学术刊物 生活杂志 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 可降解塑料的研究

可降解塑料的研究精品(七篇)

时间:2024-04-09 14:46:01

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇可降解塑料的研究范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

可降解塑料的研究

篇(1)

关键词:白色污染; 聚乳酸; 降解

前言

S着塑料的广泛应用和产量的持续增大。“白色污染”问题己变得越来越严重,成为当今世界最严重污染源之一,己受到各国的重视,并且制定了相关的法律政策来处理。现在各国除了研究如何回收废弃塑料外,更多的精力是研究可降解的高分子材料,从而在根本上解决塑料的“白色污染”问题。主要原因是高分子材料的回收利用,从理论上讲,可以解决环境污染,也可以解决资源短缺的问题,但在实施过程中,往往受到高分子材料本身性质、技术及成本等的限制;而研究开发可降解的高分子材料则成为20世纪70年代以来重要课题,受到世界范围内的关注仁。

1可降解性高分子材料的降解机理

高分子材料的生物降解是指在生物(主要是指真菌、细菌等)作用下,聚合物发生降解、同化的过程、生物降解主要取决于聚合物分子的大小和结构、微生物的种类以及环境因素。聚合物的降解机理十分复杂,一般认为材料在体内的降解和吸收是受生物环境作用的复杂过程,包括物理、化学和生化因素。物理因素主要是外应力,化学因素主要有水解、氧化及酸碱作用,生化因素主要是酶和微生物。由于植入体内的材料主要接触组织和体液,因此水解(包括酸碱作用和自催化作用)和酶解是最主要的降解机制。

2聚乳酸的降解性能

与大部分热塑性聚合物相比,PLA具有更好的降解性能。PLA的降解首先通过主链上的降解性能。PLA的降解首先通过主链上的C-O水解,然后在酶的作用下进一步降解,最终生成无害的水和二氧化碳。由于具有降解性能,故人们担心其使用寿命。实际上,PLA的降解速度相对比较缓和;更为重要的是,PLA的降解总是在先行水解之后才可能酶解。依照聚合物的初始相对分子品质、形态、结晶度等,PLA降解的速度可从几星期到几个月甚至是1~2年。但如果与微生物和复合有机废料混合埋入地下,它的降解速度会加快。因此它是一种理想的生物降解材料,特别适宜于2~3年的短期用途。影响PLA降解速度的因素主要有结晶度、玻璃化转变温度、相对分子质量和介质的pH值等。水先渗入聚乳酸的无定形区,导致酷键断裂,当大部分无定形区己降解时,才由晶区边缘向晶区中心逐步降解。晶区降解速度很慢,因此结晶度大小对降解速度有很大的影响。玻璃化转变温度低于水解温度则水解加快。相对分子质量越小及其分布越宽的PLA降解速度越快,这是因为相对分子质量越大,聚合物的结构越紧密,内部的酷键越不容易断裂,并且相对分子质量越大,降解所得的链段越长,易溶于水中,产生的H+越少,使pH值下降缓慢。酸或碱都能催化PLA水解,介的pH值也是影响PLA降解速率的重要因素。

3 PLA共混改性的研究进展

通过与韧性聚合物共混,也是常用的改进聚乳酸柔性的途径,目前人们己经研究的很多共混体系,如乙烯一醋酸乙烯共聚物(poly(ethylene-vinyl acetate))、聚4-乙烯基苯酚(poly(4-vinylphenol)、聚ε-己内酯、聚3羟基丁酸酯(poly(3-hydroxybutyrate)等。

沈一丁等[4]将热塑性淀粉(TPS)与聚乙二醇(PEG)、聚乳酸(PLA)共混后,采用溶剂蒸发法制备出完全生物降解的聚乙二醇改性淀粉/聚乳酸薄膜(SPLA)。聚乙二醇增塑SPLA薄膜,有效的降低了玻璃化转变温度和热塑性淀粉和PLA的相容性,体系的耐水性、强度均随着PLA含量的增加而增加,不过这种薄膜的强度和柔性并没有得到改善。

龚华俊等[5]采用超声辅助原位湿法合成多壁碳纳米管/轻基磷灰石纳米复合材料(MWNTs/HA),并通过溶液浇铸法制备了PLA/MWNTs/HA复合材料薄膜,静态力学和动态力学性能分析表明,当MWNTs/HA为0.05~0.10份时,对复合薄膜有一定的增韧效果,复合膜的玻璃化转变温度随着MWNTs旧A用量增加呈上升趋势。

PCL除可以和PLA共聚形成共聚物改善柔性外,还可以与PLA共混来改善PLA基体的脆性。直接共混PLA和PCL,两种组分是不相容的,两者混合时必须添加一定的相容剂。Wang等在PLL刀PcL体系中,以亚磷酸三苯酯(TPPi)为催化剂,在熔融状态下进行混合。结果表明,在共混过程中发生酯交换反应,生成界面相容剂,促进组分均匀分布,提高体系的机械性能,并大大改善了体系的柔性,当添加TPPi2%时,PLLA/pCL(80/20)断裂伸长率从28%提高到了128%。

顾书英等[11]采用熔融挤出法制备聚乳酸/对苯二甲酸-己二酸-1,4-丁二醇三元共聚酯(PBAT)共混物,发现低含量低的PBAT的加入适当的提高了聚乳酸的断裂伸长率,不过共混物的拉伸、弯曲性能也有所降低。当PBAT含量较高时,共混物断面的SEM照片可以明显观察到两相不相容。

4 聚乳酸在包装领域的生产应用现状

聚乳酸作为包装材料有其独特的优势,可以说,聚乳酸包装材料完全可以替代传统的包装材料,在很多方面更优于传统包装材料。与传统热塑性塑料相比,聚乳酸作为包装材料有以下优点[13]:

(l)完全折叠性和缠结保持力取向性的PLA薄膜具有和玻璃纸膜、金属薄片等相媲美的完全折叠性和缠结保持力,即可以弄皱或折叠,这些普通塑料膜是不具备的。

(2)高的光泽度和透明度PLA的高透明性和光泽度可以和玻璃纸以及聚对苯二甲酸乙二酯相比,是普通聚丙烯薄膜的2~3倍,低密度聚乙烯的10倍。

(3)阻隔性能和良好的印刷性能乳酸的基本重复单元使得PLA是一种内在极性的材料,这种高的极性导致聚乳酸具有高的表面能,从而产生良好的印刷性能,此外它还能够阻止脂肪族分子的透过,具有很好的抗油性。

(4)低温热封性能无定形聚乳酸薄膜的热封温度和EVA(巧%)相同,都在80~85℃之间。

以上的这些优点,注定聚乳酸会在包装领域大放异彩,就目前的生产状况来看,聚乳酸薄膜开发应用的前沿集中在日本和美国,国内仅仅出于起步阶段。

5 可降解塑料的开发趋势及发展前景

可降解塑料尽管存在种种问题,但它的发展方兴未艾,以下几个方面代表了可降解塑料的发展方向:(1) 积极开发高效廉价光敏剂、氧化剂、生物诱发剂、降解促进剂和稳定剂等,进一步提高可降解塑料的准时可控性、用后快速降解性和完全降解性。(2)为避免二次污染,同时保证有丰富的原料,以天然高分子微生物合成高分子的完全生物降解塑料将会越来越受到重视。(3) 水解性塑料和可食性材料由于具有特殊的功能和用途而备受瞩目,也成为环境适应性材料的又一热点。(4) 充分利用基因工程技术培育可生产聚酯的生物性植物以降低生物降解塑料的成本。

可降解塑料的发展,不但在一定程度上缓解了环境污染,而且对日益枯竭的石油资源也是一个补充。许多国家已开始考虑用生物可降解塑料代替部分石油化工合成塑料,并陆续颁布了一些法规,如意大利的立法规定自1991 年起所有包装用塑料都必须可降解,我国也已开始考虑禁用不可降解的塑料制品。据日本生物降解塑料实用化检讨委员会预测,今后10 年内全世界生物可降解塑料的市场规模为130 万吨。我国每年产生的塑料垃圾达100 万吨以上,若其中的20 %以降解塑料取代的话,需求量也在20 万吨以上,市场潜力是很大的。可降解塑料的发展适应了人类可持续发展的要求,因此,可降解塑料的发展前景是美好的。

参考文献

[1]王岩,陈复生,姚永志,等.粮食与饲料工业,2005,3:21~22

[2] 任杰.化学工业出版社.北京.2003.10

[3]黄俊俊,宋跃明,刘立眠,王军.中国修复重建外科杂志,2004,18(l):21~24

[4]贺小虎,章庆国,李新松.中国临床康复2005,9(38):36~38

篇(2)

关键词:生物可降解高分子材料;分类;应用

随着社会经济的发展,环境问题越来越得到人们的重视,而高分子材料――塑料,作为上个世纪最伟大的发明之一对人类社会的推动作用是毋庸置疑的。但同样它给环境带来的污染问题也日益显著,很重要的一点就是塑料进入自然界后难以被自然环境分解,通常完全分解一类塑料需要数十年甚至要上百年的时间。而随着生物可降解高分子材料的出现及发展,对于塑料难被自然界分解这个问题带来了希望。本文主要介绍下这种材料的分类以及可能给在一些领域带来的改变。

生物可降解高分子材料定义:生物可降解高分子材料是指在一定时间和一定条件下,能够被微生物(细菌、真菌、霉菌、藻类等)或其分泌物在酶或化学分解作用下发生降解的高分子材料。

2、生物可降解高分子材料的类型

按合成方法可分为如下几种类型。

2.1微生物生产型

许多微生物能合成高分子,这类高分子主要有微生物聚醋和微生物多糖,具有生物降解性。研究表明,若给予合适的有机化合物作食物碳源,许多微生物都具有合成聚醋的能力。此外,许多微生物能合成各种多糖类高分子,其中有一些多糖类高分子具有良好的物理性能和生物降解性,可望用于制造不污染环境的生物降解性塑料。

2. 2合成高分子型

将脂肪族聚酷和芳香族聚酷(或聚酞胺)制成一定结构的共聚物,这种共聚物既有良好的性能,又有一定的生物降解性。聚乳酸(PLA)和聚乙醇酸(PGA)作为新型生物降解的医用高分子材料正日益受到广泛重视。

2. 3天然高分子型

自然界中存在的纤维素、甲壳素和木质素等均属降解性天然高分子,这些高分子可被微生物完全降解。但因纤维素存在物理性能上的不足,因此,它大多与其它高分子,如由甲壳质制得的脱乙酞基多糖等共混制得。如日本以纤维素和脱乙酞基壳多糖进行复合,制得了生物降解塑料,采用流涎法制得的薄膜与普通的PE膜的强度相似,并可在2个月后完全分解,盒状制品75天可完全分解,但目前尚未工业化生产。

2. 4掺合型

在没有生物降解性的高分子材料中,掺混一定量有生物降解性的高分子物,使所得产品具有相当程度的生物降解性,这就制成了掺合型生物降解高分子材料,但这种材料不能完全生物降解。目前主要开发改性淀粉与可生物降解或可水溶性塑料的降解塑料合金母料,或以淀粉为主要原料的可完全生物降解塑料,可以100%地分解,其分解速度可按要求控制在数分钟到一年的时间。

3、生物可降解高分子材料的应用

生物可降解高分子材料因其独特的性能,使得它的发展前景极为广阔,将为减少环境污染、保护地球与大自然,为人类创造一个无污染的环境发挥巨大作用。生物可降解高分子材料的分类应用主要有以下几个方面:医疗领域、农业、包装材料,其他领域。

3.1生物可降解高分子材料的医学应用

由于可降解高分子材料不击一次手术移出,因此其特别适合于一些击暂时性存在的植入场合根据其临床中的应用,可分为以下几类:

(1)药物控制释放。在过去20年,合成生物可降解高分子被广泛用于最贡要的药物释放领域。用生物可降解高分子制成的药物控制释放系统来控制药物的释放速率,而理想的情况应是,药物能在合适的时间、合适的地方加以释放,以满足生理击要。以生物可降解高分子材料作为载体的避孕制剂是属于控释、缓释制剂,不但要求制剂中的药物能够恒定释放,并且要求生物可降解高分子材料在释药过程中要保持一定的形状以保证有效释药面积。

(2)外科固定。PGA和PL、作为可吸收的合成缝合线被用于外科固定植入体。随后又增加了其在上肢和下肢的应用和整形外科领域获得了新的应用。日前经过改性的PLGA植入体的性质己能更好地适应肌健、韧带和骨骼复原的需要。

(3)组织支架PLLA的物理化学性能能让它作为象肝这样的软组织,象软骨和骨骼这样的硬组织的支架材料;PC、被用作细胞移植和器官再生的人造支架;PLGA被运用于肠和肝再生,以及骨组织工程上。

3.2在包装领域,人们致力于研制可完全生物降解的高分了以取代现在使用的非生物降解高分了。己商品化的有聚己内醋、聚乙烯醇、聚乙一醇、聚乳酸等。这些高分性能优良,可用吹模、注塑等方法加工,但它们的应用并不广泛,因为价格较高,比常用包装材料聚乙烯、聚内烯价格高4― 6倍。

3.3在农业领域光生物降解聚乙烯农膜可使作物成熟期提前,减少杂草生长。通过提高田间温度增加收成,并使收获期提前。可降解农用地膜可节省灌溉水和肥料的用量,避免残留物对下一季作物生长的危害。这种薄膜还可通过在种植前儿周升高土地温度来杀死病原性细菌,可避免使用某些破坏大气臭氧层的农药如一澳甲烷。在日本已用氧俗生物降解塑料包封的农药,可达到长期缓释高效,减少对河、湖的富营养化。近来日本开发出的壳聚糖塑料降解地膜,强度大,尤污染,成本低,可生物降解,而目降解后的产物对土壤有改良作用。纤维蔚微品壳聚糖制备的功能性杂化纤维有一定的机械强度,可生物降解,降解产物对人体尤毒副作用。

除上述应用外,生物可降解高分了在其他领域也得到了运用。例如,用合成生物可降解聚醋作包装材料,在洗涤剂粉中用PA、及其共聚物处理废水,在农业土壤中用特种PH BV片来释放杀虫剂,以及在兽医中用PH BV大药丸来释放药物。用可再生资源如玉米、小麦等淀粉生产的聚乳酸,经纺妊成型制得性能良好的纺织纤维,在服装、农业、渔业、卫生、建筑等领域的应用,己实现半商品化。随着技术的进一步发展和产品的逐步商业化,生物可降解高分了的应用前景定会更加光明。(郑州大学材料科学与工程学院;河南;郑州;450001)

参考文献:

[1] 赵博,对生物可降解高分子材料的研究【J】,科技经济市场,2006年4月,28

篇(3)

关键词 Nature M.T环保地膜;生物地膜;可降解地膜;降解速率

中图分类号 X592 文献标识码 A 文章编号 1007-5739(2016)18-0147-01

农业上,农用地膜应用很广。由于农用薄膜分子量大、性能稳定,能够在自然条件下在土壤中长期存留,降解时间长达200~300年,造成大量的“白色污染”。生物可降解材料能被微生物或酶分解,最终代谢成CO2和H2O,不会引起环境污染,并且能够克服对石油原料的依赖,因此生物可降解塑料替代材料的研发与应用是解决“白色污染”行之有效的举措[1-2]。为了解决农膜大规模应用导致的环境污染问题,近几十年来,许多学者对此进行了大量研究,成功研制出多种新型可降解塑料来代替传统的塑料地膜[3-5]。

清炀科技股份有限公司所生产的Nature M.T环保地膜,其原材料是公司研发团队通过大量多次试验论证对聚乳酸进行生物改性,使其具有延展性、柔韧性、耐温性,于2012年成功研制出新型可完全生物降解材料母粒,目前已可全面取代市面上所使用的传统石化塑料,此产品获多项技术专利,并通过SGS等国内外权威检测机构的认证和检测。由该母粒制成的产品可取代传统塑料制品,达到无毒害、无重金属、无塑化剂等的环保100%生物可全降解新材料。海峡现代农业研究院有限公司与台湾群力管理顾问有限公司联合引进清炀科技公司的环保可分解聚利膜技术在大陆生产及推广应用。

本研究通过土壤填埋方式研究环保地膜降解性能,从生物降解过程中的地膜重量的减少量和降解率等方面探讨了Nature M.T环保地膜的降解特性,为Nature M.T环保地膜在蔬菜种植中的推广应用提供实践依据。

1 材料与方法

1.1 试验概况

田间试验设在漳州长泰县陈巷镇西湖村群力果蔬基地。土壤理化特性:pH值6.30,有机质30.5g/kg,全氮2.85 g/kg,全磷3.11 g/kg,全钾8.15 g/kg,碱解氮100.51 mg/kg,速效磷98.15 mg/kg,速效钾358.35 mg/kg。

试验材料:番茄品种为农科180;供试地膜为Nature M.T环保地膜(产地:厦门)、国产常规聚乙烯地膜。

1.2 试验设计

试验设2个处理,即每种地膜为一个处理,以国产常规聚乙烯地膜为对照(CK)。3次重复。田间农事操作同当地番茄生产。

1.3 试验方法

土壤采自群力果蔬基地,土样采集完后,风干、磨碎过5 mm筛,备用。

2015年8月,番茄苗移栽后20 d,将地膜剪成50 mm×50 mm大小的方块,取约1 g地膜与1 kg土壤混匀,装于填埋箱中。田间填埋箱的规格为210 mm×140 mm×100 mm,底部和四周为80目的不锈钢丝网,顶部为30目的不锈钢丝网。每种地膜处理15个箱,填埋箱装好后置于种植的两畦番茄之间的垄上土壤表层。

1.4 取样及指标测定

填埋前,称取地膜的重量,于填埋后15、30、45、60 d各取3个填埋箱进行相关测定。降解速率测定:主要测定田间地膜重量损失,计算公式如下:

降解率(%)=(降解前重量-降解后重量)/降解前重量×100

1.5 数据分析

采用DPS 7.05统计软件进行数据显著差异性检验。

2 结果与分析

测定填埋地膜的失重情况来衡量地膜在土壤中的降解特性。由表1可知,与常规聚乙烯地膜相比,Nature M.T环保地膜在土壤中具有良好的可降解特性。随着填埋时间的延长,Nature M.T环保地膜的降解效果越明显,填埋于土壤中60 d后,重量由原来的平均0.999 0 g下降到0.621 7 g,平均降解率达到37.77%。填埋于土壤中60 d后,常规聚乙烯地膜的重量变化不明显,平均降解率仅为1.02%。

3 结论与讨论

可降解地膜的评价方法包括降解生成物的积存量降解过程中氧的消耗量和二氧化碳的生成量等[6-7]。本研究采用测定地膜的失重量来衡量地膜在土壤中的降解性能,随填埋时间的延长,Nature M.T环保地膜重量不断减轻,到达60 d时,地膜的平均降解率达到37.77%,这与张晓海等[8]、王朝云等[9]的研究结果类似。与Nature M.T环保地膜相比,常规聚乙烯地膜的重量变化很小,几乎不能降解。通过本研究发现,Nature M.T环保地膜是一种值得推广的农膜,其降解机理还有待进一步研究。

4 参考文献

[1] 张文群,金维续.降解膜残片与土壤耕层水分运动[J].土壤肥料,1994(3):12-15.

[2] 李培夫.我国降解农膜的研制现状及应用前景[J].新疆农垦科技,1995(6):24-25.

[3] 袁俊霞.农用残膜的污染与防治[J].农业环境与发展,2003,20(1):3l-32.

[4] 高怀友,赵玉杰.西部地区农业面源污染现状与对策研究[J].中国生态农业学报,2003,11(3):184-186.

[5] 许香春,王朝云.国内外地膜覆盖栽培现状及展望[J].中国麻业科学,2006,28(1):6-11.

[6] STROTMANN U,REUSCHENBACH P,SCHWARZ H,et al.Develop-ment and evaluation of an online CO2 evolution test and a multicom-ponent biodegradation test system[J].Applied and Environmental Micro-biolog,2004,70(8):4621-4628.

[7] TSUJI H,SUZUYOSHI K,TEZUKA Y,et al.Environmental degradation of biodegradable Polyesters:3.effects of alikali treatment on biodegra-dation of Poly(?-caprolactone)and Poly(R)-3-hydroxybutyrate films in controlled soil [J].Journal of Polymers and the Environment,2003,11(2):57-65.

篇(4)

摘要:农用塑料地膜具有保温、保墒、防寒、防冻等作用,但随着地膜覆盖技术的普及已经给农业生产带来了一系列的负面影响,大量的残留地膜破坏土壤结构、危害作物正常生长发育,造成农作物的减产,进而影响农业生产环境。本文分析了塑料残膜产生的原因及危害,并阐述了塑料残膜在农村生活环境及农业生产过程中存在的主要问题,且提出了农用塑料地膜农田污染的防治对策。

关键词:塑料地膜;地膜覆盖栽培技术;塑料残膜;防控措施

中图分类号:X71 文献标识码:A DOI编号: 10.14025/j.cnki.jlny.2017.12.041

20 世纪中期,日本最先推广地膜覆盖栽培技术,我国于20 世纪80 年代从日本引进该技术。首先在蔬菜上开展栽培研究,均获得高产、早熟、品质优良的明显效果,到1982 年地膜覆盖面积达11.9 万公顷,发展应用到瓜菜、花生、棉花、水稻、糖料等多种作物,地膜覆盖技术由此进入大面积推广阶段,到2002 年使用面积高达11.70×106 公顷。我国地膜覆盖技术发展之迅速,应用领域之多,以及所产生的效益之大,在我国农业新技术推广史上十分罕见。据估算,在1984 年~1993 年的10 年间,我国地膜覆盖面积已达到2553 万公顷,共增产蔬菜1587 万吨,粮食2107.4 万吨,西瓜、甜瓜3709 万吨,皮棉、花生、糖料等均有很大程度的增产,所增产值576.28 亿元,新增纯收入488.15 亿元,相当于多播种853.3 万公顷的耕地。

虽然我国地膜覆盖技术起步比较晚,但发展势头极其迅猛,很大程度提高了农作物的产量。但由于我国现阶段使用的塑料地膜多为单体聚乙烯塑料,其是由一种抗氧剂、紫外线吸收剂加聚乙烯而制成的有机化合物材料,具有不易腐烂、性能稳定,在自然环境中,其生物分解性及光分解性较差,即使经过几十年时间,残留塑料地膜仍存留在土壤中,严重影响土壤含水率、土壤空隙率、土壤容重、渗透性和土壤透气性,从而影响农作物的产量和质量。

当前我国所使用的塑料地膜主要是12μm 以下的超薄地膜,这类地膜强度极低、极易破碎、极难回收。根据农业部门研究显示,在我国农田地膜残留量大多在60~90 公斤/ 公顷,最多可达160 公斤/ 公顷。我国地膜覆盖栽培技术已有40 多年的历史,累计使用面积2000 万平方公里,已超过2000万吨塑料地膜进入土壤,而地膜残留量约为使用量的1/4~1/3,若依此计算,我国塑料残膜在农田中的数量非常庞大,这主要是与地膜用量、厚度降低、降解能力差和残膜回收率低有关。

1 塑料残膜污染的主要危害

1.1 塑料残膜对土壤的污染

土壤中的塑料残膜数量超过一定量时,会阻碍农田机械作业,导致土壤板结,严重妨碍下茬作物根系生长和土壤微生物的活力,减少土壤水分储存、传导功能。更严重时,会形成塑料隔离膜,影响农作物的伸展和对土壤养分、水分的吸收传导,从而造成弱苗、死苗。

黑龙江省残留地膜对土壤含水量、土壤容重、土壤孔隙度等都有显著的影响,而对土壤硬度影响不大。表1 为残留地膜对土壤物理性质的影响实验结果。

由表1 可知,塑料残膜可使土壤容重和密度增加,土壤含水量和孔隙度减少。塑料残膜残留在土壤中,严重影响土壤毛管水渗透,并阻碍土壤的吸水能力。

1.2 塑料残膜对农作物的危害

塑料残膜对土壤的理化性状影响,进而影响农作物根系伸展,造成根部吸水及养分运输的能力下降,从而导致农作物减产。根据有关部门测定,当土壤中塑料残膜含量为58 公斤/ 公顷时,可使大豆减产5.5%~9%,小麦减产9%~16%,玉米减产11%~23% 。相关部门曾就残塑料膜对玉米和小麦的影响做过实验,其结果见表2。

由表2 可知,塑料残膜是通过影响玉米和小麦的发芽、出苗、根系发育、幼苗和茎叶生长,从而影响玉米和小麦的产量。

1.3 塑料残膜对农村生产生活的影响

塑料残膜弃于田间地头,随风飘移,散落在树枝、建筑物上以及漂浮在池塘、河流中,严重破坏当地自然景观。散落在湖泊水库,可造成水体污染,进而危害鱼类产卵和生存。塑料残膜还会随农作物的秸秆及食料进入农户家,牛、羊等家畜误食后,导致肠胃功能失调,膘情下降,严重时会引起牲畜死亡。塑料地膜制品中的增塑剂(邻苯二甲酸酯化合物),具有高脂溶性、低水溶性及生物积累特性,对农作物具有毒害作用,能通过各种途径污染粮食、食品,威胁人畜健康。

2 塑料残膜污染的防控措施

2.1 制定相关法律法规,建立塑料残膜回收奖惩机制目前,我国尚未建立塑料地膜回收的相关法律法规,有关部门应当针对不同塑料地膜厚度标准制定相应的法律法规,并针对塑料地膜的回收建立奖惩政策,对及时清除、回收塑料残膜的给予奖励,对于不及时清除、回收并造成污染的予以罚款,用法律手段促进塑料残膜的回收。

2.2 制定塑料农膜土壤残留和相应厚度标准

我国在80 年代试验使用地膜厚度为0.014 毫米,但很多制造厂家为了减少成本,获得更大的经济利益私自把地膜的厚度降至0.010 毫米、0.006 毫米,甚至0.003 毫米。地膜的厚度越薄,强度就越低,越不利于回收,更容易残留于土壤中。有关部门应当及时制定塑料地膜厚度和土壤残留标准,严禁生产及使用不达标的地膜。执法部门也应当加强对市场上流通使用地膜的管理,禁止不合格地膜流入市场。

2.3 推广使用可降解塑料地膜

可降解塑料地膜是在地膜中添加可被微生物分解的成分或光敏剂的薄膜。这种薄膜在微生物或光作用下能降解成无机物、CO2 和水后进入土壤,进而避免残留危害。它可分为光降解膜、生物降解膜、光———生物降解膜三种。例如中国科学院长春应用化学研究所研制的可光解地膜、兰州化学研究所研制的可溶解地膜、北京塑料研究所研制的非淀粉可控光———生物降解塑料膜等,但目前推广范围还是很小,主要原因是可降解地膜的成本要比普通地膜高15%左右,影响了农民使用的积极性。有关部门应当及时制定可降解塑料地膜使用补贴制度,提高农民使用的积极性,扩大其使用范围,逐步代替普通塑料地膜。

2.4 采用适时揭膜技术

所谓揭膜是指在塑料地膜发挥了其保墒增温作用后,从农田表面去除的农田作业。适时揭膜技术不仅可以提高地膜的回收率,减少地膜对农田土壤的污染,而且还可以提高农作物的产量。据统计,适时揭膜技术可缩短覆膜时间60~90 天,回收率可达95%以上,基本可消除农田残膜对土壤的污染。

参考文献

[1]何文清,严昌荣,赵彩霞,常蕊芹,刘勤,刘爽.我国地膜应用污染现状及防治途径的研究[J].农业环境科学学报,2009,28(03).

篇(5)

关键词:高分子材料;可降解;生物

中图分类号:TQ464 文献标识码:A

我国目前的高分子材料生产和使用已跃居世界前列,每年产生几百万吨废旧物。如此多的高聚物迫切需要进行生物可降解,以尽量减少对人类及环境的污染。生物可降解材料,是指在自然界微生物,如细菌、霉菌及藻类作用下,可完全降解为低分子的材料。这类材料储存方便,只要保持干燥,不需避光,应用范围广,可用于地膜、包装袋、医药等领域。生物可降解的机理大致有以下3 种方式: 生物的细胞增长使物质发生机械性破坏; 微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。按照上述机理,现将目前研究的几种主要的可生物可降解的高分子材料介绍如下。

1生物可降解高分子材料概念及降解机理

生物可降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。

生物可降解的机理大致有以下3种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物可降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。

因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、PH值、微生物等外部环境有关。

2生物可降解高分子材料的类型

按来源,生物可降解高分子材料可分为天然高分子和人工合成高分子两大类。按用途分类,有医用和非医用生物可降解高分子材料两大类。按合成方法可分为如下几种类型。

2.1微生物生产型

通过微生物合成的高分子物质。这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解塑料。如英国ICI 公司生产的“Biopol”产品。

2.2合成高分子型

脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热性差,无法应用。芳香族聚酯(PET) 和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪族和芳香族聚酯(或聚酰胺) 制成一定结构的共聚物,这种共聚物具有良好的性能,又有一定的生物可降解性。

2.3天然高分子型

自然界中存在的纤维素、甲壳素和木质素等均属可降解天然高分子,这些高分子可被微生物完全降解,但因纤维素等存在物理性能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求,因此,它大多与其它高分子,如由甲壳质制得的脱乙酰基多糖等共混制得。

2.4掺合型

在没有生物可降解的高分子材料中,掺混一定量的生物可降解的高分子化合物,使所得产品具有相当程度的生物可降解性,这就制成了掺合型生物可降解高分子材料,但这种材料不能完全生物可降解。

3生物可降解高分子材料的开发

3.1生物可降解高分子材料开发的传统方法

传统开发生物可降解高分子材料的方法包括天然高分子的改造法、化学合成法和微生物发酵法等。

3.1.1天然高分子的改造法

通过化学修饰和共混等方法,对自然界中存在大量的多糖类高分子,如淀粉、纤维素、甲壳素等能被生物可降解的天然高分子进行改性,可以合成生物可降解高分子材料。此法虽然原料充足,但一般不易成型加工,而且产量小,限制了它们的应用。

3.1.2化学合成法

模拟天然高分子的化学结构,从简单的小分子出发制备分子链上含有酯基、酰胺基、肽基的聚合物,这些高分子化合物结构单元中含有易被生物可降解的化学结构或是在高分子链中嵌入易生物可降解的链段。化学合成法反应条件苛刻,副产品多,工艺复杂,成本较高。

3.1.3微生物发酵法

许多生物能以某些有机物为碳源,通过代谢分泌出聚酯或聚糖类高分子。但利用微生物发酵法合成产物的分离有一定困难,且仍有一些副产品。

3.2生物可降解高分子材料开发的新方法——酶促合成

用酶促法合成生物可降解高分子材料,得益于非水酶学的发展,酶在有机介质中表现出了与其在水溶液中不同的性质,并拥有了催化一些特殊反应的能力,从而显示出了许多水相中所没有的特点。

3.3酶促合成法与化学合成法结合使用

酶促合成法具有高的位置及立体选择性,而化学聚合则能有效的提高聚合物的分子量,因此,为了提高聚合效率,许多研究者已开始用酶促法与化学法联合使用来合成生物可降解高分子材料。

4生物可降解高分子材料的应用

目前生物可降解高分子材料主要有两方面的用途:(1)利用其生物可降解性,解决环境污染问题,以保证人类生存环境的可持续发展。通常,对高聚物材料的处理主要有填埋、焚烧和再回收利用等3种方法,但这几种方法都有其弊端。(2)利用其可降解性,用作生物医用材料。目前,我国一年约生产3000 多亿片片剂与控释胶囊剂,其中70%以上是上了包衣的表皮,其中包衣片中有80%以上是传统的糖衣片,而国际上发达国家80%以上使用水溶性高分子材料作薄膜衣片,因此,我国的片剂制造水平与国际先进水平有很大的差距。国外片剂和薄膜衣片多采用羟丙基甲纤维素,羟丙纤维素、丙烯酸树脂、聚乙烯吡咯烷酮、醋酸纤维素、邻苯二甲酸醋酸纤维素、羟甲基纤维素钠、微晶纤维素、羟甲基淀粉钠等。

参考文献

[1]侯红江,陈复生,程小丽,辛颖.可生物降解材料降解性的研究进展[J].塑料科技,2009,(03):89-93.

[2]翟美玉,彭茜.生物可降解高分子材料[J].化学与粘合,2008,(05).

篇(6)

【关键词】 高分子材料 可降解 循环利用

1 生物可降解高分子材料的含义及降解机理

生物可降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。生物可降解的机理大致有以下三种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物可降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、PH值、微生物等外部环境有关。

2 生物可降解高分子材料的类型

按材料来源,生物可降解高分子材料可分为天然高分子和人工合成高分子两大类。按用途分类,有医用和非医用生物可降解高分子材料两大类。按合成方法可分为如下几种类型。

2.1 微生物生产型

通过微生物合成的高分子物质。这类高分子主要有微生物聚酯和微生物多糖,具有生物可降解性,可用于制造不污染环境的生物可降解塑料。

2.2 合成高分子型

脂肪族聚酯具有较好的生物可降解性。但其熔点低,强度及耐热性差,无法应用。芳香族聚酯(PET)和聚酰胺的熔点较高,强度好,是应用价值很高的工程塑料,但没有生物可降解性。将脂肪族和芳香族聚酯(或聚酰胺)制成一定结构的共聚物,这种共聚物具有良好的性能,又有一定的生物可降解性。

2.3 天然高分子型

自然界中存在的纤维素、甲壳素和木质素等均属可降解天然高分子,这些高分子可被微生物完全降解,但因纤维素等存在物理性能上的不足,由其单独制成的薄膜的耐水性、强度均达不到要求,因此,它大多与其它高分子,如由甲壳质制得的脱乙酰基多糖等共同混制。

2.4 掺混型

在没有生物可降解的高分子材料中,掺混一定量的生物可降解的高分子化合物,使所得产品具有相当程度的生物可降解性,这就制成了掺合型生物可降解高分子材料,但这种材料不能完全生物可降解。

3 生物可降解高分子材料的研发

3.1 传统方法

传统利用生物可降解高分子材料的方法主要包括:天然高分子的改造法、化学合成法和微生物发酵法等。(1)天然高分子的改造法。通过化学修饰和共混等方法,对自然界中存在大量的多糖类高分子,如淀粉、纤维素、甲壳素等能被生物可降解的天然高分子进行改性,可以合成生物可降解高分子材料。此法虽然原料充足,但一般不易成型加工,而且产量小,限制了它们的应用。②化学合成法。模拟天然高分子的化学结构,从简单的小分子出发制备分子链上含有酯基、酰胺基、肽基的聚合物,这些高分子化合物结构单元中含有易被生物可降解的化学结构或是在高分子链中嵌入易生物可降解的链段。化学合成法反应条件苛刻,副产品多,工艺复杂,成本较高。(2)微生物发酵法。许多生物能以某些有机物为碳源,通过代谢分泌出聚酯或聚糖类高分子。但利用微生物发酵法合成产物的分离有一定困难,且仍有一些副产品。

3.2 酶促合成

用酶促法合成生物可降解高分子材料,得益于非水酶学的发展,酶在有机介质中表现出了与其在水溶液中不同的性质,并拥有了催化一些特殊反应的能力,从而显示出了许多水相中所没有的特点。

3.3 酶促合成法与化学合成法结合使用

酶促合成法具有高的位置及立体选择性,而化学聚合则能有效的提高聚合物的分子量,因此,为了提高聚合效率,许多研究者已开始用酶促法与化学法联合使用来合成生物可降解高分子材料。

4 结语

随着高分子材料合成与加工的技术进步,生物可降解高分子材料在各行业得到广泛、深入的应用。生物可降解高分子材料助剂、树脂原料和加工机械一起组成了生物可降解高分子加工的三大基本要素。此外,加工工艺水平、配方技术以及相关配套服务设施也成为完美展现制品性能的不可或缺的因素。我国生物可降解高分子材料工业起步较晚,发展迟缓,难以适应目前的发展趋势,必须借助行业发展,探索一条具有中国特色的工业之路。在消化、吸收、仿制国外先进品种和技术的基础上,针对不同行业要求和特点,开发出高效、多功能、复合化、低(无)毒、低(无)污染、专用化的生物可降解高分子品种,提高规模化生产和管理能力,改变目前行业规模小、品种少、性能老化且雷同、针对性(专用性)差、性能价格比明显低于国外同类产品、创新能力低下、污染严重、无序竞争的局面,一些新型功能的生物可降解高分子材料的发展时间不长,消费量较低,却带来了产业新的突破点和增长点,丰富完善了整个体系,其高技术含量和巨大的增幅显示了强大的生命力,创造一个投入产出比明显高于其他化工产品的新产业。

篇(7)

社会实践调查报告范文

我在塑料编织厂当工人

“实践”是件听起来轻松,实则却“蕴味”十足,甚至意义深刻的事。实践能使你已成的“惯性”和被特定环境“保护”的生活重新增添一些色彩,确切地说,这是一个“过程”,过程中夹杂着忙与快乐。

“万事开头难”这话一点儿也不假,虽然我参与实践的时间不长,但求职之路的艰辛和求到职之后的茫然让我感叹市场竞争的激烈,感悟到了生活的艰辛。

南通是个绣品城,而我所处之地是绣品城中的一幅绣品,密密麻麻的人以此为生,电脑绣花用的是编程,但我不会。况且也不需要暑期打零工的。整理东西,每天在劳累中度过。学不到一点知识。学的最多的可能是对人生的一份坦然,不得以我放弃了这份工作。每天感叹生活的单调与乏味,却不想依靠父母的帮助。哀叹啊,哀叹。

奔波了好多天之后,我找到了一份真正意义上的暑期社会实践单位。通州市姜灶塑料编织厂。厂长姓张,人很可亲。清瘦显得他活力无限。我跟他说,我学的是机电专业,但没学过什么专业课程,我还顺便提及辅修过市场营销这门课程。他顿了顿,想了想说,我这儿的机器上有很多针,各种各样的型号都有,分类很严密。有时是大的一排,有时是小的一排,大小有时又要交错相差。这样吧,我先把你安排到拌料间,去学习一下材料的分配和用料的安全。然后去销售部门吧。我点了点头,同意了。

第二天一大早,我就跟着张厂长来到了拌料车间,车间里堆满了聚乙烯颗粒。张厂长领了我来到一个姓赵的师傅面前说,赵师傅,这是从学校里来参加暑期社会实践的,您就好好照顾照顾吧。

我站在那儿,盯着赵师傅熟练的忙碌着,一袋袋的原料按不同的比例被投放到了搅拌机里。我沉默着,虽然我知道“沉默是金”,但此时此刻却是一块没有光泽的石头。我依然沉默着。等到那师傅忙完后,他给我讲起了塑料业的发展,塑料的降解功能。

塑料是一个新兴行业,发展时间还不长。但目前随着塑料制品的日益增多,“白色污染”也越来越严重。而21世纪又是一个环保世纪,为了保护我们的家园,全世界都对塑料行业提出了一个严峻的问题,就是生产出来的塑料产品尽量是环保的,可降解的。连我们厂也都要这样。现在中国的普通老百姓还在追求价的廉宜和结实度,而国外却都已向环保靠拢了。你看那个塑料厂已被国外退回了好多产品,就是因为产品的质量不合格,无环保性能,不可降解。

降解塑料与同类的普通塑料具有相当或相近的应用性能和卫生性能,在完成其使用功能后,能在自然环境条件下较快地降解。成为易广泛被吸收的碎末。并随着时间的推移进一步降解成为co2和水。但从总体而言,当前降解塑料还处于技术阶段,有待于进一步深化研究,工艺进一步完善。并致力于提高性能,降解成本,拓宽用途和逐步推向市场化进程中。

目前,已初步明确,聚乙烯是可生物降解的。且在聚乙烯中加入改良性淀粉后可提高其生物降解性。其基本的降解机理是可降解的。塑料制品中所含的淀粉在短期内被土壤中的微生物分泌的酶迅速降解而生成空洞,导致制品的力学性能下降。并伴随着空洞的形成,表面积扩大,从而增大与土壤的接触面;同时配方中还添加了氧化剂和土壤的金属盐。反应生成过氢氧化物。这些将导致聚乙烯链的断裂而降解成为易被微生物吞噬的低分子化合物。最终回到生物圈,进入自然循环。

我惊讶极了,一个小小的师傅竟然懂的那么多,中国加入了wto,不止企业的管理人员,连师傅也加入了经济发展的行业中,步伐真快啊。

我实践的那家单位虽小,但却为我们的社会创造了不少的财富,若不论财富,那它毕竟为我们提供了若干个岗位,一个企业“以人为本”,人人都把其当作是自己的一部分,那企业的魅力是怎样的大啊。

暑期的实践生活虽然不长,只有那仅仅的两周,但却为我的人生刻下了一段铭心的经历。我不知道别人是如何看待这次的实践生活,但对我来说却是意义非凡的。使我在享受生活的同时也品尝到了生活的艰辛。想要经营一个企业不是容易的,靠蛮劲和热血是无法解决的,谁能保证这些有效期有多长。