期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 土壤检测论文

土壤检测论文精品(七篇)

时间:2022-12-15 08:52:44

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇土壤检测论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

土壤检测论文

篇(1)

关键词 磺酰脲类除草剂残留 前处理技术 发展趋势

随着社会进步以及人们绿色环保理念的提高,磺酰脲类除草剂因高效、广谱、低毒和高选择性等特点,已成为当今世界使用量最大的一类除草剂[1,2] 。自美国杜邦公司上世纪80年代开发出第一个磺酰脲类除草剂——氯磺隆以来,磺酰脲类除草剂已有30多种产品问世,常见的有苄嘧磺隆、甲磺隆、氯磺隆、氯嘧磺隆、胺苯磺隆、苯磺隆、醚苯磺隆等[3]。这些磺酰脲类除草剂的基本结构由活性基团、疏水基团(芳基)和磺酰脲桥组成,其品种随着活性基团和疏水基团的变化而变化(图1)。

图1 磺酰脲类除草剂的基本结构

但是,随着磺酰脲类除草剂使用范围的逐步扩大,其在农作物和环境中的残留以及对人类健康的危害也日益显现,因此,对作物和环境中磺酰脲类除草剂残留的检测也提出更高的要求。目前,磺酰脲类除草剂残留检测技术主要集中在两大方面:一是前处理技术研究,二是快速检测技术研究。关于磺酰脲类除草剂残留检测技术研究的综述文章较多[4~7],从分析误差看,前处理技术是检测的重要环节,前处理技术既重要又薄弱,因此本文就磺酰脲类除草剂残留的样品前处理技术做一综述。

随着磺酰脲类除草剂残留检测技术向着简便、现场、快捷、成本低、自动化方向发展,其前处理技术也正向着省时、省力、低廉、减少有机溶剂、减少环境污染、微型化和自动化的方向发展。本文将磺酰脲类除草剂残留前处理技术分为两类:一类是传统前处理技术,另一类是新型前处理技术。

1 传统前处理技术

磺酰脲类除草剂残留传统前处理技术常用的有:液液萃取技术(liquid-liquid extraction,LLE)和震荡提取技术等,这些技术在实际操作中非常实用,虽然存在一些不足:操作时间长、选择性差、提取与净化效率低、需要使用大量有毒溶剂等,但目前在实验室工作中仍被广泛使用。

1.1 液液萃取技术

液液萃取技术又称溶剂萃取,即用不相混溶(或稍相混溶)的溶剂分离和提取液体混合物中分析组分的技术。此技术简单,不需特殊仪器设备,是最常用、最经典的有机物提取技术,关键是选择合适萃取溶剂。张淑英等[8]萃取土壤中豆磺隆选择二氯甲烷作为萃取溶剂,平均回收率达到75.5%~97.18%。黄梅等[9]使用液液萃取技术提取稻田水体中苄嘧磺隆与甲磺隆,之后用高效液相色谱法(HPLC)进行检测,结果显示方法的精确度和准确度较好。另外,毛楠文等[10,11]也使用此技术对磺酰脲类除草剂进行研究。此技术不足之处是易在溶剂界面出现乳化现象,萃取物不能直接进行HPLC、GC分析。

1.2 震荡提取技术

震荡提取技术也是一种常用磺酰脲类除草剂等农药残留的前处理技术,包括超声震荡提取、仪器震荡提取等。例如,毛楠文等[10]利用超声震荡等技术提取土壤中磺酰脲类和苯脲类除草剂,甲醇作为提取剂,平均加标回收率达到71.72%~118.0%。 崔云[11]总结震荡提取等技术提取土壤中不同种类磺酰脲类除草剂残留,并进行HPLC、GC等仪器分析,总结见表1。

2 新型前处理技术

磺酰脲类除草剂残留的新型样品前处理技术主要包括固相萃取技术(Solid Phase Extraction,SPE)、超临界流体萃取技术(Supercritical Fluid Extraction, SFE)、免疫亲和色谱技术(Immunoaffinity Chromatography,IAC)、分子印迹聚合物富集技术(Molecularly Imprinted Polymer, MIP)、液相微萃取技术(Liquid Phase Microextraction,LPME)、微波辅助萃取技术(Microwave-assistant Solvent Extraction, MASE)及支持性液膜(Sport Liquid Membrane, SLM)萃取技术、连续性流体液膜萃取技术(Continuous-Flow Liquid Membrane Extraction, CFLME)、离子交换膜萃取技术(Ion Exchange Membrane Extraction Method)和在线土壤柱净化(Online Soil Column Extraction, OSCE)等其他前处理技术。其中,SPE是这些新型前处理技术使用最广泛的一种。

2.1 固相萃取技术

SPE起始于20世纪70年代并应用于液相色谱中,是利用固体吸附剂吸附液体样品中目标化合物,再利用洗脱液或加热解吸附分离样品基体和干扰化合物并富集目标化合物。

SPE基本操作步骤见图2。分萃取柱预处理、上样、洗去干扰杂质、洗脱及收集分析物4步。岳霞丽等[12]使用美国Supelco公司3mLENVI-18规格固相萃取柱测定水体中苄嘧磺隆,检测限达到0.01mg/L。叶凤娇等[13]比较SupelcleanTMLC-18 SPE Tube(500mg, 3mL)和Oasis HLB SPE Tube(60mg, 3mL)2种不同规格固相萃取小柱的净化吸附和浓缩效果,并选择Oasis HLB SPE Tube测定12种磺酰脲类除草剂残留。将烟嘧磺隆等12种磺酰脲类除草剂样品用85%磷酸溶液调整pH值至2~2.5之后过柱,各组分回收率达到90%以上。在洗脱及收集分析物步骤,用含0.1mol/L甲酸的甲醇-二氯甲烷(1:9,v/v)溶液洗脱磺酰脲类除草剂,用两次小体积洗脱代替一次大体积洗脱, 回收率更高[7],或者用CH2Cl2可洗脱苄嘧磺隆[12]。

另外,Carabias-Maninez等[14]用SPE提取水样中酸性磺酰脲类除草剂残留,尝试选择不同吸附剂和洗脱剂,回收率70%~95%。Furlong等[15]利用SPE同时提取浓缩磺酰脲类和磺胺类农药残留并用HPLC-MS进行检测。Galletti等[16]对LLE、SPE 2种前处理技术进行比较,土壤和水中分离提取的绿磺隆、甲磺隆、噻磺隆、氯嘧磺隆回收率后者明显高于后者,噻磺隆更明显。

近年来,固相萃取在复合模式固相萃取、固相微萃取(SPME)、基质分散固相萃取(MSPD)[17,18]和新型固相萃取吸附剂4个方面展开新应用。

SPE前处理技术因其简单,溶剂用量少,不会发生乳化现象,可以净化很小体积样品(50~100μL),水样萃取尤其方便,易于计算机控制而得到广泛应用。不足之处是提取率偏低,多数要求酸性条件。因此,对于在酸性条件下易分解的磺酰脲类除草剂残留检测需要及时分析或进行酸碱平衡。

2.2 超临界流体萃取技术

超临界流体是物质的一种特殊流体状态,气液平衡的物质升温升压时,温度和压力达到某一点,气液两相界面消失成为一均相体系,即超临界流体。SFE是利用超临界流体密度大、粘度低、扩散系数大、兼有气体的渗透性和液体分配作用的性质,将样品分析物溶解并分离,同时完成萃取和分离2步操作的一种技术。超临界流体萃取技术20世纪70年代后开始用于工业有机化合物萃取,90年代用于色谱样品前处理,现已用于磺酰脲类除草剂等农药样品分析物的提取[19]。

近年来,SFE的使用已相当广泛。例如,史艳伟[20]采用SFE技术萃取土壤中苄嘧磺隆,不仅对SFE萃取压力、温度、时间等因素做具体分析,而且研究高岭土、蒙脱石和胡敏酸含量等对苄嘧磺隆萃取率的影响。郭江峰[21]在其博士论文中用超临界甲醇提取土壤中14C-绿磺隆结合残留,获得85%以上提取率。另外,Bernal等[22]利用有机溶剂、SFE和SPE 3种方法提取土壤中绿磺隆和苯磺隆。HPLC检测显示,SFE-CO2在绿磺隆和苯磺隆土壤残留测定中提取更加优越,回收率更高,达到80%~90%。Berdeaux[23]用SFE-CO2从土壤中萃取磺酰脲类除草剂绿磺隆和甲磺隆(甲醇或水作为改性剂),回收率均大于80%,结果与SPE技术相似或稍好。Kang等[24]用SFE技术萃取2种土壤类型中的吡嘧磺隆,以25%甲醇为改性剂,温度80℃,压力300atm,萃取时间30min,添加浓度0.40mg/kg,萃取率均达到99%。另外,Breglof等[25]用SFE技术与同位素跟踪法相结合研究甲磺隆、甲嘧磺隆和烟嘧磺隆残留,以土壤为基质,以2%甲醇为改性剂,回收率达到75%~89%(烟嘧磺隆除外,回收率为1%~4%)。

目前常用的超临界流体是CO2,廉价易得,化学性质稳定,无毒、无味、无色,易与萃取物分离,萃取、浓缩、纯化同步完成。SFE前处理技术在磺酰脲类除草剂残留提取中克服常规提取法的缺点[26],具有分离效率高、操作周期短(每个样品从制样到完成约40min)、传质速度快、溶解能力强、选择性高、无环境污染等特点。随着SFE技术与越来越多的快速检测技术联用,其在磺酰脲类除草剂残留的研究分析中具有较大潜力,尤其在多残留分析中,能够显著提高分析效率。

2.3 免疫亲和色谱技术

IAC是一种将免疫反应与色谱分析方法相结合的分析技术,是基于免疫反应的基本原理,利用色谱的差速迁移理论,实现样品分离的一种分离净化技术。分析时把抗体固定在适当载体上,样品中分析组分因与吸附剂上抗体发生的抗原抗体反应被保留在柱上,再用适当溶剂洗脱下来,达到净化和富集目的。特点是具有高度选择性。技术关键是选择合适的载体、抗体和淋洗液。例如,邵秀金[27]采用IAC和直接竞争ELISA法相结合对绿磺隆进行分析检测,选择pH7.2磷酸缓冲液作为吸附和平衡介质,80%甲醇作淋洗液,结果显示:IAC动态柱绿磺隆最高容量达到3.5μg/mL gel;样品中绿磺隆含量250倍;空白土壤样品添加0.1μg/g绿磺隆,平均回收率达到94.09%。另外,Ghildyal等也利用IAC结合酶联免疫法对土壤中醚苯磺隆进行分析检测[28]。

2.4 分子印迹聚合体富集技术

MIP是近年来迅速发展起来的一种分子识别技术,是利用MIP特定的模板分子“空穴”来选择性吸附聚合物,从而建立的选择性分离或检测技术。MIP对磺酰脲类除草剂具有很好的粘合能力。例如,Bastide[29]等用MIP富集提取绿磺隆、噻吩磺隆、氟磺隆、氯嘧磺隆、氟胺磺隆5种磺酰脲类除草剂残留,用4-乙烯基嘧啶或2-乙烯基嘧啶作为功能单体,乙烯基乙二醇二甲基丙烯酸酯作为交链,甲磺隆作为模板,结果显示MIP在极性有机溶剂中具有很好的识别能力,键和容量达到0.08~0.1mg/g,这种方法可以从水中富集75%以上的磺酰脲类除草剂残留。Zhu等[30]使用MIP键合甲磺隆,键合容量高,能够测定ng级的甲磺隆。汤凯洁等[31]采用苄嘧磺隆分子印迹固相萃取柱(MISPE)对加标大米中的苄嘧磺隆、甲磺隆、苯磺隆和烟嘧磺隆4种磺酰脲类除草剂残留进行净化和富集预处理,几种物质能直接被萃取柱中的印迹位点保留,杂质几乎不保留,表现出良好的识别性能。

2.5 液相微萃取技术

LPME是1996年Jeannot和Cantwell等提出的一种新型前处理技术[32]。LPME相当于微型化液液萃取技术,因样品溶液中目标分析物用小体积萃取剂萃取而得名。例如,吴秋华[18]将LPME与HPLC联用,分析水样中甲磺隆、氯磺隆、苄嘧磺隆和氯嘧磺4种磺酰脲类除草剂残留,检测限达到0.2~0.3ng/g,并且将基质分散固相萃取结合分散液相微萃取与HPLC联用分析土壤中上述4种磺酰脲类除草剂,检测限达到0.5~1.2ng/g。

2.6 微波辅助萃取技术

MASE是匈牙利学者Ganzler等提出的一种新型少溶剂样品前处理技术。MASE利用微波能强化溶剂萃取效率的特性,使固体或半固体样品中某些有机物成分与基体有效分离,并保持分析物的化合物状态[33]。MASE萃取时间短,消耗溶剂少,具有良好选择性,可同时进行多样品萃取,环保清洁,回收完全,越来越成为替代传统方法的新前处理技术。但使用时应对萃取溶剂优化,确保萃取过程和溶剂中分析物的稳定性[34]。现阶段MASE已广泛应用于磺酰脲类除草剂等农药残留前处理中[35,36]。

2.7 其他前处理技术

有支持性液膜萃取技术、CFLME、离子交换膜萃取技术、OSCE等。支持性液膜萃取技术,又叫膜法提取,是一种以液膜为分离介质,以浓度差为推动力的膜分离技术,萃取的化合物范围较窄,只能萃取形成离子的化合物,流速比较慢。例如,Nilve[37]用膜法提取测定水样中的磺酰脲类除草剂残留。CFLME是将LLE和SLM连接起来的一种技术,首先分析物萃取进入有机相(LLE),然后转入液膜支持设备形成的有机微孔液膜表面,最后通过液膜受体被捕获(SLM)。这一技术被用来萃取水中的胺苯磺隆和甲磺隆,胺苯磺隆回收率达到88%~100%,甲磺隆达到83%~95%[38]。CFLME技术和支持性液膜萃取技术均适合在线检测水中痕量磺酰脲类除草剂,方便快捷。不足之处是受体容量易受酸影响,而水样和土样中一般都有酸存在。离子交换膜萃取技术是一种采用离子交换膜作隔膜的萃取技术,通过离子交换膜(具有选择透过性的膜状功能高分子电解质)的选择透过性来实现对分离物的萃取技术。离子交换膜萃取技术对生物测定有良好的评估,萃取过程成本低,能耗少,效率高,无污染、可回收有用物质,与常规的分离萃取技术结合使用更经济。已在磺酰脲类除草剂残留的检测中得到应用[39]。 OSCE适合土壤样品中痕量污染物的萃取,方法有效、简单、快速。Lagana等[40]用OSCE萃取土壤中绿磺隆、苄嘧磺隆、烟嘧磺隆等6种磺酰脲类除草剂,其回收率达到63%~99%,比超声波萃取和MASE高,精确度最好。

3 小结

目前,在磺酰脲类除草剂残留前处理技术中,LLE和SPE仍占据重要位置,新型前处理技术并不能完全代替传统前处理技术,很多情况下样品前处理过程是在常规的传统前处理技术基础上与微型化、自动化、仪器化的新型前处理技术结合共同完成的。

磺酰脲类除草剂的痕量残留及其独特的理化性质,给该类农药残留的分析检测造成较大困难。为确保检测方法的灵敏性和准确性,前处理过程及技术显得尤为重要。近年来,随着SFE、MIP、CFLME及OSCE等新型前处理技术在实际工作中的应用和发展,仪器分析技术(如液-质联用、气-质联用等)、免疫分析技术(如荧光免疫技术、酶联免疫技术等)及生物传感器法、活体检测法、酶抑制法等磺酰脲类除草剂残留新型检测技术方法的不断涌现和快速发展,经济环保、微型化、自动化、仪器化的前处理技术及液-质联用等新型检测方法的发展已成为其首选和重要发展方向,多残留检测、在线实时检测、自动化检测等已成为国内外共同关注的焦点。

参考文献

[1] 邓金保.磺酰脲类除草剂综述[J]. 世界农药, 2003, 25(3):24-29,32.

[2] 张敏恒.磺酰脲类除草剂的发展现状、市场与未来趋势[J]. 农药, 2010,49(4):235-240, 245.

[3] 张一宾.磺酰脲类除草剂的世界市场、品种及主要中间体[C]. 上海:2009年中国磺酰脲类除草剂360°产业论坛, 2009.

[4] 魏东斌,张爱茜,韩塑睽,等. 磺酰脲类除草剂研究进展[J]. 环境科学发展, 1999, 7(5).31-42.

[5] 张蓉,岳永德,花日茂,等. 磺酰脲类除草剂残留分析技术研究进展[J]. 农药,2005, 44(9):389-390.

[6] 吕晓玲,佘永新,王荣艳,等. 磺酰脲类除草剂残留检测技术及其研究进展[J]. 分析测试学报, 2009, 7(28):875-880.

[7] 欧晓明. 磺酰脲类除草剂残留检测分析研究新进展[J]. 精细化工中间体, 2006, 1(36):1-6.

[8] 张淑英,苏少泉,杨长志. 土壤中豆磺隆残留的气相色谱测定[J]. 农药,2000,39(9):23-24.

[9] 黄梅,刘志娟,蔡志敏.高效液相色谱法检测稻田水体中苄嘧磺隆与甲磺隆及乙草胺残留量[J]. 湖南农业大学学报(自然科学版), 2005, 31(2):213-215.

[10] 毛楠文, 李方实. 高效液相色谱法同时测定土壤中残留的苯脲类和磺酰脲类除草剂[J]. 农业环境科学学报, 2008,27(6):2509-2512.

[11] 崔云,吴季茂,将可.磺酰脲除草剂的残留分析[J].上海环境科学, 1998,10(17):22-25,42.

[12] 岳霞丽,张新萍,董元彦. 固相萃取-高效液相色谱法测定水体中苄嘧磺隆的残留量[J]. 光谱实验室, 2006,2(23):321-323.

[13] 叶凤娇,孔德洋,单正军,等. 固相萃取-高效液相色谱法同时测定水中12种磺酰脲类除草剂[J]. 环境监测管理与技术, 2011, 2(23):36-40.

[14] Carabias M R, Rodriguez G E, Herrero H E. Simultaneous determination of phenyl and sulfonylurea herbicides in water by solid-phase extraction and liquid chromatography with UV diode array mass spectrometric detection[J]. Anal Chim Acta. 2004,517:71-79.

[15] Furlong E T, Burkhardt M R, Gates P M, et al. Routine determination of sulfonylurea, imidazolinone and sulfonamide herbicides at nanogram-per-liter concentrations by solid-phase extraction and liquid chromatography/mass spectrometry[J]. Sci Total Environ, 2000,248:135-146.

[16] Galletti G C, Bonetti A, Dinelli G. High performance liquid chromatographic determination of sulfonylureas in soil and water[J]. J Chromatogr A, 1995,692:27-37.

[17] Barker S A, Long A R, Short C R. Isolation of drug residues from tissues by solid phase dispersion[J]. Journal of Chromatography A, 1989,475:353-361.

[18] 吴秋华.液相微萃取前处理结合高效液相色谱法在农药残留分析中的应用[D]. 石家庄: 河北农业大学博士论文, 2011.

[19]徐宝才,岳永德,花日茂.超临界流体萃取技术在农药残留分析上的应用(综述)[J]. 安徽农业大学学报(社会科学版),1999,26.

[20] 史艳伟. 超临界CO2流体萃取土壤中苄嘧磺隆的研究[D]. 武汉:华中农业大学硕士论文, 2009.

[21] 郭江峰. 14C-绿磺隆(Chlorsulfuron)在土壤的结合残留特性研究[D]. 博士学位论文, 武汉: 华中农业大学图书馆,1997.

[22] Bernal J L, Jimenez J J, Herguedas A, et al. Determination of chlorsulfuron and tribenuron-methyl residues in agricultural soils[J].J Chromatogr A,1997, 778:119-125.

[23] Berdeaux O, Alencastro L F, Grandjean D, et al. Supercritical fluid extraction of sulfonylurea herbicides in soil samples[J].Int J Envion Anal Chem,1994,56(2):109-117.

[24] Kang C A, Kim M R, Shen J Y, et al. Supercritical Fluid Extraction for Liquid Chromatographic Determination of Pyrazosulfuron-Ethyl in Soils[J]. Bull Environ Contam Toxicol, 2006, 76(5): 745-751.

[25] Breglof T, Koskinen C. K, Kylin H. Supercritical fluid extraction of metsulfuron-methyl, sulfometuron-methyl and nicosulfuron from soils[J]. Int J Envion Anal Chem,1998, 70(1-4): 37-45.

[26] 戴建昌,张兴,段苓. 超临界萃取技术在农药残留分析中的应用研究进展[J]. 农药学学报,2002,4(3):6-13.

[27] 邵秀金. 绿磺隆残留免疫分析化学研究[D]. 扬州: 扬州大学硕士论文,2002.

[28] Ghildyal R, Kariofillis M. Determination of triasulfuron in soil:affinity chromatography as a soil extract cleanup procedure[J]. J Biophys Methods,1995, 30: 207-215.

[29] Bastide J, Cambon J P, Breton F, et al. The use of molecularly imprinted polymers for extraction of sulfonylurea herbicides[J]. Anal Acta, 2005, 542: 97-103.

[30] Zhu Q Z, Haupt K, Knopp D, et al. Molecularly imprinted polyer for metsulfuron methyl and its bingding characteristic for sulfonylurea herbicides[J]. Anal Chem Acta. 2002, 468: 217-227.

[31] 汤凯洁,顾小红,陶冠军,等.分子印迹固相萃取-液相色谱质谱联用对4种磺酰脲类除草剂残留的测定[J]. 分析测试学报, 2009(12)28:140-144.

[32] Jeannot M.A,Cantwell F F. Solvent microextraction into a single drop[J]. Analytical chemistry, 1996, 68: 2236-2240.

[33] 武汉大学主编.分析化学[M]. 第四版. 北京:高等教育出版社,2000,303-304.

[34] Li Y T, Campbell D A, Bennett P K. Acceptance criteria for ultratrace HPLC-tandem mass spectrometry quantitative and quality determination of sulfonylurea herbicides in soil[J]. Anal Chem, 1996, 68:3397-3404.

[35] Font N, Hernandez F, Hogendoorn E A, et al. Microwave-assisted solvent extraction and reversed-phase liquid chromatography-UV detection for screening soils for sulfonylurea herbicides[J]. J Chromatogr A,1998,798:179-186.

[36] Hogendoom E A, Huls R, Dijkman E, et al. Microwave assisted solvent extraction and coupled-column reversed-phase liquid chromatography with UV detection use of an analytical restricted-access-medium column for the efficient multi-residue analysis of acidic pesticides in soils[J]. J Chromatogr A, 2001,9 38: 23-33.

[37] Nilve G, Knutsson M, Joensson J A. Liquid chromatographic of sulfonylurea herbicide in natural waters after automated sample pretreatment using supported liquid membranes[J]. J Chromatogr, 1994, 688 (1-2):75-82.

[38] 张蓉. 几种磺酰脲类除草剂高效薄层析残留测定技术及应用[D]. 硕士学位论文, 武汉:华中农业大学图书馆,2003.

篇(2)

样品采集是土壤测试的一个重要环节,是整个测土配方施肥工作的基础,如果样品采集不标准,化验精度再高,对指导测土配方施肥的作用也不大。为保证土壤样品的代表性,必须采取以下措施控制采样误差:

1.1科学划分采样单元

利用第2次土壤普查资料,根据采样地区的土壤类型、肥力等级和地形等因素,划分采样单元,并标注到土地利用现状图上。每个采样单元土壤尽量均匀一致。每个单元大田作物和果树为6.67hm2,蔬菜为3.33hm2,棚室每棚为1个单元。不同作物种类分开采,不同土壤类型分开采,不同地形分开采。

1.2正确确定采样点

要有足够的采样点,采样点越少,代表性就越差。一般情况应根据采样单元的大小、土壤肥力一致性等因素,大田每个采样单元取15~20个采样点,大棚内9~13个采样点。另外,采样点要在整个地块中均匀分布,采样点越集中,采样点的代表性就越小。

1.3样品采集要标准

按“随机等量、多点混合”的原则进行采样。大田和果树地采用S形布点采样,大棚内采用梅花形布点取样。每个采样点的取土深度和采样量要保证均匀一致,土样上层与下层的比例要相同。取样器应垂直于地面入土,深度相同。用取土铲取样,先铲出1个耕层断面,再平行于断面取土。测定微量元素的样品必须用不锈钢取土器采样。大田作物和蔬菜采样深度为0~20cm,果树采样深度为0~40cm。旱田土样应在垄台上2个作物根茬之间进行采集,水田土样采集不能采到稻根,果园土样采集时在2棵果树之间选择采样点。将采集的土样放在塑料布上,剔除石块、杂草、作物根系等,铺成正方形,用四分法最后取1kg土样装入布袋。

2土样处理要规范

规范处理土样是保证土壤养分准确度的重要措施,处理土壤应注意以下几点:

2.1新鲜样品的制备

某些土壤的成分如二价铁、硝态氮、铵态氮在风干过程中会发生显著变化,必须用新鲜样品进行分析。为了能真实反映土壤在田间自然状态下的某些理化性状,新鲜样品要及时送回室内进行处理分析,用粗玻璃棒或塑料棒将样品混匀后迅速称样测定。新鲜样品一般不宜贮存;如需要暂时贮存,可将样品装入塑料袋,扎紧袋口,放入冰箱冷藏保存。

2.2样品风干

从野外采回的样品要及时放入风干盘中,摊成薄层,置于通风、阴凉、干燥的地方自然风干,风干过程中防止酸、碱及灰尘的污染。土样不得日晒,以防养分损失。

2.3样品处理

土样要全部磨碎过筛,不能将不易磨碎的筛上土样扔掉,要逐次磨碎逐次过筛,直至所有土样全部过筛。过筛后的土样要充分混匀。一般初过筛的土壤结构差、养分含量较低,后过筛的土壤结构好、养分含量也较高。3土壤样品测试要准确

土壤测试是测土配方施肥工作中最为关键的一个环节,结果准确与否直接影响到配方的准确性,为保证检验数据的准确性和可靠性,要在以下几方面加以控制和解决:

3.1空白试验

空白试验必须与样品进行平行测定,以考察和监控来自环境、试剂、试验器皿、水等给检测样品带来的污染,以及污染程度。

3.2平行双份

在测定时随机抽取10%~30%的样品进行平行双份测定,没有超出允许误差即为合格。平行测定结果不符合要求时,除对不合格的重新做平行双份测定外,应再增加10%~30%的平行双份,直到符合允许误差要求。

3.3参比样

在进行样品检测的同时,将1个参比样与样品同时检测,与测定值参照比较。

4试验要求要严格

测土配方施肥的参数全部来源于田间试验,施肥模式参数的建立和肥料配方的提出,施肥参数的校验以及肥料配方效果的验证和推广应用,都与田间试验密不可分。为保证试验数据的准确性和科学性,可以通过如下途径进行控制:

4.1试验地选择

选择一块合适的试验地是减少土壤差异的影响、提高试验精度的首要条件。要选择土壤类型、肥力水平、作物长势一致,地势平坦的地块作为试验田。试验田要有良好的水浇条件和排水条件,做到旱能浇,涝能排,保证试验不受外界环境条件的干扰,以减小试验误差。

4.2严格田间管理

田间试验要由专人严格操作,确保各项参数准确。试验各小区内除施肥品种、数量不同外,其他浇水、防病、治虫等管理措施要掌握完全一致。对作物生育期间的生物学性状要认真调查并做好记载,秋季晾晒并做好室内考种。

论文关键词测土配方施肥;技术措施;样品采集;土壤处理;样品测试

论文摘要测土配方施肥是一项技术性很强的工作,只有掌握好关键技术措施,才能真正发挥出测土配方施肥的作用。土壤样品的采集要有代表性,土壤处理要规范,土壤样品测试要准确,试验要求要严格。

参考文献

篇(3)

关键词:农药,污染,健康,环境保护

 

一、农药污染途径

农药的污染途径众多,但农药之所以会造成严重的污染后果的主要原因在于其基本特性,如:农药的理化特性,包括:农药的溶解性、降解性、附着性、渗透性和内吸性等。

1、直接污染

顾名思义,直接污染就是农药的有害部分直接作用于受污染体。农药直接作用于蔬菜瓜果等可食作物的表面,经过长期的生长过程侵入其内部,在进入食物链,就直接危害人体健康。

2、间接污染

所谓间接污染,就是说作物的食用部分并非农药的直接受体,而是农药经由土壤中的水分养料进入作物体内并富集,从而形成农药残留。

3、违规用药

农民为减小作物受病害、虫害等灾害的影响,不仅会违规交叉使用蔬菜上禁用的高毒农药,例如:甲胺磷、对硫磷、甲基对硫磷等。而且还会频繁用药或增高用药量,这些都是造成农药污染的主要途径。

二、农药污染的危害

1、农药污染对人体健康的危害

农药作为农业生产资料对减轻作物病虫害的防治作用是不可忽略的,但是,它也是一把双刃剑,农药在对作物实施保护的同时会才六在作物体内,通过食物链而危害人体健康。科技论文。具体而言,农药可经过消化道、呼吸道及皮肤三条途径进入人体而引起中毒。尤其是有机磷农药,可以通过皮肤进入人体,从而对人体的健康造成危害。某些高效农药,会引起急性中毒,严重者会引发生命危险。

2、农药对生态环境的污染

随着科学技术的发展,农药对生态环境的影响也得到了重视。农药多是以液体喷洒使用的,在喷洒中或使用后,农药中的拥堵成分会随水分一起蒸发到空气中,从而对大气造成影响,如果污染物的含量超过本底值,并达到一定数值就称为污染。如果污染物浓度超过卫生标准或生物标准,就视之为污染或严重污染。而一旦达到污染或严重污染,就势必会对人体健康、其他生物健康及整个生态平衡造成威胁。

3、农药对水环境的污染

水体中农药的来源主要是以下几个方面:向水体直接施用农药;含有农药成分的雨水落入水体;植物或土壤粘附的农药,经水冲刷或溶解进入水体;生产农药的工业废水或含有农药的生活污水等进入水体等。农药的使用时刻都危害着水环境及水生生物的生存,甚至会破坏水生态平衡。科技论文。如密西西比河、莱茵河等一些世界著名河流的河水中都检测到严重的农药超标问题。

4、农药对土壤的污染

土壤中的农药来源有三种情况:第一种是农药直接进入土壤,如除草剂的施用;第二种是防治病虫害喷撒农田的各类农药。第三种是随着大气沉降,灌溉水和植物残体。而农药对土壤的污染主要有两个方面:第一,深入土壤之中的农药会随着养料和水分进入作物体内;另外还会对土壤微生物的生存造成危害

三、农药污染危害与环境保护措施

众所周知,我国是一个农业大国,所以造成了农药使用品种多、用量大的局面。然而,可有人知晓,对作物所使用的农药中70%~80%直接渗透到自然环境中,并对土壤、水甚至是人们一心想要保护的农产品造成污染,从而进入生物链,对所有生物和人类健康都产生严重的、长期的和潜在的危害性。

尽管我国从实施了“预防为主,综合防治”的植保方针以来,在病虫害防治问题上取得了很大的成效,但是,离完全控制化学农药对环境污染的目标还有很远。植保是我们不能放弃的,如何才能使植保的功能兼顾持续增产、人畜安全、环境保护、生态平衡等多方面。采取相对有效的防治措施,充分发挥自然抑制的作用,将有害生物种群控制在经济损害水平下,使经济效益、环境效益都达到相对平衡的程度。

1、建立有害生物防治新思想体系

摈弃传统的以农药抑制作物病虫害的思想观念,由新的、更合理的方法取代。比如生物防治,利用生物防治作用物来调节有害生物的种群密度,以生物多样性来保护生物,使有害生物的在种族密度保持在经济效益所允许的受害范围以内。科技论文。从持续农业观念看,这种方法是十分可行的。不过从技术上看还有待研究与推广。

2、研究开发有害生物监测新技术

要在植物病原体常规监测方法中的孢子捕捉、诱饵植株利用、血清学鉴定基础上开展病原物分子监测技术的研究,采用现代分子生物学技术监测病原物的种、小种的遗传组成的消长变化规律,为病害长期、超长期预测提供基础资料。对害虫的监测也可利用现代遗传标记技术(RFLP’RAPD等)监测害虫种群迁移规律。对于杂草应充分考虑到杂草群落演替规律,分析农作物——杂草、杂草——杂草间的竞争关系,另外还应考虑使用选择性除草剂给杂草群落造成的影响,对杂草的生态控制进行研究。

3、 建立有害生物的超长期预测和宏观控制

为适应农业的可持续性发展,预测、预报应对有害生物的消长变化做出科学的判断,也就是要对有害生物消长动态实施数年乃至十年的超长期预测。要在更人的时空尺度内进行,其理论依据不单单只是与有害生物种群消长密切相关的气候因子,亦包括种植结构、环保要求、植保政策以及国家为实现农业生产持久稳定发展所制定的政策措施。

参考文献:

[1] 冯雨峰,闾振华,化学农药对环境的危害原因及其防治对策[J].环境科学与技术,2007-1

[2]邹喜乐,论农药对环境的危害[J].湖南农机,2007-07

[3] 刘英东,化学农药对环境的危害及其防治对策的探讨[J].中国环境管理干部学院学报,2006-01

[4] 海浪,大协作致力降低农药污染[J].山东农药信息,2010-02

[5] 刘世友,农药污染现状与环境保护措施[J].河北化工,2010-01

篇(4)

关键词:GeoGauge土壤刚度/模量测试仪;路基工程;质量控制

Pick to: the paper GeoGauge soil stiffness/modulus tester working conditions and the application of the principle, the selection of a highway 1 km long road test test results, to make quality control chart and drawing histogram analysis, to get information to improve the service level of the road and service life.

Keywords: GeoGauge soil stiffness/modulus tester; The subgrade engineering; Quality control

中图分类号:O213.1文献标识码:A 文章编号:

道路工程建设质量的变异性由于材料和施工等变异性导致路面病害发生的区域和时间不同总是存在的。减小工程质量的变异性,提升建设质量的下限值,对于延长路面的使用寿命具有重大意义。论文以路基施工为例,借助于GeoGauge土壤刚度/模量测试仪测定的路基回弹模量,以数理统计学的“2”原理为工具,通过实时检测路基施工过程中的特征参数,及时评价施工变异性,并降低施工变异性,发现施工缺陷,以采取措施纠正质量缺陷,提高质量参数下限值,确保道路整体施工质量和行为参数的稳定,提高道路的服务水平和服务寿命。

1GeoGauge土壤刚度/模量测试仪的工作条件与应用原理

1.1 GeoGauge土壤刚度/模量测试仪的工作条件

GeoGauge土壤刚度/模量测试仪测试时,在土的表面施加一个恒定的振动力,量测由此产生的变形,动态地反映材料现场的工程特性。土壤刚度/模量测试仪在地面上测量材料的力学阻抗,以频率的函数的形式测量传递到土壤层的压力和引起的表面弯沉。刚度、变形力等直接由材料的阻抗产生。GeoGange在 100-196Hz之间以25Hz的稳态频率给地面施加很小的位移 (

1.2 GeoGauge土壤刚度/模量测试仪适合的应用原理

(l)在将要测量的材料上选择一个具有代表性的点。在技术人员获得一定量经验之前,应该避免高集料含量的基层或底基层。

(2)在每个测量位置至少重复测量3次,这些重复的测量将使您熟悉相应表面条件下的GeoGange精确度。将GeoGauge底座固定在地面上是测量中最重要的部分。

(3)GeoGauge的安放十分关键,仪器应与地面足够的直接接触。仅仅有一个材料表面的水平是不够的;经验表明,100%的脚的表面积都需要与材料表面相接触。

2 GeoGauge土壤刚度/模量测试仪在高速公路路基施工质量控制中的应用

2.1工程案例

本合同段施工线路起讫桩号 KS0+550-K57+000,全长6.45公里。检测数据为工程路基下部碾压资料,为考察施工质量及变异性情况,选取其中长1km测试路段的测试结果。为用GeoGauge土壤刚度/模量测试仪测试地基的模量值,测点35个,由于仪器本身读数的可能变化,每个测点测不少于4次,并使变异系数小于10%,取测试结果的算术平均值作为该测点的最终结果。为保证碾压质量,除了其它指标要求外,设计部门还对该部位提出了40MPa的标准要求。试分析该段施工质量状况。

表1模量测试结果表(Mpa)

2.2质量控制图

对该路段的模量结果作平均值与极差控制图,如图1所示。

(a)(b)

图1平均值-极差控制图

分析平均值-极差控制图。从图1可以看出,所有的样本点都在(算术平均值=与标准差=S)的控制界限内;位于中心线两侧的样本点数目大致相同;样本点在控制界限内的散布是随机独立的,无明显规律或倾向。这都是施工处于受控状态的一些必要特征;但在平均值控制图的中心线上、下各一个“”的范围内的样本点数仅为3个,并未占到总点数约2/3的比例。同时,对道路工程施工而言,用“”作为控制界限显得较为宽松。为确保工程质量,以为控制界限是可行的;而以为、控制界限时,在平均值控制图中有一个样本点(7号)已突破控制下限,此时可判定施工过程能力下降,发出预警。观察表1的7号样本点测试数据易知,该组模量普遍较小。返回工地找到对应的检测段,发现碾压质量的确不足,原因是压实是在雨后进行的,碾压含水率较大。

2.3绘制直方图

根据得到的样本数据绘制直方图,通过直方图来分析道路施工质量状况:一方面,观察以模量为特性值的直方图的形状,来判断施工过程的正常或异常,进而寻找异常的原因;另一方面,可与质量标准比较(如路基的设计模量),判定施工过程的质量情况。当出现异常情况时,应立即采取措施,查证原因,防止不合格的施工质量发生。

1)根据表1的结果绘制直方图(图2),图中同时绘出了概率密度曲线。由图2可见,直方图的分布属于“标准型”,即中间高、两边低,左右基本对称;数据大体上呈现正态分布,据此可判定施工过程处于稳定状态。但这一结论跟质量控制图以为控制界限的结论不同,表明如果要求较为严格,仅根据模量特性值呈现的正态分布判定施工处于稳定状态是不准确的。

图2直方图与正态分布曲线图

2)与标准比较及合格率计算

根据图2直方图与设计模量或标准值的相对位置关系可知,直方图的分布超过公差范围,属于“能力不足型”。说明有待于提高施工能力。而根据现有施工水平,计算不合格率为15.15%。

即不合格概率为15.15%,太大,与通常的5%标准相差较大,不符合要求。按照95%的保证率,得到的模量代表值32.8Mpa

3)结合给定的模量设计水平,计算施工能力指数0.34

施工能力指数不足0.67,表明过程能力严重不足,需采取措施予以提高。为此首先分析影响施工能力指数的因素。通过图2的平均值控制图可知,5号样本点的模量水平亦较低,原因可能是碾压遍数不足。因此,提高测试路段整体碾压质量水平的关键是对5号与7号对应的路段进行特别处治。经过工地会议决定,对5号检测段直接进行补压,对5号段则予以翻松、晾晒,等含水率处于最佳含水率范围时再行碾压。后经检测、计算、质量控制图的绘制与分析,所有样本点数据处于“”的界限内,薄弱路段得以消除,整体检测路段的变异性大为降低。模量平均值增加为58MPa,标准差为5.9MPa,95%保证率时的模量代表值为48.4MPa>40Mpa;施工能力指数为1.02>1.00,达到了“正常”的标准,即表明施工能力已处于“正常”状态,重新碾压保证了工程质量。

参考文献

[1]中华人民共和国交通部.《公路路基路面现场测试规程》(JTGE60-2008).北京,人民交通出版社,2007年.

[2]傅波.PFWD在旧路改造工程中的应用研究.公路与汽运,2005.08.

篇(5)

农艺专家走出实验室

2016年11月28日清晨,大棚内雾气一片,吕平正给建档立卡的尹贵强、张明艳、罗占书等贫困农户讲解羊肚菌的栽培技术。在他指导下,贫困户们麻利地操作,将一盘盘菌种有序送至温室大棚内,开沟起垄,播种覆土,进行种植。

吕平是贵州省农委农产品质检中心高级农艺师,他多次调查走访,了解到白云区小山村、瓦窑村的贫困户们有致富积极性,却因缺乏专业农业知识,找不到适合的好项目。吕平团队决定引导当地种植经济价值高、周期短、见效快珍稀食用菌羊肚菌与冬荪。

“吕老师来到村里后,让我们改变传统种植理念,为村民致富增收插上了科技的翅膀。”小山村支书张清友说。

吕平还充分发挥专家团队优势,组织带领6个调研组,深入田间地头,对白云区5个乡镇及农业园区土壤取样检测,通过引导实施科学配方施肥,降低种植成本。

万名专家“联帮带”

2016年初,贵州组织开展“万名农业专家服务‘三农’行动”,万名农业专家组建成80多支农业特色专家团队,分赴省内各地椭研究贫困村资源环境状况、把脉存在问题、加强技术指导,为当地产业脱贫找准脱贫路、谋好脱贫策。

贵州师范大学黄凯丰教授根据田间试验编制了《水生蔬菜的节水栽培技术》,突破水生蔬菜必须在水田种植的限制,实现了“水―旱轮作”,研究成果已在红湖种养殖专业合作社进行示范推广,促进了当地农民的增收。

贵阳市白云区沙文科技副镇长毛远湖带领蒙台村发展食用菌种植,将食用菌作为村集体新的支柱产业。村合作社与贵州春辉现代农业有限公司达成了合作协议,贫困农户以土地入股成立合作社,建设大棚2万平方米,项目建成后将使55名贫困农户脱贫。

把论文写在田间地头

省委书记、省人大常委会主任陈敏尔指出,“加大工作力度,推动科技人员到基层去支持‘三农’”“要评出100个把论文写在大地上、写在农民致富道路上的‘农字号’研究员、教授”。

篇(6)

查看更多《中国烟草学报》杂志社信息请点击: 《中国烟草学报》编辑部

烟草与烟气化学

(1)聚醋酸乙烯酯大孔吸附树脂选择性降低烟气中苯酚研究 杨松 聂聪 孙学辉 颜权平 王宜鹏 赵乐 刘惠民 张晓兵

(5)卷烟主流烟气中拟除虫菊酯类农药含量的检测方法 吴娜 耿永勤 李雪梅 米其利 黄海涛 周岚 唐萍

(10)不同钾肥配施对烤烟石油醚提取物和中性致香物质的影响 何永秋 刘国顺 杨永锋 李姣 高琴 彭金梅 刘典三 母海勇 高传奇

制造技术

(15)物理参数对造纸法再造烟叶纸基热降解和燃烧特性的影响 宁敏 周顺 徐迎波 胡源 葛少林 王程辉 舒俊生 田振峰 王平军 周明华 陶丰 何庆

农艺与调制

(21)我国部分典型植烟区土壤腐殖质组成特征及其与部分土壤因子的关系 马云飞 罗会斌 宋街明 莫江 杨承 李振华 蔡凯 尹启生

(26)曲靖市植烟土壤有效锌含量状况及与土壤因素的关系分析 赵爽 许自成 解燕 芦秀苒 刘加红 邓建华

(32)土壤氮和15n肥料氮在不同生长期烤烟各器官的积累 化党领 张诗卉 王瑞 霍光 刘卫群

(37)恩施州烟田养分输入、输出与平衡 邓建强 王瑞 谭军 赵晓超

(43)不同光质对烤烟漂浮育苗中烟苗生长发育及光合特性的影响 时向东 王林枝 满晓丽 刘喜庆 王旭锋

植物保护

(47)根际土壤调控对连作烟田青枯病的控制作用 郑世燕 丁伟 陈弟军 杜根平 徐小洪 谢华东

现代烟草农业

(53)湖南烟农专业合作社的建设现状及发展趋势 肖春生 肖汉乾

生物技术

(60)一株新的具有高效降低烟碱含量的短小芽孢杆菌mk21的分离筛选及作用研究 陈德鑫 许家来 马志远 郭志刚 安德荣

(64)烟草科技期刊论文撰写基本要求正式 无

生物技术

(65)云烟97巨型变异烟株的组织培养与快速繁殖 何余勇 罗定棋 赵磊峰 张永辉 谢强 年夫照 谢云波 雷晓

(70)烟草内生促生细菌的筛选及在漂浮育苗中的应用效果 陈泽斌 杨跃华 夏振远 雷丽萍 陈海如

吸烟与健康

(76)nnk和b[a]p在卷烟烟气复杂基质中的联合遗传毒性 木潆 朱茂祥 潘秀颉 杨陟华 齐绍武

综述

(81)稻田残留二氯喹啉酸对后茬烤烟的危害及其修复研究进展 韩锦峰 张志勇 刘华山 王晓军

(84)近20年国内外烟草相关专利信息对比分析与发展对策 曹建平

(90)烟草类胡萝卜素代谢的遗传及基因工程研究进展

永霞 冯琦 王景 崔红 刘国顺

(95)云南腾冲县打造高黎贡山绿色生态优质烟叶界头示范区 无

(96)打造特色科普 助推科技兴烟——湖南省烟草学会推进科普工作纪实 无

(f0002)烟草全基因组基因芯片第一版(tiling芯片)成功研制 无

篇(7)

论文关键词:艾比湖湿地边缘带,土壤盐分,特征分析

景观边缘带(Ecotone),亦可称为边缘带。它是相邻生态系统间的过渡地带,它的特征表现在被时空尺度和相邻生态系统之间的作用力所决定。在全球变化的背景下,它比其它地区更加敏感,具有“指示”和“预警”的意义。[1]

艾比湖作为新疆第一大咸水湖,自20世纪80年代起就受到专家的重视,2000年6月,艾比湖湿地成为自治区级自然保护区。钱亦兵、吴兆宁等人研究了艾比湖地区沙尘形成与地表条件之间的关系并对该地区土壤保持提供了一定的建议。[2]何静、高翔等对艾比湖自然保护区内的植物群落的数量分类进行研究,并通过土壤环境的特征解释了植物群落的分布。[3]马玉娥,钱亦兵等对艾比湖地区的植被分布状况及其多样性进行了研究。[4]邓怀敏、吉力力·阿不都外力等分析了艾比湖流域景观结构并研究了其余环境因子的关系。[5]

艾比湖湿地边缘带位于准葛尔盆地西南部边缘与阿拉山口风区交接处,生态环境脆弱。自20世纪50-70年代,艾比湖流域加大开发力度,入湖水量明显减少,艾比湖湿地边缘带的生态环境加剧恶化,导致土壤养分下降,植被大量消失,土地荒漠化加剧。[6-8]本文研究艾比湖湿地边缘带表层土壤盐分的离子特征,有助于在恢复当地生态过程中对人工种植植被的选择提供一定的信息支持,对推进保护和恢复艾比湖湿地边缘带,加快艾比湖流域生态环境综合治理,具有一定的现实意义。

1 材料与方法

1.1 研究区概况

艾比湖湿地自然保护区(82°33′47″E--83°53′21″E,44°31′05″N--45°09′35″N,)东西长约102.63千米,南北宽72.3千米。它位于准格尔盆地西南部边缘带和阿拉山口风区交接处,深居大陆腹地。是奎屯河、博尔塔拉河、精河等多个河的尾闾湖,也是准噶尔盆地西侧水盐集聚的最低处,海拔为188米。气候为典型温带大陆性气候,干燥少雨多风,四季气候悬殊:冬、夏季漫长;春、秋季短暂;年平均气温5℃,年均降水量105.17mm,年均蒸发量2221.3mm。

1.2 土样采集

根据前期对遥感图像的解译,使用 GPS 定位技术在该区布点 66个,选取地面相对平坦,具有典型性的区域作为采样点,选择土样时尽量保持周围土壤性质相对一致,差异性较小的地方取土,每个样点取0-20cm土壤三份。大学本科论文 将每个样点取得的土样混合,作为待试样品。

1.3 测定方法

土样经风干,磨碎,过0.150mm筛后备用。将处理好的土样,采用1:5土水比例制备浸提液。对浸提液进行水溶性盐分析,分析项目包括:含盐量,Na++K+,Ca2+,Mg2+,CO32-,HCO3-,Cl-,SO42-等主要离子含量。其中,总盐采用质量法测定;CO32-、HCO3-采用双指示剂滴定法测定;Cl-采用AgN03滴定法测定;SO42-采用EDTA间接络合滴定法测定;Ca2+和Mg2+采用EDTA络合滴定法测定;Na++K+采用差减法测定。[9]

2 结果与讨论

2.1 土壤盐分组成与类型

土壤水溶性盐类是盐渍化土壤中主要的存在形式,过量的盐分导致土壤溶液高浓度提高了其渗透压力,导致植物根系吸水困难,引起植物死亡,导致盐害准概况的发生。所以,对土壤可溶性盐类的定性定量分析,对研究干旱区盐渍化土壤具有重要的意义,为土壤改良提供依据。[10]研究区土壤中各种离子占总盐的比例如图1所示。从图1可知,整个研究区内,土壤阳离子以K++Na+含量最高,为48.36%,Mg2+含量最低,为1.3536%;阴离子以Cl-最高,为38.7278%,CO32-含量最低,为0.1362%。

图1 各盐分离子占总盐量的比例

根据中国土壤学会盐渍土专业委员会对土属划分的标准[11],Cl-/SO42->2为氯化物类型;1≤Cl-/SO42-≤2为硫酸盐-氯化物类型;0.2≤Cl-/SO42-<1为氯化物-硫酸盐类型;Cl-/SO42-<0.2为硫酸盐类型。可知研究区土壤类型为氯化物型盐渍化土壤。

1

2.2 土壤盐分离子频数分布统计分析

土壤中各类盐分离子之间既存在着发生学上的关系,也存在着化学上的基本关系,频数分布能反映样本在总体中的分布情况[12]。对研究区土壤可溶性盐分离子进行了频数分布统计分析(表1)。从表1中每个盐分离子平均值的大小可以看出研究区土壤的盐分离子组成,阴离子主要是Cl-,含量为30.09g/kg;其次是SO42-,含量为6.49g/kg;CO32-含量最小,在多个样本中均未检测到;阳离子主要是K++Na+,含量为37.57g/kg。由变异系数可看出,哥盐分离子均表现出一定成的的离散状态,其中CO32-的离散程度最高。

2.3 土壤盐分离子之间的相关性分析