优先级,这时候需要一种竞争策略来解决[6]。以下举例为组呼信道采用8时隙结构,编码的话音为2.4kbits/s。网络收到讲话方上行信道的“UPLINK_RE-LEASE”消息以后,在组呼信道的下行信道的DACCH上向所有组呼移动台发送“UPLINK_FREE”消息,表明上行信道空闲,允许新的讲话方使用上行信道。需要讲话的组呼用户,在下行信道上收到“UP-LINK_FREE”消息以后,采用直接强占和随机接入相结合的方式,在组呼上行信道发送“UPLINK_AC-CESS”消息,消息被封装在NT5上,直接抢占第一帧,随后的随机时间选择为T,回退的最大帧数为F,则T=40ms*F。考虑到2比特的用户优先级,让优先级高的用户有较大的概率竞争成功,设用户优先级为m,退的次数为n,回退的最大帧数为F,则F=(m+5)*n,其中m=1,2,3;n≥1。
当n=0的时候,四个级别的用户都抢占第一帧,此时F=1。用户优先级m和回退次数n与回退最大帧数F关系部分如表1所示。下面以用户优先级m=0为例,随后的随机时间选择为200ms(5帧),400ms(10帧),600m(15帧),和800ms(20帧)总计2s秒钟的时间争用上行信道,方法如图6所示。按下PTT移动台,在最初开始的一帧直接发送“UPLINKACCESS”请求,若有碰撞,随机占用之后的5帧之一发送“UPLINKACCESS”请求,若还有碰撞,随机占用后续10帧之一发送“UPLINKAC-CESS”请求,还有碰撞,随机占用后续15帧之一发送“UPLINKACCESS”请求,一直到,随机占用后续20帧之一发送“UPLINKACCESS”请求,任意帧周期,当下行链路由“UPLINKFREE”转换成“UPLINKGRANT”时竞争结束。任何一个按下PTT的移动台直接抢占最初的一帧发送“UPLINKACCESS”,在后续的2秒钟的时间内又可以竞争上行信道四次,竞争期间,如果收到网络在下行信道上发送“UPLINK_GTANT”,则竞争结束。
当网络成功收到一个“UPLINK_ACCESS”消息以后,在组呼信道的下行DACCH信道上发送“UP-LINK_GRANT”消息,用于告知竞争成功用户可以使用上行信道,其它用户不再进行竞争,直到再次收到“UPLINK_FREE”消息为止。这里我们考虑的是有竞争冲突时,保证优先级高的用户有较大的概率竞争成功。通过以上的描述,分析计算可得。从公式可以看出,优先级高的用户,产生冲突的概率低,这样就很好的保证了优先级高的用户有较大的概率竞争成功。假设一个优先级为0、3的用户,其竞争产生冲突的概率曲线如图7所示。从图中可以看出,优先级高的明显比优先级低的冲突概率小,当n的取值逐渐变大,p越小,当n为5时,概率几乎为零了。事实上,n值不能取很大,应为值越大,虽然冲突概率很小,但是从PTT按下到响应这个时延过大,这不是我们所期望的。所以这个退避算法兼顾了n值不能太大,冲突概率小。
3结语
FDMA/DAMA卫星通信网动态为链路分配各种资源,为了高效利用资源和保证通信链路传输质量,资源分配时需考虑影响卫星通信链路性能的各种因素。影响卫星通信链路性能的主要因素有:天线尺寸、调制编码方式、卫星参数和雨衰等。
1.1天线尺寸天线是地球站的重要组成部分,天线尺寸(口径)直接关系到地球站的发射和接收能力,影响通信链路的调制、编译码选择,关系到链路对地球站功放、卫星转发器功率的需求,是影响资源分配策略的重要因素。对上行链路,天线口径越大地球站发射增益越大,发射同样的EIRP需要的功放功率就小。对下行链路,地球站天线决定了地球站的G/T值。天线口径大,地球站G/T值就高,接收性能越好,转发器利用率高。卫星资源分配中,天线尺寸影响地球站功放功率分配和转发器带宽功率分配,应根据收、发站天线口径对链路性能进行计算分析,按策略调整调制编码方式,优化分配地球站和卫星转发器功率资源,保证可靠通信同时功率、带宽占用相对平衡。
1.2调制编码方式调制、编码方式是卫星通信链路的重要特征参数,影响信号效率以及带宽、功率资源分配。一方面,调制、编码方式与业务信息速率IR决定带宽分配量;另一方面,对确定的误码率性能有最低的链路载噪比C/N门限值要求,进而影响链路对转发器功率资源的分配需求。卫星链路质量要求一定时,如误比特率Pb=10-7,不同调制、编码方式要求的门限C/N不同。同样的调制编码方式下,由于硬件技术水平不同,不同型号调制解调设备要求的门限C/N也不同。链路门限C/N越高,需要发站较多的发射能力和收站更好的接收能力,消耗卫星转发器更多的功率资源。为了分配使用带宽、功率,在具体的资源分配策略下,通过比较选择不同的调制、编码方式组合,优化分配资源,保证通信可靠的同时,功率、带宽占用相对平衡。
1.3卫星参数卫星参数包括频率带宽参数和功率参数,都属于空间段资源。带宽参数即转发器带宽;功率参数主要包括3个:饱和EIRP、G/T和饱和通量密度SFD。卫星在地面不同地点的EIRP、G/T值不同,分别通过EIRP覆盖图和G/T覆盖图表示该卫星的EIRP和G/T覆盖特性。由于卫星上一般都有C波段和Ku波段转发器,所以一颗卫星信号的EIRP覆盖图就分别有C波段覆盖图和Ku波段覆盖图[4]。为卫星通信链路分配资源时,需要使用以上卫星参数,通过链路计算来计算分配卫星功率资源,以及发送地球站的功放功率资源,准确选择地球站对应的卫星参数十分重要,尤其对于地球站的移动站型,每次进行业务链路资源分配计算时,需要使用移动站当时所在地点的响应卫星参数(EIRP、G/T)进行资源动态分配计算。为支持资源分配策略,需要建立每个卫星的EIRP和G/T覆盖特性数据库。另外,卫星的干扰噪声也影响链路计算的准确性,具体每个卫星的干扰噪声系数需向卫星服务商查询。
1.4雨衰在10GHz以上频段(Ku和Ka以上频段),降雨的衰减是卫星链路衰减的主要因素[2]。降雨造成的影响主要体现在对电波信号的衰落、对地面站天线系统G/T值的减小以及由此带来链路载噪比的变化,随着电波频率的提高,其影响也就愈加显著[5]。降雨对上行链路和下行链路均会产生影响。对上行链路,降雨时若要保持(C/T)u不变,则只有改变地球站发射载波的有效全向辐射功率EIRPe,只有增加发射机的发射功率。对下行链路,降雨时若要保持(C/T)d不变,则只有改变卫星发射载波的有效全向辐射功率EIRPs,即增加卫星功放的发射功率。文献[8-10]对雨衰进行了详细分析。一般通过2种措施应对降雨对链路的影响。一种措施是在初期为链路分配资源时,计算雨衰值,并在链路计算中考虑雨衰余量,通过增加发站、转发器的功率来预先防范雨衰的影响;另一种措施是通信过程中,通过功率控制机制在降雨时增加地球站发射机功率。功率控制机制不在本文研究范围,雨衰的大小决定于该地面站雨速率的统计分布、仰角和工作频率,具体雨衰计算参考文献[5,6]。资源动态分配中,通过计算发、收地球站雨衰,增加链路计算雨衰余量,在初期分配资源时分配一定富裕的功率资源,以提高链路通信过程中发生降雨时的可用性。
2资源分配策略设计及软件设计
2.1优化目标FDMA/DAMA卫星通信网资源动态分配策略,是从资源分配角度优化网络管理,保证卫星通信网的优化运行,主要需达到以下目标:①满足链路可用性:如满足链路误码率指标、系统可用度指标等;②高效使用资源:包括资源的动态复用、提高带宽效率等。资源动态分配策略首先要保证分配结果能够保证链路性能,是可用的,同时保证资源高效使用。
2.2分配策略分配策略是为达到资源优化分配使用的目标,综合各种因素进行计算、权衡和优化决策的过程。为了满足可用性,在动态分配资源时,应以目标链路误码率对应的门限Eb/N0进行链路计算,对Ku以上频段考虑系统可用度对应的雨衰余量,并且在链路时间上避开地球站日凌、星蚀发生时段。为了提高资源利用率,满足业务通信前提下,尽可能采用动态分配资源机制;空间段卫星资源一般基于功带平衡原则分配;带宽资源充足,功率紧张(包括转发器功率和地球站功放功率)时,优选合理调制编码方式,保证传输可靠性;带宽资源紧张功率资源充足时,优选高效调制编码方式,保证分配可满足。在进行资源分配计算时,对小天线发大天线收情况,接收能力强,一般按照功带平衡原则即可;对小天线发小天线收情况,发送接收能力均弱,情况允许时考虑多占带宽节省功率的调制编码方式;对大天线况,地球站功放功率资源充足时,可以考虑采用高效调制编码方式提高带宽使用效率。当业务链路速率要求具有一定范围时,如果卫星带宽资源充足,可按照较大的速率为其分配卫星资源;如果卫星带宽资源紧张,则可以按最小速率为其分配卫星资源,以满足其最低业务需求。
2.3资源分配流程FDMA/DAMA卫星通信网资源分配流程如图2所示。根据到来的业务请求,首先确定业务的收、发站及速率需求范围,然后根据地球站参数、卫星参数、站点实时雨衰及目前的资源使用现状,计算可用编码调制方式下的资源需求结果,然后根据分配策略规则,优选分配结果(编码调制方式、发送功率等)。资源分配策略中也可以增加对系统Qos(如业务优先级和站点优先级等)的管理,针对不同站点或业务提供差别服务。
2.4软件实现设计资源分配在FDMA/DAMA卫星通信网络管理系统中是一个相对独立的功能,可以设计成一个通用化的软件模块嵌入到网络管理系统,实现对资源分配策略的控制。资源动态分配软件模块化组成方案如图3所示,包含以下软件模块:①分配计算模块;②链路计算模块;③策略处理模块;④接口适配模块。分配计算模块控制资源分配计算过程,依资源使用现状分配频率带宽资源。链路计算模块为分配计算模块提供对链路性能计算的功能。策略处理模块按照策略规则确定最终资源分配结果。接口适配模块向FDMA/DAMA卫星通信网络管理系统提供接口,从网络管理系统取得具体业务的资源请求,并将资源分配结果返回给网络管理系统。基础数据支持资源动态分配软件功能的实现,包括地球站信息、卫星覆盖信息、雨衰数据和策略规则等。基础数据可以存储在数据或磁盘文件中,在资源动态分配软件初始化时读入内存使用。资源动态分配软件模块化的组成结构使软件具有通用化特点,仅需适当修改接口适配模块,就可以将软件接入到不同的FDMA/DAMA卫星通信网络管理系统。资源动态分配软件的具体形式可以是DLL动态库或EXE执行文件,与网络管理系统接口可以是API函数或SOCKET网络接口。
3系统测试验证
原某FDMA/DAMA体制卫星通信系统,设计使用固定的调制编译码方式,功率采用建设初期预估值(不考虑雨衰)。按本文资源分配策略对该系统进行优化改造,并对改造前后系统进行测试统计。定义一段时间T内的系统带宽利用率R为每次呼叫成功链路占用带宽量与占用时间乘积的累加和,与系统管理带宽总量B总与测量期时间T乘积的比值。分别测试统计优化前后实际系统运行10天时间内的呼叫情况及资源占用情况,统计数据如表1所示。测试统计数据显示,系统一次呼叫成功率(呼通率)从原系统的0816优化后提高到0906,带宽利用率从0388提高到0482,均有较大程度提高。测试验证了本文资源分配策略优化方案的有效性和科学性,在保证系统可靠运行的前提下,提高了呼通率、带宽利用率。
4结束语
本系统采用LabWindowsCVI来进行设计与开发,系统软件框图如图2所示。软件系统由监控界面、参数设置模块、数据采集模块、程控命令模块、数据处理模块、图像显示模块和数据存储模块组成。各模块功能通过LabWindowsCVI进行模块化设计。
计算机通过GPIB通信接口对AV4033的功能控制是通过程控仪器标准指令来实现的,程控指令是可以对频谱仪进行远端控制的一组特殊格式串,包括仪器设置、通道配置、数据扫描方式、控制输出、读取数据、状态报警、接口设置等指令集。这些指令的发送均是字符串形式,所有的频谱仪命令都必须符合特殊的语法规则,在应用高级语言进行编程时,程控指令一般是作为一个独立的参数在调用函数中出现,这类针对远程控制的函数随GPIB接口和采用的高级语言的不同而不同,但其程控指令是相同的,AV4033系列频谱仪的语法命令图如图3所示。本文利用程控指令和频谱仪进行通信时,选择LabWindowsCVI自带的GPIB函数库,可以方便地进行程控命令发送和数据读取操作。
2应用举例
卫星固定通信台站天线口径大波束窄,对天线伺服系统的自动跟踪性能要求较高,为确保通信效果,需定期测量卫星天线系统的自动跟踪性能,传统的测试方法需用频谱仪在射频方舱内测试,且测试结果保持和记录都不方便,利用本系统可以方便进行远程测试,而且可以将测试结果保存在数据存储单元中,方便后续查询和参考。卫星天线跟踪性能测试流程如下:(1)调整卫星天线使其对准通信卫星;(2)在监控主机上按下述过程设置频谱仪;a)按卫星信标频率设置频谱仪中心频率,设置SPAN为0到100KHzb)根据信标信号的电平变化范围设置Sacle/DIV,以使测量过程中的载波电平变化始终落在频谱仪的可显示电平范围内c)根据信标频率稳定度,选择尽可能窄的RBWd)根据载波的峰值频率和功率,调整频谱仪的中心频率和参考电平e)利用键盘调窄SPAN,重复4f)重复5,将SPAN调整到最小g)将SPAN置0,使载波显示谱线作水平运动h)输入扫描时间,确定扫描长度(3)用手控方式调偏卫星天线的方位角和俯仰角,频谱仪显示谱线的电平将随天线偏离卫星而下降(4)启动天线自动跟踪功能,观察卫星信标电平随时间的变化,记录自动跟踪天线的对星过程以及跟踪速度和精度(5)存储记录数据,重复3、4步骤,多记录几次测试结果,分析卫星天线自动跟踪性能。
3结束语
卫星通信技术则是由使用围绕地球的同步/非同步的通信卫星来做一个中间站进行一种远距离通信的实现方式。它本质上是由微波通信以及航天技术之上发展新颖的无线通信的技术,而卫星通信技术自身采用的无线电频率为微波频段。从而产生的卫星通信技术,它的主要特点就是传输的距离远,且频率高。也因为卫星通信频带宽,且频率高,变化范围大的重要优点,卫星通信技术在我国的军事建设和经济发展等方面都具有深远的意义。
我国的现今卫星通信技术的发展在扩展新的频段,加强先可用的频段的利用率以及现在公用干线的通信网都应该一步步转向跟随宽带化的发展趋势,能够准确地利用卫星通信技术来建立我国的卫星宽带业务以及数字化通信网络。所以对于卫星通信网技术而言应该逐渐的走向小型化的、智能化的未来方向。从目前我国的计算机科技的水平来看,假设把设备功能全部换由软件来进行操作实现,那么由于软件的特点也就是需要按照一条条的指令来运行,就算我们采用多处理器的方式来进行协助共同运算,也没有办法真正保障高频率情况下的处理能够及时有效,也使得软件无线电技术在卫星通信领域中的使用范围明显受到限制。基于以上原因,以下设计想法是为了能够让软件无线电技术能真正应用在卫星通信方面。
首先我们所有的设备都需要经过模块化处理,各个模块分开保证控制功能,以及各个模块之间的高速数据的交换问题。而信道设备以及接口设备的内部结构信道设备包括调制解调器、信道的编译码器和置乱器等,在总的CPU的控制之下,信道设备的具体参数值可以做到由软件来进行定义处理。而将无线射频的设备、信道设备和接口设计在卫星通信技术中也是十分关键的存在。再来考虑到了卫星通信技术有着多址方式,业务类型广以及其频率高且变化区域广等各种优点,在信道设备和接口设备的设计选用模块化的设计构思。各个模块应该能够各自拥有能定义自身功能的各个软件接口,而选用的软件接口更应保证标准化以方便各个不同供应商的生产。然后在各个模块的具体设计上面,也要根据具体运算量大小,选择不同的软件接口功能。再来根据具体的各类应用环境,更加灵活地修改和使用数据帧结构,并且保证以软件协同硬件两相结合的方式实现。最后就是设备功能和系统功能的定义要靠网络管理系统来最终实现。
伴随着因特网大面积普及及现在移动网络的迅猛发展,卫星通信技术绝对会在未来迎来更进一步的发展机会。现在我国逐渐采用自主研发的通信卫星为主体,来建立完善的卫星通信系统。软件无线电技术作为一个可利用在卫星通信方面的技术来说,也一定会伴随卫星通信的脚步,成为加速我国科技发展的重要技术。
2结语
关键词:移动雷达;应急通信;卫星通信
Thesatellitecommunicationofmobilemeteorologicalradarsystem
DouYiwen(BeijingmeteorologicalBureau,Beijing100089)
Abstract:Inordertotranslatemobileradar'sdatatoserverofBeijingmeteorologicalBureau.Thistextcomparedadvantagesanddisadvantagesofwirelesscommunication'smethod.Theaboveanalysisnaturallyleadsustothesystemofthesatellitecommunicationcreated.Theresultsshows:thesystemcansatisfythecommunicationrequirementofmobileradar.Thesystemhasagoodexampleforcreatingemergencycommunication.
Keywords:Mobileradar;Emergencycommunication;Satellitecommunication
1引言
随着气象信息自动采集的不断发展,自动采集数据越来越成为气象信息采集的主流。新一代天气雷达系统,可以进行较大范围降水的定量估测,获取降水和降水云体的风场信息等,在短时灾害性天气预报和应急服务中发挥巨大的作用,特别是对风害和冰雹相伴随的灾害性天气的监测和预警[1]。为了把移动雷达实时数据传输到北京市气象局,通信方式的选择成为信息采集的重要环节,目前气象应用通信方式有很多种。如CDMA/GPRS/3G、北斗卫星、无线局域网(WLAN)、专线等,还有下面要讨论的基于亚洲卫星通信线路。移动雷达对通信的主要需求是网络质量可靠;带宽至少要达到双向2Mbps;移动雷达采集数据地点不固定。如何满足移动雷达的要求是本系统需要解决的问题。
2通信方案的设计
2.1气象信息传输通信方式对比分析
目前气象应用通信方式有很多种,如CDMA/GPRS/3G、北斗卫星、无线局域网(WLAN)、专线等。由于天气雷达数据量大,要求网络质量高,固定地点天气雷达的数据传输一般都是利用专线传输。表1是常用无线通信方式传输气象数据的对比。无线局域网传输距离短,安全性差,一般只能作为数据的传输中继;北斗卫星是我国自主研制的卫星导航定位系统,安全性高,用于传输字节少如自动站等的数据比较适合;CDMA/GPRS,运行成本低,但是其通信速率要求低,不能满足雷达数据传输要求;3G下行速率理论值是2.8Mbps,实际传输效果没有达到此值,而且网络质量与基站覆盖有很大关系。天气雷达如果地点固定,而且在市内或县城内,使用专线较好,有充足的时间建立专线的话,应用2Mbps专线传输雷达数据是一种好的选择。卫星通信作为天气雷达数据的备份是一种最佳选择,因为它的网络带宽、移动性、实时性、开通周期等方面都能满足要求。
2.2卫星通信特点分析
卫星通信是以人造通信卫星作为中继的一种微波通信方式。卫星通信的优点:通信距离远,建设成本与通信距离无关;不受地理环境影响;广播方式,卫星覆盖区域内的任何点可实现通信;通信容量大;可自发自收。卫星通信的缺点:信号极弱(毫微微瓦级),对技术和设备的要求较高;时延;多址问题;存在单一故障点;雨衰。
3卫星通信的应用
综合考虑雷达数据传输的速率在2Mbps以上,支持视频、移动、应急等方面的要求,选择亚洲卫星通信是本系统的最佳选择。本系统采用等效口径为0.95m的偏馈型椭圆抛物面天线,天线面使用四片碳化纤维面板组成。天线系统工作在Ku频段。天线控制系统内置高性能信标接收机,可在5分钟内自动对星,通过对中卫一号、亚洲二号、亚洲三号、亚洲四号四个卫星两种极化方式的上百次测试,寻星准确率100%,配置40W功放时具备传输速率大于等于3Mbps,保证传输速率大于等于2.048Mbps,完全具备传输多路话音、2路视频图像、2路数据的业务能力。图1就是本系统建立的移动雷达卫星网络结构图。从图中可以看到移动雷达系统采集数据到数据处理服务器(192.168.3.5/24)或模拟语音经过语音网关,通过网络交换机和IP加速器(192.168.3.3/24),由调制设备(192.168.3.2/24)调制信号传输到卫星,再由卫星接收站传送到地面,通过调制解调器(192.168.3.10/24)和IP加速器(192.168.3.11/24)指向路由器(192.168.3.1/24,192.168.2.1/24),由路由器转发到防火墙(192.168.1.1/24),在防火墙上作语音网关和数据服务器NAT地址转换。最后在服务器(192.168.2.254/24)上可以看到雷达系统上传的数据,在电话终端上可以进行语音通话。这个网络是双向的,不仅数据可以双向传输,而且在北京市气象局可以监控到卫星通信系统的状态。本系统因为经费有限,建立了电话通信模式,并留有视频接口。
图1移动雷达卫星网络结构图
4结论
本系统采用的亚洲卫星通信系统具有一键对星功能,天线能够自动展开/收藏,自动定位、自动捕获和自动跟踪卫星,5分钟内完成寻星任务并建立卫星通讯链路。在传输速率、网络安全、天线对星时间、网络接口、应急通信等方面都能满足实时雷达传输数据的要求。
致谢:国家气象信息中心网络室和视频与卫星室、西安瑞兴通信有限公司、北京市人工影响天气办公室、北京市气象信息中心、北京市大气探测技术保障中心在系统建设中给予的大力支持。
参考文献
[1]张海虹,钱建伟.新一代多普勒天气雷达简介[J].科技咨询,2009(18):205-205.
[2]刘霁宇.北斗卫星SCADA通信组网方案[J].黑龙江科技信息,2009(24):50-50.
[3]谈振辉,乔晓瑜.短距离低功率无线通信接入系统[J].2009,15(4):39-43.
[4]罗艳碧,张令通.无线通信网络发展趋势研究与分析[J].科技创新导报,2009(19):238-237.
[5]周治宇,陈豪.未来全球宽带无线通信系统构想[J].空间电子技术,2009(2):1-7.
[6]闵士权.关于构建国家应急卫星通信网的思路[J].航天器工程,2009,18(3):1-7.
[7]周任飞.基于TD-SCDMA的雷达情报数据无线传输研究[J].信息系统工程,2009,9:70-73.
[8]邓玉芬,张博,沈明,等.基于北斗卫星的海洋测量数据传输系统[J].海洋测绘,2009,29(4):67-69.
[9]王毳,赵齐.卫星宽带IP技术研究[J].无线电通信技术,2009,35(4):16-19.
[10]徐江,杨凡,王视环.卫星通信多址接入方式的比较和分析[J].电力系统通信,2004(10):49-53.
征稿启事
《网络与信息》杂志是经国家科技部和国家新闻出版总署批准的国内外公开发行的计算机网络应用类专业媒体,CNKI中国学术期刊全文数据库收录期刊、中国学术期刊综合评价数据库统计源期刊、中国核心期刊(遴选)数据库收录期刊、ASPT来源刊、中文科技期刊数据库全文收录期刊、全球中文电子期刊协会入编期刊、2007及2008年网络传播分类阅读国内外TOP10期刊。
《网络与信息》为月刊,每月9日出刊。大16开全彩色精美印刷,每期定价10元,邮发代号82-58。
国内统一连续出版物号:CN21-1380/TP
国际标准连续出版物号:ISSN1008-0252
主要刊登计算机技术、网络与通信技术、信息化建设、信息管理、工程评估、项目咨询与管理、电子商务、会计电算化、计算机辅助教学及管理、网站开发及管理、无线网络技术及应用、信息安全技术等方面的论文及文章。
投稿须知
1.来稿严禁抄袭,文责自负,切勿一稿多投。凡在本刊发表之作品,如双方无特殊约定,一经发表自动视为作者已将该作品的著作权全部转让给《网络与信息》杂志社。
本刊已被CNKI中国学术期刊全文数据库、中国学术期刊综合评价数据库、中国核心期刊(遴选)数据库、中文科技期刊数据库、龙源期刊网、全球中文电子期刊协会收录,其作者文章著作权使用费与本刊稿酬一次性给付。如作者不同意文章被收录,请在来稿时向本刊声明,本刊将做适当处理。本刊亦有权不予刊登不同意收录的论文。
2.文稿要求层次分明、条理清晰、论点明确、数据可靠、文字准确简练。
3.文稿署作者真实姓名、工作单位、电话、通信地址、邮政编码和电子信箱。
4.来稿请按标题(不超过20字,必要时可加副标题)、作者、单位(外加圆括号)、摘要(不超过150字)、关键词(3-5个)、正文和参考文献的顺序撰稿。若是基金项目,请注明课题全称和批准文号。
5.本刊有权对拟用文稿作文字上的修改、删节处理,对图表有权按规范、标准等要求作技术处理;凡不同意者,请在来稿时申明。
6.杂志每版的字数为2200左右(不包括图表,如有图表则字数酌减)。
7.来稿请注明“投稿《网络与信息》”字样,并以Word格式发送到:,同时注明投稿者姓名、单位、邮编和地址、电话、E-mail,以便联系和邮寄样刊。
8.编辑部收到作者稿件后,5天内给作者反馈稿件处理情况。
联系方式:
电话:024-31318681
论文摘 要:消防通信规划是城市消防规划中的重要内容,本文论述了目前我国消防通信规划的现状及编制中存在的问题,详细介绍了消防部队信息通信体系建设的现状和未来发展趋势,分析了当前消防通信规划编制和实施中的重点问题,为消防通信规划编制工作提供参考建议。
1、前言
随着我国应急救援体系的发展,消防部队已逐步成为城市主要的应急救援力量,广泛参与到自然灾害、事故灾难、社会安全事件等公共突发事件的应急救援处置中,并承担了部分非紧急的社会救助任务。消防通信是消防部队开展灭火救援行动的根本保障,是未来城市应急救援体系中信息通信的主要组成部分。美国911恐怖袭击事件中警察和消防员未建立统一的通信手段而造成的惨痛教训凸现出城市消防通信规划的重要性,所以在城市消防规划编制过程中合理规划和部署消防通信的建设和发展,在规划方针的指导下逐步建立和完善城市消防通信体系,是消防部队在执勤备战和灾害救助中全面发挥应急救援能力的根本保障。
2、消防通信规划的现状
消防通信规划的编制主要由城市规划设计单位和消防部门共同完成。由于城市建设和通信技术的高速发展,各地消防通信系统也在不断的扩展和升级,消防通信建设所依据的《消防通信指挥系统设计规范》等规范文件的要求与目前的应用现状相差较大,内容滞后且不全面,对规划编制的指导意义不够充分,一些通信指挥系统虽已达到火灾报警、火警受理、灭火救援通信调度等应用的基本要求,实际中却不能满足新形势下消防部队应急救援通信指挥的需求。并且由于消防通信规划的专业性较强、技术要求高、涉及的领域广泛繁多、基础设施建设发展不均衡等方面的原因,使消防通信规划的编制工作难以有效和深入开展,造成部分城市消防通信规划的内容空泛、缺乏深度、可操作性较差,不能切实有效的指导城市消防通信建设和发展。此外我国的应急管理体系建设起步较晚,部分消防通信规划内容仅片面集中于火灾事故方面,缺乏城市应急救援总体发展的综合考虑,造成消防通信建设与城市应急救援体系建设脱节。
3、消防通信建设现状
消防部队的信息通信建设按照公安部消防局信息化建设的总体规划部署和具体要求展开,实施主要依靠当地政府财政拨款、当地公安部门和电信部门的通信网络建设以及消防部队自身的信息化装备建设来完成,目前各级消防部队均已形成了相对独立的消防信息通信体系。以下将从基础通信网、消防通信指挥中心、消防综合业务信息系统等几个消防规划中涉及的重点方面具体展开论述。
3.1 基础通信网络
基础通信网络是消防通信和城市应急通信的基础设施,网络的建设直接决定了消防部队的信息应用能力,所以基础通信网络的发展是消防通信规划的重点。目前消防部队依托公安信息网、公众电信网、无线超短波通信网、卫星通信网等多种通信网络传输语音、图像和数据,形成了一套较为完整的消防通信网络体系,以下归纳为计算机通信网、有线通信网、无线通信网、卫星通信和短波通信网等几部分介绍。
3.1.1 计算机通信网
目前消防部队各级单位均已接入了以公安信息网为基础的计算机通信网,这一网络是消防部队数据通信的基础网络,承担灭火救援指挥调度、消防综合信息管理等大部分信息系统的数据传递,并可实现IP语音电话和视频传输等多媒体应用。为保证调度指挥等重要信息的可靠传递,部分节点间还建立了指挥调度专线和备份网路。在消防通信规划中应按照当地公安信息网和消防部队自身信息通信的建设情况以及各级消防部队的信息通信需求,合理规划消防计算机通信网,确保网络的全面接入和可靠畅通。
3.1.2 有线通信网
有线通信网包括报警电话接入和报警信息查询专线、指挥调度专线、办公市话网和公安专线网等通信网络,是城市各级消防队站获知灾害事故发生和传递调度指挥命令的基础信息通信网络。其中报警电话接入专线是用于接受公用电话网的报警和城市消防远程监控系统的火警信号及相关信息的通信线路。报警信息查询专线是用于获取报警电话的位置、装机人身份等信息的数据专线。指挥调度专线是用于连接火警受理终端、各消防站以及各相关联动单位的通信专线。办公市话网和公安专线网是消防部队内部各级部门之间和与公安机关之间通信的办公电话网。有线通信网是传统的消防通信基础网络,目前各城市基本完成了消防有线通信网的建设,在消防通信规划中应以未来网络容量和性能的改进及发展等内容为主,确保消防有线通信网的完备可靠,保证消防部队对灾害事故快速响应和出动调集命令的有效传达。
3.1.3 无线通信网
无线通信是消防部队在灭火救援展开和进行过程中用于灾害现场信息传递的主要通信方式。目前各级消防部队普遍配备了用于现场通信的350MHz超短波无线常规通信设备,并利用转信台扩展网络覆盖的范围。大部分城市还依托当地公安无线集群通信系统建立了消防集群通信网,北京、上海等地还建设了具备网络容量大、通话质量高、应用功能多等特点的数字集群通信网。消防部队以超短波无线通信为基础构成了由城市消防通信指挥网、现场指挥网和灭火救援战斗网组成的三级无线通信网络,并且利用GPRS、CDMA、3G等公众移动通信技术以及超短波、微波数传设备等多种手段建立无线数据通信网,用于传输灭火救援现场的图像和数据信息。此外公众移动电话网也是消防部队重要的辅助通信手段。合理规划城市消防无线通信网,构建可靠的无线通信体系是消防部队在灭火救援过程中战斗力有效发挥的根本保证。
3.1.4 卫星通信和短波通信
在地震、泥石流等大型自然灾害救援或野外应急救援中,依赖中继站的常规无线通信网往往会受到传输距离和范围、电力供给、极端环境影响等方面的局限,不能满足消防部队信息通信的需要,此时卫星通信和短波通信等应急通信方式成为救援现场最有效的信息通信手段。目前公安部消防局已对消防卫星通信体系做出总体的规划和部署,并推进消防卫星通信网的建设,一些城市的消防部队先后配备了“动中通”卫星通信设备、便携卫星站、短波电台等应急通信装备,在玉树地震和舟曲县特大泥石流等自然灾害救助和部分大型跨区灭火应急救援中显现出极强的应急通信保障能力。消防卫星通信和短波通信是应急通信体系中的重要部分,是城市有效抵御极端灾害的基础保障设施。
3.2 消防通信指挥中心
消防通信指挥中心是消防部队信息通信和作战指挥的中枢,具有受理报警、灭火救援指挥调度、信息情报支持等功能,负责火灾及其它灾害事故的接处警受理和消防救援力量的调度指挥。按照公安部“三台合一”的要求,目前我国大部分地级以上城市均已设置了包括治安、交通、消防在内的接处警指挥中心,建立了统一的集中受理和多部门联动的接处警平台,一些城市还进一步将医疗救护、安全生产等应急救援相关的领域纳入其中,并形成城市综合应急救援指挥中心。部分通信指挥中心还具备使用手机定位技术和GIS技术确定报警人的位置、使用短信平台受理报警、即时监控救援力量的行动状态、通过图像监控系统获取灾害发生区域的现场状况和交通状况等功能。在消防通信规划中应针对本地的实际情况,综合考虑未来城市应急救援体系的发展,确定消防通信指挥中心的建设发展方案。
移动消防通信指挥中心是设置在专门的通信指挥车中并集成了消防通信指挥相关功能的移动指挥平台,通常包括调度指挥台、辅助决策信息系统、多种无线通信系统、火场图像系统、视频会议系统、现场广播、供电及照明等其他辅助设备,是众多救援力量参与的复杂灾害事故处置现场中通信指挥的关键因素。按照城市规模和应急救援体系的建设情况,配置不同功能组件和不同移动及通信能力的消防通信指挥车是消防通信规划中的重要问题。
3.3 消防综合业务信息系统
消防综合业务信息系统是包括了灭火救援指挥、消防监督管理、部队管理和消防公众服务等多种应用功能的信息系统集成,是消防通信中应用软件的主要部分。按照消防部队信息化建设总体规划和部署,各级消防部队将逐步推广和应用包括消防基础数据平台、消防公共服务平台及各消防综合业务信息系统等部分的一体化业务平台。目前各地统一按照公安部消防局部署方案的要求,逐步开展了消防监督管理、部队管理和公众服务等信息系统的推广和应用,而对于消防基础信息平台、灭火救援指挥系统等面向灭火救援指挥和管理的信息系统,因受到基础信息数据库和通信基础设施建设情况的局限,各地的应用程度差异较大。在消防通信规划中,应将建立和完善城市地理信息、火灾风险信息、危险源信息、水、电、生产、医疗救护信息等内容的城市应急救援基础信息数据库,以及按照城市应急救援的具体需求开展消防指挥调度系统、消防指挥决策系统、重大危险源评估系统、模拟演练等系统的应用纳入到消防通信规划中重点建设。
4、未来发展趋势
随着信息通信技术的高速发展,众多高性能的通信技术将逐步应用于消防通信领域中,不断推进消防通信的发展。目前第四代移动通信技术已进入实验性应用阶段,在不久的将来势必将成为消防通信体系中高质量传输数据信息的重要手段。信息通信硬件设备的发展,使信息通信装备的通信性能和移动性能不断提升,设备成本将更加低廉,未来随着多媒体单兵信息装备的深入应用,使灾害救援现场各级指战员具备强大的信息通信能力,数字集群通信、卫星通信、微波数据通信等通信设备也将广泛装备到各级消防部队中,逐步成为普遍配备的常规通信手段。随着城市灾害联网监控系统的建设,消防通信指挥中心可以智能感知火灾等灾害事故的发生并及时获取相关灾情信息,极大的提高消防部队对灾害事故响应能力。此外物联网、遥感技术、传感器技术、Ad Hoc网络等应用于消防领域,可以即时、全面、深入的获得灭火和应急救援现场的灾情状况和救援实力状况,实现天空地一体的消防通信体系和数字化指挥调度体系。在消防通信规划中,应结合未来通信新技术的发展,合理规划和部署城市消防通信建设。
论文摘 要:消防通信规划是城市消防规划中的重要内容,本文论述了目前我国消防通信规划的现状及编制中存在的问题,详细介绍了消防部队信息通信体系建设的现状和未来发展趋势,分析了当前消防通信规划编制和实施中的重点问题,为消防通信规划编制工作提供参考建议。
1、前言
随着我国应急救援体系的发展,消防部队已逐步成为城市主要的应急救援力量,广泛参与到自然灾害、事故灾难、社会安全事件等公共突发事件的应急救援处置中,并承担了部分非紧急的社会救助任务。消防通信是消防部队开展灭火救援行动的根本保障,是未来城市应急救援体系中信息通信的主要组成部分。美国911恐怖袭击事件中警察和消防员未建立统一的通信手段而造成的惨痛教训凸现出城市消防通信规划的重要性,所以在城市消防规划编制过程中合理规划和部署消防通信的建设和发展,在规划方针的指导下逐步建立和完善城市消防通信体系,是消防部队在执勤备战和灾害救助中全面发挥应急救援能力的根本保障。
2、消防通信规划的现状
消防通信规划的编制主要由城市规划设计单位和消防部门共同完成。由于城市建设和通信技术的高速发展,各地消防通信系统也在不断的扩展和升级,消防通信建设所依据的《消防通信指挥系统设计规范》等规范文件的要求与目前的应用现状相差较大,内容滞后且不全面,对规划编制的指导意义不够充分,一些通信指挥系统虽已达到火灾报警、火警受理、灭火救援通信调度等应用的基本要求,实际中却不能满足新形势下消防部队应急救援通信指挥的需求。并且由于消防通信规划的专业性较强、技术要求高、涉及的领域广泛繁多、基础设施建设发展不均衡等方面的原因,使消防通信规划的编制工作难以有效和深入开展,造成部分城市消防通信规划的内容空泛、缺乏深度、可操作性较差,不能切实有效的指导城市消防通信建设和发展。此外我国的应急管理体系建设起步较晚,部分消防通信规划内容仅片面集中于火灾事故方面,缺乏城市应急救援总体发展的综合考虑,造成消防通信建设与城市应急救援体系建设脱节。
3、消防通信建设现状
消防部队的信息通信建设按照公安部消防局信息化建设的总体规划部署和具体要求展开,实施主要依靠当地政府财政拨款、当地公安部门和电信部门的通信网络建设以及消防部队自身的信息化装备建设来完成,目前各级消防部队均已形成了相对独立的消防信息通信体系。以下将从基础通信网、消防通信指挥中心、消防综合业务信息系统等几个消防规划中涉及的重点方面具体展开论述。
3.1 基础通信网络
基础通信网络是消防通信和城市应急通信的基础设施,网络的建设直接决定了消防部队的信息应用能力,所以基础通信网络的发展是消防通信规划的重点。目前消防部队依托公安信息网、公众电信网、无线超短波通信网、卫星通信网等多种通信网络传输语音、图像和数据,形成了一套较为完整的消防通信网络体系,以下归纳为计算机通信网、有线通信网、无线通信网、卫星通信和短波通信网等几部分介绍。
3.1.1 计算机通信网
目前消防部队各级单位均已接入了以公安信息网为基础的计算机通信网,这一网络是消防部队数据通信的基础网络,承担灭火救援指挥调度、消防综合信息管理等大部分信息系统的数据传递,并可实现ip语音电话和视频传输等多媒体应用。为保证调度指挥等重要信息的可靠传递,部分节点间还建立了指挥调度专线和备份网路。在消防通信规划中应按照当地公安信息网和消防部队自身信息通信的建设情况以及各级消防部队的信息通信需求,合理规划消防计算机通信网,确保网络的全面接入和可靠畅通。
3.1.2 有线通信网
有线通信网包括报警电话接入和报警信息查询专线、指挥调度专线、办公市话网和公安专线网等通信网络,是城市各级消防队站获知灾害事故发生和传递调度指挥命令的基础信息通信网络。其中报警电话接入专线是用于接受公用电话网的报警和城市消防远程监控系统的火警信号及相关信息的通信线路。报警信息查询专线是用于获取报警电话的位置、装机人身份等信息的数据专线。指挥调度专线是用于连接火警受理终端、各消防站以及各相关联动单位的通信专线。办公市话网和公安专线网是消防部队内部各级部门之间和与公安机关之间通信的办公电话网。有线通信网是传统的消防通信基础网络,目前各城市基本完成了消防有线通信网的建设,在消防通信规划中应以未来网络容量和性能的改进及发展等内容为主,确保消防有线通信网的完备可靠,保证消防部队对灾害事故快速响应和出动调集命令的有效传达。
3.1.3 无线通信网
无线通信是消防部队在灭火救援展开和进行过程中用于灾害现场信息传递的主要通信方式。目前各级消防部队普遍配备了用于现场通信的350mhz超短波无线常规通信设备,并利用转信台扩展网络覆盖的范围。大部分城市还依托当地公安无线集群通信系统建立了消防集群通信网,北京、上海等地还建设了具备网络容量大、通话质量高、应用功能多等特点的数字集群通信网。消防部队以超短波无线通信为基础构成了由城市消防通信指挥网、现场指挥网和灭火救援战斗网组成的三级无线通信网络,并且利用gprs、cdma、3g等公众移动通信技术以及超短波、微波数传设备等多种手段建立无线数据通信网,用于传输灭火救援现场的图像和数据信息。此外公众移动电话网也是消防部队重要的辅助通信手段。合理规划城市消防无线通信网,构建可靠的无线通信体系是消防部队在灭火救援过程中战斗力有效发挥的根本保证。
3.1.4 卫星通信和短波通信
在地震、泥石流等大型自然灾害救援或野外应急救援中,依赖中继站的常规无线通信网往往会受到传输距离和范围、电力供给、极端环境影响等方面的局限,不能满足消防部队信息通信的需要,此时卫星通信和短波通信等应急通信方式成为救援现场最有效的信息通信手段。目前公安部消防局已对消防卫星通信体系做出总体的规划和部署,并推进消防卫星通信网的建设,一些城市的消防部队先后配备了“动中通”卫星通信设备、便携卫星站、短波电台等应急通信装备,在玉树地震和舟曲县特大泥石流等自然灾害救助和部分大型跨区灭火应急救援中显现出极强的应急通信保障能力。消防卫星通信和短波通信是应急通信体系中的重要部分,是城市有效抵御极端灾害的基础保障设施。
3.2 消防通信指挥中心
消防通信指挥中心是消防部队信息通信和作战指挥的中枢,具有受理报警、灭火救援指挥调度、信息情报支持等功能,负责火灾及其它灾害事故的接处警受理和消防救援力量的调度指挥。按照公安部“三台合一”的要求,目前我国大部分地级以上城市均已设置了包括治安、交通、消防在内的接处警指挥中心,建立了统一的集中受理和多部门联动的接处警平台,一些城市还进一步将医疗救护、安全生产等应急救援相关的领域纳入其中,并形成城市综合应急救援指挥中心。部分通信指挥中心还具备使用手机定位技术和gis技术确定报警人的位置、使用短信平台受理报警、即时监控救援力量的行动状态、通过图像监控系统获取灾害发生区域的现场状况和交通状况等功能。在消防通信规划中应针对本地的实际情况,综合考虑未来城市应急救援体系的发展,确定消防通信指挥中心的建设发展方案。
移动消防通信指挥中心是设置在专门的通信指挥车中并集成了消防通信指挥相关功能的移动指挥平台,通常包括调度指挥台、辅助决策信息系统、多种无线通信系统、火场图像系统、视频会议系统、现场广播、供电及照明等其他辅助设备,是众多救援力量参与的复杂灾害事故处置现场中通信指挥的关键因素。按照城市规模和应急救援体系的建设情况,配置不同功能组件和不同移动及通信能力的消防通信指挥车是消防通信规划中的重要问题。
3.3 消防综合业务信息系统
消防综合业务信息系统是包括了灭火救援指挥、消防监督管理、部队管理和消防公众服务等多种应用功能的信息系统集成,是消防通信中应用软件的主要部分。按照消防部队信息化建设总体规划和部署,各级消防部队将逐步推广和应用包括消防基础数据平台、消防公共服务平台及各消防综合业务信息系统等部分的一体化业务平台。目前各地统一按照公安部消防局部署方案的要求,逐步开展了消防监督管理、部队管理和公众服务等信息系统的推广和应用,而对于消防基础信息平台、灭火救援指挥系统等面向灭火救援指挥和管理的信息系统,因受到基础信息数据库和通信基础设施建设情况的局限,各地的应用程度差异较大。在消防通信规划中,应将建立和完善城市地理信息、火灾风险信息、危险源信息、水、电、生产、医疗救护信息等内容的城市应急救援基础信息数据库,以及按照城市应急救援的具体需求开展消防指挥调度系统、消防指挥决策系统、重大危险源评估系统、模拟演练等系统的应用纳入到消防通信规划中重点建设。
4、未来发展趋势
随着信息通信技术的高速发展,众多高性能的通信技术将逐步应用于消防通信领域中,不断推进消防通信的发展。目前第四代移动通信技术已进入实验性应用阶段,在不久的将来势必将成为消防通信体系中高质量传输数据信息的重要手段。信息通信硬件设备的发展,使信息通信装备的通信性能和移动性能不断提升,设备成本将更加低廉,未来随着多媒体单兵信息装备的深入应用,使灾害救援现场各级指战员具备强大的信息通信能力,数字集群通信、卫星通信、微波数据通信等通信设备也将广泛装备到各级消防部队中,逐步成为普遍配备的常规通信手段。随着城市灾害联网监控系统的建设,消防通信指挥中心可以智能感知火灾等灾害事故的发生并及时获取相关灾情信息,极大的提高消防部队对灾害事故响应能力。此外物联网、遥感技术、传感器技术、ad hoc网络等应用于消防领域,可以即时、全面、深入的获得灭火和应急救援现场的灾情状况和救援实力状况,实现天空地一体的消防通信体系和数字化指挥调度体系。在消防通信规划中,应结合未来通信新技术的发展,合理规划和部署城市消防通信建设。
5、问题和建议
消防通信的发展应与城市应急救援体系各方面的发展情况及相关领域的具体情况协调统一。由于通信技术的发展速度较高,消防通信规划编制中应准确预见未来城市消防通信的需求,在首先确立适合消防通信发展总体框架基础上灵活的选择兼容性好、生命力强并具备开放和统一标准的技术和设备,有效避免重复建设,并尽量降低系统升级换代和改造的成本。发展中还应重视基础通信设施建设,切忌盲目追求新技术和热点技术。可靠度和抗灾能力是消防通信系统中不能忽视的问题,应充分考虑应急状况下缺乏电源供给、设备损坏、大量用户占用等特殊情况的系统运行,合理划分系统中紧急与非紧急应用的分工、采取冗余和备份设计、增设应急状态的专用模式等手段提高系统可靠程度和对灾害的抗击能力。此外消防通信系统设计中还应充分考虑到互联网、公安网、公众话务网、政务网等多个独立通信网络中各种系统间数据的融通,设计中应尽量将系统各具体应用建立在统一的平台和网络中,并采用一些安全稳妥的连接手段,共享和交换各网络间的信息数据。
参考文献
[1] gb50313.防通信指挥系统设计规范[s].
[2] 张昊.论重特大灾害消防应急通信技术[j].消防科学与技术,2011,30(2):132-136
[3] 莫晓漪.现代城市消防规划的若干问题[j].广西民族大学学报,2007,(8):117-121.