时间:2022-06-04 11:15:38
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇水利技术论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
1.概述
我国地处世界上两个最大地震集中发生地带——环太平洋地震带与欧亚地震带之间,地震较多,大多是发生在大陆的浅源地震,震源深度在20km以内。位于青藏高原南缘的川滇地区,主要发育有北西向的鲜水河-安宁河-小江断裂、金沙江-红河断裂、怒江-澜沧江断裂和北东向的龙门山-锦屏山-玉龙雪山断裂等大型断裂带[1]。该区新构造活动剧烈,绝大多数属构造地震,地震活动频度高、强度大,是中国大陆最显著的强震活动区域[2]。
而西南地区蕴藏了我国68%的水力资源,水利工程较多,且主要集中在川滇地区。据
2005年数据,四川省有大中小型水库约6000余座[3]。2008年5月12日的四川省汶川大地震,初步统计,已导致803座水库出险,受损的大型水库有紫坪铺电站和鲁班水库,中型水
库36座,小一型水库154座,小二型水库611座[3]。此外,地震还致使湖北和重庆地区各
79座水库出现险情[4,5]。为保证水利工程的安全运行,地震之后及时对水利工程进行检测,并对受损工程进行监
测和修复是必要的。有关震灾受损水利工程修复方面的文献不多,散见于各种期刊或研究报告,为便于应用参考,本文搜集、筛选了一些震灾受损水利工程的案例,并对一些实用技术进行了介绍。
2.地震对水利工程的危害
由于地震烈度、地震形态以及水库本身工程质量的不同,地震对于水利工程的危害也有所区别。高建国[6]对我国因地震受损水利工程进行分类整理,认为水库坝体险情主要可分为
3级:1级,一般性破坏,不产生渗漏;2级,严重性破坏,坝体开裂渗漏;3级,垮坝(崩塌),水库水全部流走。
我国因地震引起的水库垮坝并不多见,总结国内外地震对水利工程的危害,主要有以下几种形式:
2.1坝体裂缝
地震作为外力荷载将会导致大坝尤其是土石坝整体性降低,防渗结构破坏,引起大量裂缝。地震会产生水平和垂直两个方向的运动,并使周期性荷载增大,坝体和坝基中可能会形成过高的孔隙水压力,从而导致抗剪强度与变形模量的降低,引起永久性(塑性)变形的累积,进而导致坝体沉降与坝顶裂开。
2003年10月甘肃民乐—山丹6.1级地震引起双树寺水库大坝、翟寨子水库大坝,坝顶
均出现一条纵向裂缝,长约401~560m,最大宽度2cm左右,并有多处不同长度断续裂缝,
防浪墙局部错动约0.5cm。大坝右侧出现山体滑坡,形成长条带及凹陷,滑坡长37m左右,凹陷坑深2.5~3m、宽7m左右,凹陷处上部山体有多条斜向裂缝,缝宽20cm左右。李桥水库坝顶有纵向裂缝,多处缝宽在2~5mm,其中一条长约100m左右,出现横向贯通裂缝,防浪墙出现多处竖向裂缝。这些裂缝在坝体漏水、自然降水和温度作用下,又将产生新的冻融、冻胀破坏,影响大坝的整体性和稳定[7]。
托洪台水库位于新疆布尔津县境内,1995年被列为险库,1996年新疆阿勒泰地震(6.1级),使拦水坝出现10处横向裂缝,3处纵向裂缝,最宽处达16cm,长17m,防浪墙垂直裂缝27处。经评估,水库震后只能在低水位运行,致使发电系统瘫痪,同时对于下游构成潜在威胁[6]。
岷江上的紫坪铺水利工程位于都江堰市与汶川县交界处,2006年投产,是中国实施西部大开发首批开工建设的十大标志性工程之一。2008年5月12日的汶川地震造成紫坪铺大坝面板发生裂缝,厂房等其他建筑物墙体发生垮塌,局部沉陷,整个电站机组全部停机。[3]。此外,地震对泄水输水建筑物也将造成巨大危害。2003年8月16日赤峰发生里氏5.9级地震,使沙那水库混凝土泄洪灌溉洞产生纵向裂缝,长15m,最大裂缝15mm;环向裂缝
22m,最大裂缝宽度1.8mm;洞出口消力池两侧边墙产生竖向裂缝,总长15m,最大裂缝宽
度25mm。大冷山水库溢洪道两侧导流墙产生裂缝,以纵向裂缝为主,最大缝宽12mm[8]。
2.2坝体失稳
地震可能引起坝基液化,从而导致大坝失稳。地震时,受到周期性或波动性荷载作用,土石坝内土体将产生递增的孔隙水压力和递增的变形。粘性土体构成的土石坝在地震中相对安全。但相对密度低于75%的粉砂土和砂土,在几个循环之后孔隙水压力就会显著上升,当达到危险应力水平时,土体在周期性荷载作用下显示出极大的变形位移,坝内土体就会呈现出液化的流态,导致坝体失稳[9]。
喀什一级大坝1982年施工时,其坝体及防渗墙都未进行碾压,致使密实度降低,1985
年地震时,由于液化和沉陷,导致该坝整体失稳破坏。
美国加州的Sheffield坝,1917年建成,坝高7.63m,坝顶宽6.1m,长219.6m,水库库
容17万m3。1925年6月距坝11.2km处发生里氏6.3级地震,长约128m的坝中段突然整体滑向下游。事后,经调查研究发现,坝体溃决的主要原因是地震使饱和土内的孔隙水压力增大,造成坝下部和坝基内的细颗料无凝聚性土发生液化。
地震还会造成土石坝体脱落或堆石体沉陷,从而引起坝体失稳。在库水位较高的情况下,堆石体沉陷会造成坝体受力不均,更严重的会引起库水漫顶,引发坝体垮塌。1961年4月
13日在距西克尔水库库区约30km处发生里氏6.5级地震,该水库位于VIII度区[10],坝体出现了严重的堆石体沉陷现象,一段220m长的坝体沉陷值达到2~2.5m,崩塌范围在从坝轴线上游3~10m到下游的35~50m[11]。
前面述及的沙那水库土坝和朝阳水库因地震致使土坝排水体砌石脱落,经抗震复核下游坝坡不稳定[8]。
2.3岸坡坍塌
若水库两岸有高边坡和危岩、松散的风化物质存在,地震发生后,造成的岩体松动,可诱发产生崩塌、滑坡和泥石流,甚至形成堰塞湖等现象。
乌江渡水库处于地震多发区,1982年6月地震中,化觉乡东部厚层灰岩和白云岩地层
中发生大面积崩塌。同年8月,化觉、柏坪一带又发生较大规模的地层滑动,影响面积约
18km2[12]。
5•12汶川大地震造成四川多处山体滑坡,堵塞河道,形成34处堰塞湖。其中唐家山堰塞湖蓄水过1亿m3,另外水量在300万m3以上的大型堰塞湖有8处[13],对下游地区造成严重威胁。
另外,地震还可能对水利工程一些其它部分造成损坏。如1995年1月日本阪神淡路7.2
级地震[14,15]中,使堤防基础液化发生侧向流动,造成堤防破坏以及护岸受损。我国历次地震中,出现较严重险情的多为土石坝,且多为年代较久远的土石坝,如果发
生强地震就更容易造成损坏[16]。
3.震灾受损水利工程的修复技术
地震后受损水利工程修复措施主要包括以下几个方面:
3.1坝体监测
地震后,对于受损水利工程,应及时降低水库运行水位,并进行充分的坝体探测。对土石坝,可开挖土坑检测,对混凝土坝,则可用无损探伤检测[17]。包括使用地震波法、地质雷达、水下声纳法检测侵蚀程度,必要时还需要采取槽探、钻孔、孔内地球物理方法进行检测。根据地震前后大坝监测结果的对比分析,判明是否存在普遍的结构损伤迹象。尤其需要加强对坝体变形和渗透的观测,防止裂缝前后贯通,内部发育,产生渗漏通道。同时,加强对输水洞漏水、溢洪道裂缝的监测,以防渗漏进一步扩大[18]。
震后坝体探测中,作为一种非破坏性的探测技术,地质雷达具有探测效率高、分辨率高、抗干扰能力强等特点,可以快捷、安全地运用于坝体现状检测和隐患探查[1
9]。
2003年甘肃山丹地震后,利用地质雷达对双树寺、瞿寨子、瓦房城等水库的震后坝体裂缝、坝基渗透、溢洪道、高边坡开裂和库岸道路滑坡等进行了探测[20],效果很好。
3.2裂缝修复
对于已经出现的裂缝,要对其分布、走向、长度和开度等进行定时观测和检测。在大坝主裂缝部位设置标志,缝口要覆盖塑料布,防止雨水流入加速其恶化。对受洪水威胁的建筑物,要采取临时措施(如围堰)进行保护。
裂缝的修补应从实际出发,在安全可靠的基础上,同时考虑技术和施工条件的可行性,力求施工及时、简单易行、经济合理。常用的有以下几种处理方法:
3.2.1表面处理法
表面处理法[21]主要适用于对结构承载能力没有影响或者影响很小的表面裂缝及深层裂缝,同时还可以处理大面积细裂缝的防渗防漏。常用的有表面涂抹水泥砂浆、表面涂抹环氧胶泥以及表面涂刷油漆、沥青等防腐材料等,从而达到封闭裂缝和防水的作用。在防护的同时应当采取在裂缝的表面粘贴玻璃纤维布等措施,这样可以防止混凝土在各种作用下继续开裂。
3.2.2灌浆法
灌浆法主要应用于对结构整体有影响或有防水防渗要求的混凝土裂缝的修补。经修补
后,能恢复结构的整体性和使用功能,提高结构的耐久性。
灌浆法[22]分水泥灌浆和化学灌浆。水泥灌浆适用于裂缝宽度达到1mm以上时的情况;裂缝较窄的情况下宜采用化学灌浆。此外,工程经验表明水泥浆适于稳定裂缝的灌浆处理,不适用于活缝或伸缩缝的处理。化学灌浆也存在类似问题,应用最广的环氧树脂浆固结体是脆性材料,因此对活缝应选用弹性材料。部分化学灌浆还有毒性,应加强施工人员的保护措
施。
大量实践证明,灌浆法是目前最有效的裂缝修补处理方法。
3.2.3结构加固法
危及结构安全的混凝土裂缝都需作结构补强。结构加固法适用于对整体性、承载能力有较大影响的较深裂缝及贯穿性裂缝的加固处理。混凝土结构的加固,应在结构评定的基础上进行,以达到结构强度加固、稳定性加固、刚度加固或抗裂性加固的目的。结构加固中常用的主要有以下几种方法:加大混凝土结构的截面面积,在构件的角部外包型钢、采用预应力法加固、粘贴钢板加固、增设支点加固以及喷射混凝土补强加固。结构加固法还适用于处理对结构的承载能力、整体性、耐久性有较大影响的不均匀沉陷裂缝和较为严重的张拉裂缝
[23]。
3.3滑坡处理
土坝滑坡有剪切破坏、塑流破坏、液化破坏三种形式[24]。可采用“上部减载”与“下部压重”法来处理。“上部减载”就是在滑坡体上部的裂缝上侧削坡,以保持稳定;“下部压重”就是放缓下部坝坡,在滑坡体下部做压坡体等。当滑坡稳定后,应当及时进行滑坡处理[17]。主要处理方法介绍如下:
3.3.1放缓坝坡
若滑坡由于剪切破坏造成,则放缓坝坡为最好的处理方法。可填入土体将坝坡放缓,或是先削掉滑动面上坝顶的土体,使滑动面坝坡变缓,然后再加大未滑动面的断面[24]。
对存在失稳危险的土石坝也可采用水上抛石法放缓上游坝坡,施工方法简单,且不受季节和水位的变化。加固工程不破坏原坝体结构,减去拆除原有的坝体护坡石和反滤料工序,对保护原坝体非常有利。石料渗透系数大,在库水位降落时,新筑部分的自由水面线,几乎与库水位重合,这样就造成新增断面和原有断面共同承担原有坝壳中库水位降落时产生的渗透水压力及地震产生的超隙孔压力,起到压重的作用,从而有利于大坝的稳定[25]。
3.3.2压重固脚
若滑坡体底部滑出坝趾以外,则需要在滑坡段下部采取压重固脚的措施,以增加抗滑力。压重固脚的材料最好用砂石料。在砂石料缺乏的地区,也可用土工织物,代替反滤,以达到排水的要求[17]。
通过在坝体上加压盖重,或对坝体培厚加固处理,可以进一步提高防渗流土、坝体抗裂和抗渗性能,同时增加坝体稳定性。
实例:1999年山西大同堡村发生5.6级地震,对位于震中附近的册田水库造成VII度影响,坝体产生结构变形[26]。震后对主坝和北副坝下游坝坡采用石渣进行培厚加固处理。主坝所在956m高程以下石渣培厚体,坝坡分别为1:2.75,在956m高程设12m宽的平台,在
949m高程、940m高程设3.0m宽的马道,并在石渣体与原坝体设置反滤层。培厚坝体后,
即使再次遭遇地震,由于坝体在正常水位下(956m高程)宽度增加,也可避免大坝整体失
稳,从而保证大坝的安全[27]。
3.3.3库岸岩体加固
对于地震中松动的库岸岩体,应采取工程措施进行加固。地震后,首先需要对库岸岩石情况进行重新评估,选择加固方式。库岸加固通常采取锚固、支挡、排水相结合的方式。锚固措施是利用预应力锚索和锚杆固定不稳定岩层,适用于震后加固岩体滑坡和不稳定的局部岩体。通过一端与建筑物结构相连,一端打入岩体内部,在增强岩体抗拉强度的同时,
改善库岸岩体的完整性[28]。该方法在高切坡中被广泛应用。支挡方法是通过支挡体来平衡滑坡体的下滑力,确保滑坡体的稳定安全。支挡结构能有
效地改善滑坡体的力学平衡条件,阻止滑坡、泥石流等。常用的方法有重力式挡墙、拉钉挡墙、加筋土挡墙、抗滑桩等[29]。
此外,由于地震过后经常伴随暴雨,更易在松动岩石处产生滑坡、泥石流等灾害,因此需及时排水,包括地表水和地下水。可设置截水沟排除地表水;排除地下水可用廊道、竖井和水泵等。在美国、加拿大和日本等国家较多采用专用钻机打水平孔的办法排地下水[28]。
3.4渗漏修复
应根据具体情况降低库水位或放空水库,彻底修复防渗体,对由于浸润线过高而逸出坡面或者由于大面积散浸引起的滑坡,除结合下游导渗设施外,还应考虑加强防渗。
3.4.1劈裂灌浆
对于土石坝较严重的渗漏破坏,可以采取劈裂灌浆或加强防渗斜墙等方式解决。劈裂灌浆是指在垂直渗流的方向沿坝轴线劈开坝体,灌入稠泥或水泥砂浆,截断渗流通道,可以在短时间内坝体内的渗流,使大坝转危为安。
采用劈裂灌浆技术的岭澳水库具体做法如下:根据坝长选用适量的灌浆机,多台灌浆机同时开灌,为使浆液尽快硬化固结,所用浆料为掺入速凝剂的水泥加粘土。在灌浆工艺上,连续的多次复浆,使混凝土或泥浆墙尽快加厚,并使贯通的漏水通道通过灌浆压力和多次灌浆挤压膨胀与原坝土体紧密结合,最终形成垂直连续的防渗混凝土砂浆墙,防止再次出现漏水通道的可能[30]。
3.4.2开挖置换
置换技术是土石坝震后修复中的一种重要手段,尤其对于心墙开裂的土石坝具有重要意义。首先需要通过探测技术检测到侵蚀的区域,然后在心墙的下游侧补填塑性混凝土,并用颗粒反滤层加以支持。最后使用水泥膨润土混合物进行灌浆。置换技术可以有效阻止土石坝心墙的进一步破坏,达到防渗漏的目的[18]。
实例:新西兰的马拉希纳坝,在经历埃奇克姆地震后,初期表现稳定,在1987年12月后出现水位明显下降的现象。通过详细的监测发现,虽然大坝没有遭受严重的渗漏,但左坝肩心墙和下游副心墙出现明显的开裂和侵蚀,且侵蚀依然在继续发展。持续不断的侵蚀导致库水位不断下降,因而采取心墙置换的方式,即对左右岸坝肩进行开挖,喷上混凝土,置换开挖出来的材料。水库再次蓄水时没有出现新的事故[18]。
3.4.3排水设施
在阻止渗流发生的同时,需要做好排水工作,通过设置宽敞的排水带,使渗流能顺利排走,降低坝体内的浸润线,减小孔隙水压力。
4.典型水利工程抗震抢险及修复实例
4.1美国Hebgen坝
Hebgen土石坝[31]位于美国Montana州,1915年建成,1959年8月遭受里氏7.1级的强烈地震,坝和水库所在地变形并整体下沉约3.1m,右岸溢洪道严重损坏,坝体沉陷开裂,水库岸坡坍塌,库水震荡并漫溢坝坝。当时此坝并无抗震设计,承受地震对其的各种危害而未垮坝,其破坏模式和耐震经验极有借鉴意义。
当时业主Montana电力公
司采取的紧急抢救措施包括:
(1)立即将泄水底孔进水口原用迭梁封闭的二个孔口开启,以80m3/s的流量泄水降低库水位。
(2)对半角沉陷区和被流冲蚀的坝下游面填土修复。检查表明,心墙与溢洪道连接处的漏水并非通过心墙上的裂缝而是从破坏的溢洪道流出。
(3)在心墙的大裂缝处下游,打竖井检查和修补。同时对下游河岸坍方区进行了修整。此后于1960年4月开始对溢洪道、坝体心墙和上游面进行了全面的修复和加固工作。
至今运行完好。
4.2美国LowerSanFernando坝
LowerSanFernando坝[31]位于美国加州洛杉矶市北,1912年动工,最大坝高43.2m,坝顶宽6m,长634m。1971年2月在坝东北12.9km处发生里氏6.6级地震,致使主坝发生巨大滑坡,坝的上游部分带动坝上部9.2m高的坝体和坝顶一起坍落滑向水库20多米远。
事故发生后,救援人员立即采取了如下措施:一方面立即运来砂袋加固筑高坝的低陷部位;另一方面紧急撤离坝下游地区8万居民;此外,通过2条泄水道和3条引水管排放水库中的水。
经初步调查和后期进一步挖槽、钻孔取样研究得出,坝内有大范围土区在地震后液化,但液化区被强度较高的非液化土约束住,因而直到液化区内有足够扩张力,促使土向外和向下移动时,才出现大规模滑动。
4.3新疆西克尔水利工程
西克尔水库[10,11]位于新疆伽师县东北西克尔镇,1959年建成使用,为均质土坝,设计库容10053万m3,属大型拦河式平原水库。该工程自建成以来共经历了15次地震,其中较严重的有3次:1961年4月13日发生6.5级地震,震中距水库约30km,致使220m长的坝出现沉陷崩塌,余坝产生165条裂缝;1996年3月19日发生6.4级地震,坝段出现涌沙,裂缝,局部产生沉陷;2002年3月3日,阿富汗发生里氏7.1级地震,造成水库副坝段出现决口,并迅速扩大到50m左右,决口流量约120m3/s,损失惨重。
由于西克尔水库运行年限长,且早年建设时没有进行地质勘探,因此极易糟受地震破坏。多次地震后,主要采取的措施有:
(1)加高坝顶,坝后设置压重,并铺设无纺布反滤。
(2)大坝决口后,进行抢险封堵,修复缺口。
(3)按库区基本烈度八度进行设计校核,对西克尔水库主坝、副坝和其它建筑物进行加固修复。针对部分坝段坝基地震液化问题,主坝采用压盖重措施,以进一步提高防渗流土、坝体抗裂和抗渗性能。副坝部分改线,采用粘料含量高的土进行填筑,加固填筑总方量为
58.59万m3,其中粘土39.29万m3,占60%。
4.4北京密云水库
密云水库位于北京密云县城北13km处,库容43.8亿m3,是北京市民用、工业用水的主要来源。水库始建于1958年9月,分白河、潮河、内湖三个库区,主要建筑有白河主坝
(高66m,长1100m)、潮河主坝(高56m,长960m)和5道副坝等。
1976年7月28日,河北唐山发生里氏7.8级强烈地震,白河主坝发生强烈扭动,主坝水面以下6万m2的块石坡和砂砾保护层滑落,受损严重。地震后,采取的主要措施[6]有:
(1)及时探测大坝裂缝,并派潜水员进行水下探测。
(2)通过筑堰建闸,把密云水库分隔成两个库区,放空库水后,进行全面检查加固。清除白河主坝上的砂砾保护层,加厚铺盖粘土斜墙,改用碴石保护层,往水下填粘土及砂石
达20万m2。随后,打通白河廊道、削坡清基,进行坝体加固。
(3)加固了3座副坝,并增建了3条泄水隧洞、1座溢洪道等。
白河主坝加固工程于1977年11月21日完成,达到了国家一级工程标准,至今完好。
5.小结
地震后受损水利工程修复是项复杂的工作,要因地制宜尽快采取最合适的方法进行修复。几条主要结论如下:
(1)地震发生后,各级水行政主管部门应该对境内的水利工程,尤其是堤防、水库大坝、水闸等工程进行排查,及时掌握工程破坏的情况及其隐患,有针对性地制定抢修方案。对地位重要、关系重大、危险性高的受损水利工程,要抓紧修复,确保度汛安全。
(2)坝和地基土料的液化,是导致垮坝或严重破坏的主要原因,此外,较普遍的震害有滑坡、开裂、沉陷和位移。
(3)尽可能保证水坝顺利泄水,降低蓄水位,避免出现垮坝事故。
(4)目前对于水利工程一般都有相应的突发事故(如地震、洪水等)预警机制,但对于如何应对出现的险情,采取必要的工程措施,尚是一个薄弱环节,宜提高认识,加强要应的工作。
(5)对山区河流因沿岸崩山、泥石流等形成的堰塞湖,要当机力断主动尽早清除,以避免水位升高,堰塞湖溃决形成洪灾。
参考文献
[1]苏有锦,秦嘉政.川滇地区强地震活动与区域新构造运动的关系[J].中国地震,2001,17(1):24~34.
[2]龙小霞,延军平,孙虎,等.基于可公度方法的川滇地区地震趋势研究.灾害学,2006,21(3):81~84
[3]任波,徐凯.四川已发现803座水库受损[OL].[2008.5.14].
/20080514/61586.shtml
[4]孙又欣.汶川地震造成我省水利工程新隐患[OL].[2008.5.14].
/iNews/Index/Catalog1/8493.aspx
[5]中评社.汶川地震灾后余波!重庆79座水库出现险情[OL].[2008.5.17].
/doc/1006/4/7/9/100647908.html?coluid=45&kindid=0&docid=100647908&mdate
=0517123254
[6]高建国.中国因地震造成的水库险情及其防治对策[J].防灾减灾工程学报.2003,9:80~91
[7]王东明,丁世文,等.对甘肃民乐—山丹6.1级地震震害的几点认识[J].自然灾害学报,2004,13(3):
122~126
[8]王艳梅,李俊,等.赤峰市“8•16”地震对震区水利工程的危害及应急措施[J].内蒙古水利,2003,(4):
66~68
[9]K.维克塔乔姆,R.K.基特里亚.与土石坝有关的地震问题[J].水利水电快报,1999,11:5~7
[10]库尔班阿西木.地震对西克尔水库大坝工程的影响和抗震加固[J].大坝与安全,2006,6:64~68
[11]库尔班阿西木.地震对平原水库大坝的影响和抗震加固[J].地下水,2006,8:82~85
[12]覃子建.乌江渡电站水库地震灾害[J].地震学刊,1994,3:42~49
[13]吴胜芳.唐家山堰塞湖库容逼近1亿立方米,3万人转移.[OL].[2008.5.23].
[14]张敬楼.日本兵库地震及水利工程震害综述[J].水利水电科技发展,1995,10:17~19
[15]史鉴,汤宝澍;从日本阪神淡路大地震——谈我省水利工程抗震加固问题,陕西水利,1999,(Z1):
50~51
刘真道.浅谈灾后小型水库工程安危状况与对策[J].浙江水利科技,2001,(sup):118
水利部国际合作与科技司编.抗震救灾与灾后重建水利实用技术手册.2008.5.15
M.D.吉隆,C.J.牛顿.地震对新西兰马塔希纳坝的影响[J].水利水电快报,1995,4:1~8
杨金山,卢建旗.地质雷达技术在水利工程中的应用[J].地质装备,2001,12:7~9
马国印.地质雷达在水库震后病害检测中的应用[J].甘肃水利水电技术,2007,3:47~48
喻文莉.浅议混凝土裂缝的预防与处理措施[J].重庆建筑,2007,(4):36~38
鞠丽艳.混凝土裂缝抑制措施的研究进展[J].混凝土,2002,(5):11~14
陈璐,李风云.混凝土裂缝的预防与处理[J].中国水利,2003,(7):53~54
肖振荣.水利水电工程事故处理及问题研究[M].北京:中国水利水电出版社:2004
杜智勇,李贵智,等.柴河水库除险加固综述[A].全国病险水库与水闸除险加固专业技术论文集[C].
北京:中国水利水电出版社,2001.212
[26]贾文.册田水库大坝工程场地地震地质灾害评价[J].山西水力,2004,6:67~68
[27]朱宏官,陈连瑜.中强地震对册田水库大坝造成的危害及安全预防处理[J].山西水利科技,2001,(1):
71~73
[28]吴凤英.浅谈水库库岸滑坡[J].广州水利水电,2007,4:17~18
[29]王连新.水库滑坡治理[N].长江咨询周刊,2007,6:B01
[30]白永年.劈裂灌浆技术在岭澳水库大坝防渗加固中的应用[A].全国病险水库与水闸除险加
固专业技术论文集[C].北京:中国水利水电出版社.2001
[31]中国水力发电工程学会史料信息组,上海大科科技咨询有限公司.国外土石坝地震震害实例和统计[R].
2001.2
Casestudiesandrepairingtechniquesrelatedtohydraulic
engineeringprojectsdamagedbyearthquakes
MaJiming,ZhengShuangling
DepartmentofHydraulicEngineering,TsinghuaUniversity,Beijing(100084)
Abstract
EarthquakesfrequentlyoccurinChina,especiallyintheSichuan-Yunnanregionwheredensehydro
projectsareconstructed.Actingasexternalforces,earthquakescandecreasetheintegrityofthedams,causedamcracks,landslide,settlementanddisplacement,foundationliquefaction,resultingindaminstabilityorevendamfailure,aswellasthedamageofoutletstructures.Besidesthedamageofhydroprojects,seismicactivitiesalsothreatenthedownstreamarea.Basedontheexistingliteraturedataindomesticandabroad,thispaperintroducestheseismicdisastersregardinghydroprojects,especiallythesoilandrockfilldams.Somepracticalremedialmeasuresandrepairingtechniquesaresummarized
运用滑模技术的优越性总结成下面三点:首先,操作中使用的人员较少;其次,投入资金比较少;最后,滑移模具技术能够增强混凝土灌筑质量,将提高水利项目的全部质量。在目前的水利项目施工中,经常遇到某些隧洞与大坝迎水面的操作,由于此种状况的作业坡度很大,混凝土操作的困难也很大,几乎做不到设计工程的成效,在应用过程中还会显示不同形式的质量状况,不能实现预期的设计作用。但是,滑移模具操作技术能够实现此种项目的要求,不但可以针对此类特别的地方实行操作,还可以很大程度上提高作业速度,在模具板框应用方面,可以使模具板框的转换频率减小,减少其消耗,节减了项目费用。滑移模板技术在操作中采用千斤顶作业,能够使用在迎水面等不易作业地点,经过传递输送达到很高效率的操作,灌筑进度很快,缩减了混凝土同空气碰触间隔,注浆之后能够快速封浆,能够达到预想成果。此类方法作业后的混凝土外表漂亮,无明显裂缝,节俭了物料,因此,在水利项目中,滑移模具技术有很大的应用价值。
二、滑模技术在水利施工中的应用注意事项
因为水利项目中的基地与坝体等一年四季的遭受流水的侵蚀,很容易产生缝隙及易出现裂缝和渗透等状况,而滑移模具技术的重要功能是增强水利工程的防水及抗渗,所以,在采用滑移模具技术时一定掌握适当的混凝土配比,确保质量。
1.把握混凝土各物料比例
科学恰当的混凝土各物料比例关联着混凝土作业的成效,也是保证滑移模板技术质量的主要要求。如果要确保科学恰当的物料比例,就要对运入作业场地的物料实行严格查验及签收,还得确保使用适宜的注浆装备。混凝土主要是由水与水泥构成的,水的使用数量需要多大水泥。滑移模具技术成功的重点是在操作过程中紧紧把握混凝土的输送间隔与温度,及第一次凝固等。滑移模板流程是经过顺沿模板注浆的一类形式,此流程需要对混凝土混合液的稀稠程度实行高规格掌控,操作人员需要屡次检测和易性,保证项目作业顺当施行。
2.选取恰当的滑模板材
选取恰当的滑移模板框材料是滑移模板掌控的核心,木质模板框在普通的水利项目中使用范围很广,滑移模板掌控是项目作业中的一个很重要的阶段,采用两类办法,其一应用水平仪器实行水平督查;其二应用千斤顶同步器实行水平掌控的方式。在水利作业经过中,确保滑移模板位置中心没有产生偏移,须要应用激光照准仪与吊线实行搭配检测,如此才能实时看到滑移模板产生移动的状况。假如看到移动状况,就采取上部和下部整体检测的方法,更好的判断竖井的直径长度,一定保证竖井构造质量,避免改变形状,从而也可以保证滑移模板的作业成效了。
3.滑模施工的偏差掌握
滑移模板操作是一类比较精确的任务,且在具体项目中很易产生误差,万一产生误差,作业的成效也就到达不了预期的目标,结果干扰项目的质量。所以,在操作经过中,操作人员需要注重滑移模板作业的偏差产生,需要快速采用多种办法更改。在检测中,采用钢制垫板来增高千斤顶的下面,运用千斤顶来压住支柱轴产生位置偏移,把全部平台引入到模板框中,往提前计划的位置滑动,此类方法更正误差,能够保证混凝土注浆操作中没有质量问题。因此,滑移模板操作误差的更正是一种重要的任务,快速的更正能够避免作业部产生偏差,唯有掌控偏差的产生才可以实现混凝土注浆的预期成果。
三、结语
1.1防水毯防水施工在水利工程中的应用
防水毯防水施工是一种新型的水利防水技术,其中防水毯就最新型的防水材料,是一种环保复合型的材料,充分的利用纳米技术,将钠基膨润土和土工织物有机的结合起来,发挥充分的防渗防水效果。采用这种技术进行水利工程施工,在接头处搭接方面相对简单,一般来说,搭接宽度为30到50厘米,搭接中间的修复膨润土只需要2厘米即可。具体的施工中,在防水毯下需要覆盖40到50厘米厚的土层,这样有利于保证工程水体的生态系统,同时能够增加防水毯防水防渗的效果。通常情况下,采用这种方法主要用于大面积水利工程防渗处理工程中,造价也相对较低,并且在节约水资源、保持生态等方面都具有重要的意义,可以说这种新型的水利施工技术具有很强的社会效益、经济效益、生态效益。
1.2生物砌块新技术在水利工程中的应用
生物砌块技术也是水利工程施工中重要的一种,这种方法主要用于无砂混凝土块,沿着水利工程水体边,砌筑成混凝土块,同时预留一定的孔洞,这样不仅可以吸入一定的水体微生物,还能够为水体中生长的鱼类等生物创造一个舒适的环境,起到很强的净化水质、维护水体环境的效果。
1.3长距离输水系统水利过渡过程计算在水利工程中的应用
在水利工程施工中,水厂建设是重要的施工项目,而供水管道系统是水厂建设的关键,供水管道的施工质量直接关系着整个水厂建设的功能,因此必须保证管道系统工程施工的安全可靠性。现阶段,随着人口的增多,城市供水需求量越来越大,对供水工程施工设计的要求也越来越高,不仅要求供水工程安全可靠,并且要求尽可能的降低工程施工的成本。对于这一要求,供水工程,特别是大型的供水工程施工过程中,需要通过相关的试验与计算,预测可能出现的不利工况,对沿工程压力极值、最大流量、转速等进行综合分析,保证工程设计的合理性,并科学的设置管道布线,选择合适的降压、调压设施,为工程施工运行优化提供有力的依据。在水利工程施工过程中,采用长距离输水系统过渡过程计算,能够优化工程设计,减少工程投资,节约工程施工运行的费用。
2绿化混凝土在水利工程中的应用
绿化混凝土技术与堆石混凝土新技术有很大差别,绿色混凝土技术主要应用于水利工程防护部位。绿色混凝土技术打破以往用混凝土为原料防护水利工程的做法,因为绿色混凝土技术是将绿色植物与混凝土结合在一起,共同作用在水利工程中。其技术实施的方法是以碎石、废渣等作为混凝土基本原料并在其中掺入高分子材料,制成较大一些的砖块,并在上面预留适合种植植物的孔,在其中加入肥料和土壤,将植物种植在孔中,把种有植物的混凝土砖块搭建在水利工程的防护部位。绿色混凝土技术中的植物的根系传过砌砖扎根到泥土中,植物更好的生长。促使水利工程的强度高、植物的覆盖率高,抗洪作用非常强,有效的保护水利工程的质量。此项技术是一种环保技术,是一种可持续发展的技术。现阶段,国内外很多建筑工程施工企业都将绿色混凝土施工技术作为重点发展项目,并取得了一定的成就,同时涌现除了许多新型的混凝土整体浇灌新技术,这些施工技术的出现在一定程度上促进了绿色混凝土的发展。总之,水利工程施工过程中,绿色混凝土施工新技术具有广阔的市场前景,值得广大建筑工作者去探索。
3人工湿地新技术在水利工程中的应用
湿地与海洋、森林统称为地球三大生态系统。人工湿地新技术就是通过人工的方式,在水利工程施工中构建人工湿地系统,以调节当地的生态环境,为人们营造一个舒适的生存空间。下面以某一具体的工程具体说明人工湿地技术的实践应用:郑州市在2008年联合中科院地理研究所、湖泊研究所,共同提出一种人工湿地施工方案———贾鲁河半人工梯级河滩湿地。该工程囊括了郑州市56km长的河段,共占地一万多亩,投资量及其庞大,对当地生态环境进行综合治理,提高河段的排洪等级,同时净化河水污染。湿地示范工程主要由进水、强化净化池、第一级湿地、第二级湿地构成。进水抽取贾鲁河原水,基流流量1200m3/d。强化净化池为22m×11m×1.8m水泥池,设生态浮床并种植壅菜,浮床内部填充弹性填料。经过本次工程实践表明人工湿地技术具有以下几个方面的优势:
(1)对氮磷和有机物的去除效果挺水植物明显好于沉水植物,沉水植物和挺水植物对氨氮的去除表现好于浮叶植物;
(2)延长水力滞留时间对改善水质净化效果明显,对氨氮的净化效果改善最为明显;
(3)沉水植物、挺水植物、浮叶植物较单纯挺水植物组合在对氨氮和TN去除效果方而表现比较明显的优势。
4总结
1.1施工场地的清理也是施工准备工作之一
在施工前,施工单位应当对施工场地的土质进行调查,若发现软土则需要进行夯实或者更换。每个施工场地的地形也不一样,施工队需要根据场地地形搭建临时导向架、筑岛和工作平台,接通施工工地的水、电,保证施工能顺利开展。
1.2最后
施工单位需要对桩孔的位置进行测量准备。施工单位要依照图纸,对桩位的长度、放线量进行预估,在桩位的中心点标记上标志桩。对侧放护桩和标志桩四周的绑点进行控制,这有利于桩位的恢复和核对工作的进行。对于钻孔机械要选择合适的钻桩机,合适的钻桩机有利于钻孔灌注桩的安装、调试。待钻桩机到位后,检查钻桩机的工作是否正常,比如,桩位中心和钻盘中心的差值、垂直度等参数是否处于正常范围内。
2钻孔灌注桩技术在施工过程中的应用
2.1测量定位
施工单位的负责人需要在前期桩位测量放线后,及时对施工场地的情况进行检查确认。在钻孔过程中,相关负责人也需要对场地实时的作业情况进行检查,严格控制钻孔和钻孔中心的位置。按照孔位设计和基准标高对实际施工作业严格要求,保证施工作业的质量。
2.2开孔
施工单位的负责人需要根据前期监测数据记录中持力层孔深与等高线的比较,结合钻具自重大小和吊挂松紧程度等相关参数,加大对岩土层的巡查、检视力度。并且还需要对照试成桩的岩样标准,确定灌注桩入岩的科学合理性和桩体进入持力层的深度。对岩土层的土质也要进行抽样检测,设置多个监测点,机械钻机的钻头进入持力层后,观察持力层和界面钻进过程中的反应情况。除了上述需要检测的项目之外,施工单位还需要对机架枕木基础的稳定性进行检测。在钻孔过程中磨盘参数也会发生变化,常见的情况有平整度和垂直度的变化,施工单位需要将这种变化控制在标准范围内。然后根据轴线控制点的位置,确定实施桩位的位置,并实时监测各项机械的工作参数,保证施工正常进行。
2.3清孔“清孔”顾名思义,就是清理钻孔
这项工作指的是在钻孔作业结束后,钻头处于离孔底80—100mm的距离时,在孔壁处于稳定、坚实的情况下,进行初步稀释泥浆的作业。新泥浆的比重一般在1.05—1.08之间,将新泥浆进行循环作业,时间控制在40分钟到一个小时之内。这么长的循环作业主要是为了将孔底的岩石碎渣和泥块打碎,使之浮出孔外。这种清理不止一次,在下笼安装导管的作业完成后还需要进行二次清孔。孔底的浮渣积累到一定程度就会影响孔壁的稳定牢固,所以为了避免发生塌孔、缩孔的现象,在施工过程中需要尽可能地保持钻孔作业一次成型。这就需要施工负责人进行监理,如果出现不达标的钻孔,应当驳回混凝土浇灌作业的申请,不能让整个工程的质量因此下降。
2.4钢筋笼
钢筋笼是钻孔灌注技术中不可或缺的建筑材料,一般情况下钢筋笼的制作过程分为几个阶段。一个合格的钢筋笼要保证一半以上的钢筋接头在焊接时都是错开焊接的。所以负责人员需要仔细检查,保证下放的每个钢筋笼都是合格品,也要监察下放过程,保证下放的钢筋笼都是垂直入孔的,避免发生孔壁坍塌的状况。下放工序完成后,钢筋笼的护筒要与钢筋笼上端焊接牢解析钻孔灌注桩技术在水利施工中的应用梅燕(新蔡县汝河管理所,河南驻马店463500)摘要:随着时代的发展,我国水利工程队伍也在不断壮大,如今钻孔灌注桩技术被广泛运用于水利工程建设的基础施工项目固,以此来减缓混凝土对顶部的托力。对于灌注混凝土还需监察混凝土的坍落度,按照混凝土的相关规定,坍落度处于180mm—220mm之间的混凝土才算是合格品。再来监察孔内导管离孔底的距离和长度,根据压力平衡计算公式得出混凝土的标准灌注量。混凝土灌注作业是一个连续性的过程,所以需要及时补充后续的灌注混凝土,最后要保持导管在浇捣过程中保持2m—6m的深度。
2.5混凝土灌注
施工单位在签署了合格检查证后才能进行灌注作业。灌注之前还是需要检查各个材料的配比情况,施工材料和之前的检测样品报告一致方可进行灌注作业。在作业过程中,需要记录每根桩柱混凝土的用量,以便发生突发状况能及时监测,找到原因。
3钻孔灌注桩
在施工后期的技术要求在钻孔灌注施工作业完成后,负责人需要对已完成的注桩进行检查验收。根据笔者的调查,一般情况下检点是注桩的承载力、桩身结构,一个合格的钻孔灌注桩工程需要达到一定程度的承载力,并且要保持桩身结构的完整性。检验时经常使用钻芯法、声波透射法、射线法、静荷载试验法等方法,监察人员可以根据这些方法的不同特点,结合实际情况综合运用。
4结语
城市排污问题对于城市经济发展也是非常重要的问题,由于监管部门的力度较低,使企业工业废水排放超标问题频发,而且城市人口不断增加,更加提高了污水总量。由于污水总量超过了自然水体的自净能力,所以污染了江河水域,为了改变水污染问题,必须加强水利管理强度,通过科学的技术手段实现多级管理模式,使水利工程更加安全、可靠。充分调动水土资源的优势,提高水利工程效益,坚持可持续发展原则,合理统筹水利工程与环境的关系,使水利工程为社会主义建设做出贡献。
2水利技术创新
水利技术创新主要采取信息化手段提高防汛能力,其中包括暴雨、洪水等方面的预报。但是现有的信息技术并不成熟,在实际应用中存在很多不足,并且无法提供行政决策的服务。为了满足水利管理部门要求,需要将防汛预案加入系统之中,使洪水、内涝预警更加快速,提高信息的精准度。例如洪水已经达到一定级别,系统必须及时执行预警机制,并且根据预警提示制定相关解决方案。决策制定时必须提前制定放洪量大小,并且考虑泄洪后可能发生的任何后果,通过信息化系统掌握水利工程情况。目前常用的掌上GIS系统就可以应用在水利管理之中,帮助用户快速收集水利信息,并且提供解决措施,通过GIS系统实现移动终端查询、决策等功能。智能手机已经可以提供资料查询、观看电子地图、定位资源空间,各项信息通过手机快速进行查阅,将智能手机与GIS系统有机结合,使水利管理者可以第一时间制定处理计划。
3水利技术应用
3.1加强组织领导
水利管理各级干部需要明确科学发展观,将水利管理落实到个人,并且积极推动科教兴国发展方针,优化水利科技与管理制度,将水利科技的工作加入议程计划之中,并且制定完善的干部绩效考核体系。根据水利工程发展特点,合理制定水利科技发展计划,将促进水利科技的发展措施落实到位,帮助水利工程提高与进步。水利管理部门的领导者需要重视科学知识,发挥出自身的表率作用,通过合理的方法制定民主科学的相关决策。
3.2运用RTK技术
RTK技术为动态测量技术,与GPS技术统一使用差分解算,不同点是RTK使用实时差分计算。随着计算机技术不断普及,对RTK技术的应用也在逐渐增强,传统作业模式不断得到革新,极大的提高了工作效率。传统的静态、动态测量,需要在测量后进行结算才能获得厘米级数据,而使用RTK技术可以直接获得厘米级测量数据,因为RTK采取载波相位动态实时差分计算法,也是GPS技术发展的重大成果。这种技术为测量地形图、工程放样、控制测量带来了新的测量方法,有效提高了测量工作的效率。通过软件的配合可以实现远程控制管理,在水利工程测量阶段,可以充分发挥RTK技术的实效性,提高测量工作效率,加快管理运转速度。
3.3加大科技投入资金
水利科技创新需要稳定的资金投入,以国家的支持为基准,增加多种资金投入渠道。科技创新必须得到国家与地方的支持,通过部门协作开辟多种科技研发渠道,为水利工程科技创造优秀的发展平台,并且设立专项科技研发预算。加强科技平台的建设力度,将建设重点转到科研能力之中,通过资源共享,充分保证科技平台的运营与管理不受影响,发挥会出平台的最大效益。在水利工程建设资金中,需要划分技术创新资金,提高技术发展的速度与效果。
3.4营造创新环境
通过水利管理政策营造创新环境,将具体政策落实到管理工作之中,制定出科学合理的科技创新措施。加强社会的支持,对科技创新需要进行鼓励与嘉奖,加强技术创新的宣传,积极表彰与奖励科技创新行为,提高社会各界对科技创新的关注度。积极营造创新人才培养环境,建立合理的人才选拔机制,使水利管理人员具有科技创新的动力。
3.5强化科技管理
需要加强水利科技成果,将水利管理部门的所有职能激发出来,完善项目评估、审查、招投标与合同签订手续,帮助项目完成全程监管体系,并且帮助后期评估验收提供支撑。水利科技需要建设完善的评价机制,以国家评价机制进行改革,使评价机制公平、公正、公开、透明、合理,相关制度必须科学合理。必须加强水利科技研发部门的自我管理机制,通过强化科技管理制度,使人员素质得到充分的提高,并且提高管理水平,创造更好的科技效益。
4结语
关键词:水利工程;钢筋混凝土;施工
一、钢筋混凝土施工中模板工程技术
模板是浇筑混凝土的模壳。模板系统包括模板和支撑两大部分。模板和混凝土直接接触,使混凝土符合结构构件设计要求的形状、尺寸和空间位置。支撑系统则是支撑模板,保持其位置正确,并承受模板、钢筋混凝土以及施工荷载。如果模板本身不牢固,接缝不严密,就容易引起混凝土漏浆,造成混凝土蜂窝麻面,减弱混凝土的强度。如果支撑不牢固,在混凝土浇捣过程中模板就会产生变形、错位,使结构构件的尺寸及位置出现偏差,严重的甚至还会造成倒塌事故。因此,模板的制作与安装均必须确保达到质量要求。
1.1对模板的规定与材料要求
模板具有足够的强度、刚度和稳定性,能可靠的承受规定的各项施工荷载,并保证变形在允许范围内,模板表面要求平整、光洁、拼缝密合,不漏浆。选用应与混凝土结构和特征、施工条件和浇筑方法相适应,结构面大的模板要求选用大模板,模板支架的材料使用钢材。且竖向模板与内倾模板都必须设置选够的内部撑杆和外部栏杆,以确保模板的稳定性,支架立桩应在两个相垂直的方向加以固定审实。
1.2模板安装的质量要求
模板及其支撑必须有足够的强度、刚度和稳定性,支撑部分必须有足够的支撑面积。如安装在基土上,其基土必须坚实,并加垫支撑板;模板的接缝不应漏浆。如有预埋件,应安装牢固,位置必须正确;雨季施工,必须有排水措施;浇筑混凝土前,模板内的泥土、杂物必须清理干净;位置与截面尺寸必须符合设计要求。
1.3模板的拆除
模板拆除时的泥凝土强度应能保证其表面及棱角不受损伤。一般情况1d~2d即可拆模。拆除的模板和支架宜分散堆放并及时清运。拆除时,应根据锚固情况,分批拆除连接件,防止大片模板坠落,并使用专门工具以减少混凝土及模板的损坏,拆下的模板,支架机构件应及时清理、维修,暂时不用的模板应分类摆放整齐。
二、混凝土施工中钢筋工程技术
2.1钢筋的检验与储存
钢筋进场必须具有产品出厂合格证,并经复检试验,提出试验报告,证明其技术数据符合国家现行技术标准的规定时方可验收。如产品无出厂合格证或抄件手续不符合要求,或料证不符、批量不清的不得验收,严禁使用。
钢筋原材料应堆放入仓库或料棚内;在条件不具备时,应选择地势较高,土质坚实、较为平坦的露天场地堆放,在仓库或场地四周,形成一定排水坡或挖掘排水沟,以利泄水。钢筋垛下要垫枕木,离地不宜小于20cm;也可以用钢筋堆放架堆放钢筋,堆放架由多根立柱间隔制成,立柱高度约1.5m,间距3m左右;使用堆放架,便于区别钢筋的不同等级、牌号和规格,且存取方便。
2.2钢筋的连结
(1)钢筋的连接可分为绑扎搭接、机械连接或焊接。机械连接接头和焊接接头的类型及质量应符合国家现行有关标准的规定。受力钢筋的接头宜设置在受力较小处。在同一根钢筋上宜少设接头。
(2)轴心受拉及小偏心受拉杆件的纵向受力钢筋不得采用绑扎搭接接头。当受拉钢筋的直径d>28mm及受压钢筋的直径d>32mm时,不宜采用绑扎搭接接头。
(3)同一构件中相邻纵向受力钢筋的绑扎搭接接头宜相互错开。
钢筋绑扎搭接接头连接区段的长度为1.3倍搭接长度,凡搭接接头中点位于该连接区段长度内的搭接接头均属于同一连接区段。同一连接区段内纵向钢筋搭接接头面积百分率为该区段内有搭接接头的纵向受力钢筋截面面积,与全部纵向受力钢筋截面面积的比值,同一连接区段内的搭接接头钢筋为两根,当钢筋直径相同时,钢筋搭接接头面积百分率为50%。
三、混凝土工程施工技术
3.1混凝土原材料的检验
运至工地的水泥,应有生产厂家的出厂合格证和品质试验报告,使用单位应进行验收检验,必要时进行复检。并应按标明的品种强度等级,生产厂家出厂批号分别摆放整齐,不得混放。
混凝土的各种原材料应经验合格后方可使用,混凝土拌和楼的计量器必须计量准确,每班称量前,应对称量设置时进行零点效核,并经取得开仓证后方可进行混凝土浇筑。
3.2混凝土施工
3.2.1水泥基渗透结晶型防水材料
水泥基渗透结晶型防水材料分为混凝土表面处理用的防水材料和内掺的混凝土本体防水剂,分别适用于混凝土表面处理防水体系和混凝土本体自防水体系。一般情况下混凝土表面处理防渗漏,按比例与水拌合成浆,可以涂刷或喷涂在混凝土表面。
3.2.2聚合物水泥砂浆类材料
聚合物水泥砂浆作为防渗、防腐、防冻材料已在水工混凝土建筑物修补工程中得到广泛应用。这种以少量胶乳材料对水泥砂浆或混凝性后,增强其抗渗性、抗碳化和抗冻性,经过近20年的工程实践证明,是一种性能可靠、经济、施工方便的修补材料,目前已列入有关设计规范和施工规程,施工方法有人工涂刷、喷涂及灰浆机湿喷,大大提高了施工速度及施工质量。推荐采用丙烯酸聚合物改性水泥砂浆,因为它的机械性能和化学性能均优于其他胶乳。
3.2.3新型灌浆材料
利用环氧树脂和聚氨酯在一定条件下制备出可以形成同步互穿聚合物网络结构的新型化学灌浆材料。该化灌材料综合了环氧树脂浆材和聚氨酯浆材的性能优点,浆材黏度低、凝结时间可调、强度高、变形性和可灌性都很好。水下混凝土灌浆试块的黏接抗拉强度能达1.05MPa。是一种性能优良、适用性强、适合水下灌浆的多功能新型灌浆材料。
3.2.4混凝土裂缝注浆技术
自从环氧树脂类高分子材料被用于混凝土建筑物裂缝修补工程后,至今它已经成为仅次于钢材和水泥的第三种材料被广泛应用。以往传统方法是靠人工控制将树脂浆液注入裂缝内。当环氧浆液黏度大,裂缝宽度较小时,这种修补方法并不一定十分成功。有一种“壁可”注浆技术,则是通过橡胶管的弹性收缩压力自动完成注浆,在注入过程中始终维持约0.3MPa的压力,可以将浆液注入宽度为0.02mm裂缝末端。同时,缓慢均匀地灌浆压力可将缝隙中的空气压入混凝土毛细管中,并通过混凝土的自然呼吸作用排出,有效地避免了气阻现象,从而保证了灌浆质量。
水利施工中钻孔灌注桩技术应用流程
第一,施工前的准备工作,工欲善其事,必先利其器。在这个过程中最重要的是原材料的选取的过程,原材料的质量是决定施工质量的关键因素之一,除了选取高质量的原材料以外还需综合考虑到规定的限制以及环境的影响,只有统筹考虑才能够得到最适合施工的原料。其次,施工前的准备还包括设计图的准备,完善的设计图,科学符合实际的参数能够对于施工的开展起到指导作用。还有要做到合理的选择桩端持力层,这个作用主要体现在支承土岩层上,选择上要做到具体情况而定。最后对于成桩可能的可能性要做到正确的估计。
第二,在施工过程中,应该按照事先的设计图来实现施工,在这里应该严格卡标准,另外,施工时要根据施工的原则来,比如在打桩方向的选择上应该取从中间开始,再向四周打桩;还是由中间开始向两面打桩抑或由一面向三面打桩,这些都值得思考,在选取时要根据不同方式的优缺点选择最合适的。在选择完打桩方式以后,下一步就是打桩了,打桩分为三部分级:首批灌注,后续灌注以及后期灌注,这灌注时,灌注量、导管直径及打桩直径的关系一定要处理好,例如:直径大,灌注量自然就大,搅拌时间相应也会较长,这就容易出现离析的现象。此外,首批灌注往往会出现导管堵塞。最后,开钻时,要考虑到胡同中加入粘土等,以便于使用小冲程高频率钻进。
水利施工钻孔灌注技术中现存的问题及改善意见
水力施工钻孔灌注技术中主要会出现成孔质量问题、钢筋笼安装质量问题以及水下砼灌注问题,下面分别介绍这几种问题的可能成因以及改善方法:
1水利施工中灌注桩成孔质量问题
水利施工中的灌注桩程控问题可以分为塌孔、缩孔、桩孔偏斜这三类,其中对于塌孔处理时主要是注意首批混凝土灌注的时间,应该迅速的以大量混凝土注入,在后续的混凝土注入时要保证高度差使其压强足够大;对于缩孔则需做到经常检查,及时修复,对于易缩不为可用上下反复扫孔方法扩大。桩孔偏斜则需注意施工现场的平稳改造、钻机安装固定架的安稳以及垂直。钻头、钻杆联合应该一个接一个被的被检测。
2水利施工中灌注桩钢筋笼安装质量问题
水利施工中灌注桩钢筋笼安装质量问题包括一钢筋笼安装与设计标高不符、钢筋笼的上浮这两类问题。对于钢筋笼安装与设计标高不符的问题应该注意完成钢筋笼的制作后保证它不扭曲变化,钢筋笼要始终保持着垂直被安装,砼保护层垫块设置间距不宜过大,吊筋长度应该被精确计算并核对。而对于钢筋笼的上浮则要做到保证砼质量,坍落的精度应在18±3cm,砼和易性要好。
3水利施工中灌注桩水下砼灌注问题
水利施工中灌注桩水下砼灌注问题主要体现在堵管、桩顶部位疏松、桩身砼夹泥或断桩对于堵管的问题,商品砼的选取上切忌不可以偷工减料,好的产品才能带来好的效果,砼的级配和搅拌必须确保混凝土的工作性、水灰比、衰退、初凝时间并满足设计的规范,每辆运砼车的检查必须到位,现场混凝土坍落度必须控制在允许的范围之内才能钻孔桩施工。灌注导管应该直且光滑而且内壁水泄漏也是不允许的。对于桩顶部位疏松的问题首先保证一定高度的桩顶留长度。由于沉积物和厚厚的淤泥的影响,容易产生错误的测量。因此它可以用钢管抽样盒检测,只有抽样盒子所得的是混凝土而不碍事沉积物,才可以确定已经达到最终的灌溉水平。