时间:2024-04-08 17:47:05
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇智能城市交通范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
近十几年来,世界各国及城市都在广泛开展对智能交通系统(ITS)理论和技术方法的研究,ITS项目的实施和应用对欧美、日本等典型发达国家城市交通运行与服务所做的贡献得到这些国家的高度肯定和认可。随着城市化进程的加快,城市居民生活要求的不断提高,城市交通作为我国城市发展的重要基础设施,无论是在质还是量上都存在一些直接或间接的消极、负面问题,交通拥堵严重、交通运行效率低已成为我国城市交通发展的“通病”。据统计,2011年,全国667个城市中约有三分之二的城市交通在高峰时段出现拥堵,15座城市交通拥堵造成的经济损失每天近10亿。在这些问题重重的背景下,城市交通信息化已得到相关部门及行业的认可及重视,ITS项目是城市交通信息化发展的重大工程之目前已在我国许多城市大力实施推行,成为地面运输系统投资的主流,投资规模也在迅速增长。据相关统计,从2009-2016年,城市智能化交通管理系统投资额共达1077.58亿元,其中北京、上海、广州等超大型城市智能化交通管理系统建设方案的投资为39亿元。因此,不管是政府、交通行业及企业,还是公众都非常关注其对提高城市运行效率、改善城市交通拥堵问题等方面的绩效。
2相关文献回顾及综述
国外对于ITS的评价已比较熟悉,美国在2000年的“National^八咕阮如阳”的最新版卜!^!!4.0冲评价文档(E-valuatbnDocuments)对ITS评价的内容和方法进行了比较全面的阐述,主要分为评价设计、成本分析、性能效益研究、风险分析评价指导性文件五大部分日本为了研究ITS的地区特点,在五个地区进行ITS项目的试验,给出了ITS试验区域的评价方法。在欧盟,费用效益分析法在ITS项目评价中占据了主导地位,国内学者对ITS项目评价也有一些研究,如汪博2]梁玉庆、王世华H肠敏,陶汉卿4]涨扬、吴志周^湖明伟、史其信6];陈旭梅、郭淑霞n;朱泰英等B_TO];卫振林等01],同济大学杨晓光教授[12]在国家“十五”科技攻关项目“智能交通关键技术开发和示范工程”中总结并形成了《ITS评价指南》。从目前学者们对于ITS项目评价的相关研究可以发现,由于很多ITS评价数据无法以定量的方式显示出来,采用传统的交通项目评价方法来评价ITS是不适合的,如经典的费用效益分析是建立在相对完整的历史数据上的,而ITS项目的费用和效益历史数据却是缺乏的,因此在实践上费用分析法是无法实施的。应用仿真模型对信息效果进行评价时,要求模型必须是能重现瞬时交通流变化的动态模型。因此交通流数据的输入必须按驾驶员类型、发生时间等进行分类,计算量很大,限制了一些方法的实际应用。
由此可见,目前的一些ITS评价方法都存在一定的弊端,本文研究的核心思想就是将ITS实施作为一项“政策”的实施,从交通畅通性诸多影响因素中分离出智能交通系统(ITS)的应用对城市交通畅通性所发挥的净作用和净贡献,从而更加科学地评价城市智能交通系统ITS建设的作用和效果。
3研究方法和计量模型的构建
3.1研究方法的选取
Heckman(1985,198613]提出了双重差分模型(DID),这种模型允许不可观测因素的影响(假定它们是不随时间变化的),在实证研究中能够通过控制其他变量的影响分离出贡献的净效应,同时能较好地避开内生性及选择偏差的存在进而影响估计结果一致性的问题,是一种结果比较稳健的方法,在国内外研究中,DID模型目前已被广泛应用于检验政策效果和有效性的多个领域,尤其是行业研究。广州市智能交通系统的建设和应用,一方面造成了广州城市智能交通系统建设前后交通“畅通性”的差异,另一方面造成同一时点上建设了智能交通系统的广州和未建设智能交通系统的其他城市之间交通“畅通性”的差异,类似于“科学实验”。下面将运用双重差分模型计算ITS系统的应用对广州城市交通畅通性的贡献率。以建设了智能交通的地区为“实验组”,未建设智能交通系统的地区为“对照组”,利用双重差分模型可以在有效控制其他可能因素的影响后,既分离出实验组在智能交通系统应用后交通运行状况变化的个体差异,又分离出不同区域在时间上的差异,从而识别出智能交通系统应用的效果。
3.2模型假设及参数的设定
3.2.1模型的前提假设。DID模型假设政策是外生的,作为与广州对比的控制组城市选取的重要假设是:可观察选择(Se^lectOnonObservableS,即政策的外生性(非解释变量外生性),指的是被解释变量条件均值独立,即政策不应与误差项有关,即ITS的实施仅影响广州,而对选取的对比城市不应有影响,或者可以忽略影响,此假设引申为以下几个要求:
(1)模型允许存在不可观测因素的影响,但假定它们是不随时间变化的,即可以存在固定效应。
(2)如果有未被观测到的与被解释变量相关的因素,同时影响到是否进行ITS的实施,则说明控制组和实验组并非随机选取,并非“自然实验”,不满足假设。即除政策外,其他条件影响相同。
(30个体异质性(或通过外生性,异方差及相关性等方法和技术处理后)不存在非球形干扰。
(40控制组合实验组的特征稳定。
3.2.2模型参数的设立。运用DID模型计算ITS系统对广州城市交通畅通性的贡献率,相应模型设定如下(贡献率为因x变动引起的y变动除以总的y变动,比照索洛增长模型,取dh后,虚拟变量系数即贡献率):
JIny.,=爲+p,Pt十P{T,+SP^t+rdinX十〜 (1)
其中,Y_t表示i城市在t时期的交通畅通性,(i=1表示广州,=0时表示对照城市;=0表示ITS应用之前,1=1表示ITS应用之后)。采用路网行车速度表征“畅通性”,对于控制组变量,即影响路网行车的因素,本文采用供需两个角度筛选出了人均机动车保有量、人均道路长度、人均道路里程、人均客运量、人均GDP五项指标,分别用XA,X3,X4,X5表示,则模型
(1)可转化为模型(2):
dInYlt=pQ+pxPx+p2Tt+SPtTt+yxdInXx+y2dInX2+y3dInX3+y4dInX4+r5d\nXs-felt ' (2)
4实证分析-以广州ITS为例
4.1实证模型的改进
由于本研究中用来衡量影响交通畅通性的五个指标之间存在一定的相关性,为避免信息的重叠,尽可能真实的反映现实问题,下面将采用主成分分析法降维,用较少的指标来代替原来较多的指标。以“广州”的指标数据为例,表1是分析5个控制变量的相关系数矩阵表,从表中可以看出这5个变量具有高相关性C
表2中KMO值为0.561,根据统计学家Kaise给出的标准KMO值大于0.5,适合因子分析。Battle球形检验的sig.取值0.000,表示各个变量之间不是独立的。
表3表明提取两个主成分,累积总方差达91.155%,满足提取累积贡献率為85%的一般要求。可初步得出提取两个成分将能概括绝大部分信息。进一步运用SPSS软件分别得到五控制变量的碎石图、成份矩阵、成份得分系数矩阵,成分1、和成分3、4、5的特征值相距较大,说明仅用成分1、就可以替代五个变量进行主成分分析。通过成份矩阵表和主成分得分系数矩阵表可知,在提取的两个主成分中,各指标因素影响差距不大,都在0.90左右。可得到主成分V的线性组为:
V,??0.322Xj?0.447X2?0.516?0.108X4-0.037X,(3
r2=0.659^-0.147J2+0.274^3+0.287^4+0.354J,(4)模型(2)可转化模型(5):
d\nYu=;80+职+站+SPX+aid\nl\+a2dlnK3+s„(5)各变量及指标的含义见表4。
4.2对照组的选取
要定量计算广州ITS对其城市交通畅通性的影响贡献,必须以“广州”为处理组,再选择合适的对照城市,该对照城市的控制变量等指标的人均值发展趋势必须与广州市对应指标的人均发展趋势相同。本研究初选了北京、上海、深圳、武汉、长沙、杭州、天津、重庆8座城市,根据相关统计年鉴、官方已公布的发展年报等资料,搜集了以上城市2008-2014年交通畅通性的相关指标的面板数据,并与广州市对应指标做对比分析,据此选择与广州市人均发展趋势相同的城市作为对照城市。广州、武汉、重庆、深圳、天津、杭州、北京、上海、长沙9座城市2008-2014年的五项指标数据均呈现上升趋势。各个城市在不同指标中的排名均不相同,仅从原始的指标数据很难判断哪座城市的交通发展趋势与广州相似,所以本研究采用聚类分析,根据不同变量的观测值对9个城市分组。以“城市”为标记变量,对2008-2014年北京、上海、广州等9个城市的人均机动车保有量进行聚类分析,得出的分类结果见表5。
由表5可知(1)广州、深圳、北京、上海属于第一类,基数大,平稳增长;(杭州属于第二类,基数小,但是能够快速增长(3)武汉、重庆、长沙北京属于第三类,基数大,且呈现负增长。同理,以“城市”为标记变量,根据其他四项指标2008-2014年的观测值对北京、上海、广州等9个城市进行聚类分析,得出的分类结果见表6:从表6中可以看出,与广州处于同一类别频次最高的是北京、上海、深圳,均为2次,说明广州、北京、上海、深训的GDP、常住人口数量、客运量、道路长度和道路里程这5项指标的发展趋势最为相近。下面将以“深训”做为对照组,测算ITS项目对广州市交通畅通性的贡献率。
4.3模型的估计及检验分析
根据广州和深训2008-2014年的指标数据。运用Stata12.0计量软件,采取分位数回归来估计DID效应。系数和方差的估计和检验结果见表7。
为了得到一致的DID估计量,模型要求试验是“随机”的,即对照组合控制组的分配是随机的,此假定并未包含“条件于控制变量随机”,因此,可以通过增删控制变量,并比较估计系数的差异来对模型政策外生性假设和模型的稳定性进行检的物流服务质量得不到保证,物流服务可靠性水平就会受到影响,进而影响到物流企业的竞争力。比如在快递行业,在检货流程中出现粗暴分拣的现象,忽视了物流服务质量,更谈不上可靠性管理。在物流服务企业内部建立规范的物流服务流程,能实现不同物流企业的业务标准化,能实现不同企业提供相对稳定的物流服务,可以进一步保证或提升物流服务供应链系统的运营可靠性水平。
4.4物流服务过程的监控
由于物流服务的运作过程是一个动态的过程,在这个过程中会受到来自环境的影响,只有加强对物流服务过程的监控,可靠性管理者才能根据突发的、意外的环境影响,及时做出调整,确保物流服务故障能在最短的时间内得到修复,实现对可靠性管理的快速应急处理,减少整个系统不可靠性的传递与蔓延进而减少整个系统的损失。
综上所述,物流服务可靠性管理工作是质量管理工作中的最核心部分,只有加强可靠性管理工作,才能保证系统提供经验。由表7可以看出,由QREG回归列系数可知政策与时间的交互变量PT的系数为0.113,即为ITS对广州路网行车速度提升的贡献率。
(1.中元国际(长春)高新建筑设计院有限公司吉林长春130000; 2.长春高新开发区管理委员会吉林长春130000)
【摘要】智能交通工程技术得到迅猛发展,尤其是对缓解城市产生了相当的作用。但是有关智能交通技术发展中还存在一系列的认识需要分析讨论。本文针对智能交通的功能定位、城市智能交通的效果、未来发展需要关注的问题等方面进行分析。
关键词 智能交通;定位;效果;问题
1. 引言
智能交通就是利用信息技术提高交通效率的一种技术手段。即对一些技术对人、车、路在出行时加以影响,使之更有效率而已。目前,其实还很难对智能交通进行界定。举例来说,十字路口有红绿灯,早期由交警根据具体情形进行操控。这在当时也算是智能交通;之后,分时进行红绿灯的设置也可以算是智能交通;而到现在根据不同的出行模式,结合连续多路口的情形进行操控,自动化程度越来越高,也还属于智能交通。相比较而言,城市轨道交通使用CBTC(communication based train control system,基于通信的列车自动控制),自从通信技术特别是无线电技术飞速发展后,研究者注意到以通信技术为基础的列车运行控制系统算是智能交通系统。
2. 智能交通功能定位
城市交通拥堵的本质是道路资源与人车使用之间的矛盾。城市作为一种空间形态注定了人口高密度居住,以及局部时间段必须有高密度出行。同时城市作为工业化时代的产物,其生产和生活又具有明显节律性,所以试图通过分散居住区域和错峰工作的方法缓解交通拥堵,其效果相当有限。智能交通对于缓解城市交通拥堵可以起到一些作用,但是车辆出行与所需要的道路空间资源之间的本质矛盾并没有改变。正如我们所看到的,当道路本身已经成为停车场,那么任何智能交通的手段都不会起作用。城市交通拥堵的本质是空间资源有限的问题。稀缺资源的配置必须要形成一个有效的机制,换言之,在城市交通拥堵的解决方案中,没有毕其功于一役的“杀手锏”,而是要通过各利益方的充分表达,相互妥协才能实现某种程度的均衡以缓解城市交通拥堵的程度。智能交通技术也好、低票价也好、公交优先也好,TOD也好,都需要有一个平衡利益的平台,协调统一才能部分缓解城市交通拥堵。
3. 城市智能交通的效果
(1)目前,我国智能交通建设与国外比实际差距并不是很大,至少在技术层面上。因为信息技术和互联网技术兴起的时间并不长,相对技术门槛不是很高,有利于我国的企业进行技术的跟进和赶超。不同的,或者说抑制行业发展的可能与市场的开放和透明程度有关,而这些属于制度性的问题,而非技术性的问题。再有,如何认识智能交通对缓解城市交通的作用。目前很多人把智能交通作为缓解交通拥堵的杀手锏,有人会问发展智能交通能缓解交通拥堵。事实上,智能交通并不能作为缓解城市交通拥堵的“杀手锏”。发展智能交通确实可以起到一部分环节拥堵的作用,但将其视之为“杀手锏”则有扩大其作用,简单化城市交通拥堵原因的嫌疑。
(2)近年来,尤其是计算机技术和互联网技术的兴起,部分改变了人们工作和出行方式,有了一些缓解交通拥堵的苗头,但是从整体而言,效果并不明显,因为人类传统的社交或者学习方式并没有本质的变化。举例来说,假设有智能系统告诉使用者道路拥堵信息,并建议使用者不要买车,但使用者此时就越是着急买车,因为使用者所思考的是只有抢在别人前买,能多用一天是一天;而且越是告诉限制出行,就越有可能要早点走,抢在别人走之前去占用道路资源。从这个角度说,技术包括智能交通技术只是在局部缓解。甚至,由于智能交通局部效率的改善,可能相反诱发更多的出行,导致整体交通系统拥堵情况的进一步恶化。
4. 城市交通未来发展需要关注的问题
(1)智能交通发展的难点主要还是基础设施的投入较大。在一个开放的社会环境下,任何一种技术的要想发展的最本质推动力就是市场。交通运输基础设施还是作为公共物品的一部分进行供给,即智能交通的大部分产品实际上是要卖给政府有关部门。所以我们注意到大量的智能交通供应商的主要工作是说服政府有关部门采购他们的产品。这就使得在智能交通发展中,必须依赖政府的偏好才能打开市场。于是,社会上就会产生疑问,智能交通技术既然这么强,为什么没有人用,或者说用了之后智能交通技术效果会不明显。客观的说,这些智能交通应用技术公司由此却也可以获得更大的关注度。尽管普遍认为政府应该是“高瞻远瞩”的理性人,能够以对城市未来高度负责的态度选择智能交通产品理性和确定基本的技术路线。但现实是,政府支出也会受到财政预算,也会受到民意的裹挟,也会受到政绩考察的压力。所以在选择包括智能交通技术在内的种种城市交通拥堵解决方案时,更为看重就是短期有效、价廉物美,在这样的考量下作为“经济人”的政府有关部门,往往会更倾向于选择概念上更先进,实际效果还可以,价格更便宜的技术路线。
(2)就目前来说,确实还没很好的解决办法。这要从两个方面来看,一是城市交通的管理不但有一部分属于交警本部门,还有一部分属于交通或者是城市建设部门,这两者之间相互协调立场并不容易。例如,交通或者是城市建设部门设置公交场站,可能就会和交警部门已经施划的标线冲突。另一方面是城市交通的财政支出主要有所在城市政府负担,而省际或者中央政府并不参与。这一制度安排使得依靠土地的地方政府在资金上捉襟见肘。
5. 小结
关键词:交通 智能化 加快 步伐
1.城市交通智能化的应用现状
1.1公路交通信息化
公路交通信息化包括高速公路建设、省级国道公路建设。高速公路建设项目主要应用相应的软件进行公路收费。ECT通道将是未来发展的主要方向。
1.2城市道路交通管理服务信息化
兼容和整合是城市道路交通管理服务信息化的主要问题,因此,综合性的信息平台成为这一领域的应用热点。除了城市交通综合信息平台,一些纵向的比较有前景的应用有智能信号控制系统、电子警察、车载导航系统等。
1.3城市公交信息化
在每辆公交车上装载特制的电子信号接发器,通过发送、接受电子信息,与网络中心、路边接受器、电子站台、电子警察、信号灯等交通设施实施联网管理。城市公交智能化的优点:第一,通过智能化调度平台可以了解到城市所有公交线路车辆运行情况,使管理人员可以实现灵活调度。第二,智能化调度平台可以加大对公交车辆的服务监控。第三,智能化调度平台可以帮助科学布局公交线网。使管理人员对各个路口、各条道路的配车、运行情况有一个直观的了解;为公交线路与轨道交通的衔接等方面提供了科学依据。
2.信息流的传输
由于智能交通系统(ITS)是运用了先进的信息技术、数据通信传输技术、电子控制技术以及计算机处理等技术,将驾驶员、交通工具和道路、环境三位一体整合来综合考虑,从而建立起一种在大范围内全方位发挥作用的实时、准确、高效的运输综合管理系统。信息流的实时、有效的传输就是整个系统运作的关键所在。此前由于受限于无线网络的发展,带宽有限的GPRS/CDMA网络传输大量数据,特别是视频数据时力不从心,使得各信息获取子系统大多互相孤立,形成信息孤岛。近年来,3G技术(如WCDMA、CDMA2000和TD-CDMA)的实际商用,以及“无线城市”WLAN(WiFi和WiMAX)的建设商用,使得传输的问题得以有效的解决。因此系统设计可充分考虑到无线资源,同时辅以有线网络,视频和数据传输采用WiFi+3G的方式,以WiFi传输为主,3G传输为辅。当WiFi传输可用时,采用WiFi传输监控视频、实时地图等大数据量的数据;当WiFi传输不可用时,采用3G传输GPS、温度、命令等小数据量的数据,而监控视频,实时地图等数据则缓存在终端,等到WiFi传输可用时再用WiFi传输。这样既保障了传输信号的质量,同时解决了通信瓶颈问题,使得以往智能公交系统中实时视频监控、实时地图显示等受限于通信带宽的功能得以实现。如图,应用功能模块及通信的构架
3.城市交通智能化的优势
3.1缓解交通堵塞问题
实现红绿灯“随车而变”。智能化交通系统主要是根据路口检测器所显示的车龙长度,决定各个红绿灯的时间。比如要是一十字路口有一个方向车特多,那就让这个方向的绿灯时间长点儿。总之尽量保证每个红绿灯时间的科学性,减少堵车时间。司机可以了解到前方路段是否堵车,如果堵车就可以换个路段行驶,这样,既节省了司机的时间,同时避免更多的车堵在一起,很好的缓解城市堵塞问题。
3.2提高管理水平
交通信息的及时,需要及时的信息采集,但传统的信息采集投资太大,国内部分城市也只在有限地段进行监测。 例如:合肥市公安局交警支队副支队长王辉介绍,合肥市600辆宾悦出租车和200辆合肥市交警支队路面执勤警车都安装了GPS。这些车辆走到哪,监控就跟到哪,它们在路上的状况可以及时发回合肥市交警支队指挥中心,指挥中心因此可以随时掌握路面通行情况。指挥中心的工作人员可以根据这些动态信息,判断道路的通行情况,并通过广播、车载GPS终端、路口的电子屏幕等方式告诉驾驶员。另外,GPS还可以给车辆提供最快路线、最近路线、剩余时间等服务,供人选择。
4.总结
城市交通的发展关系社会稳定,近年来随着信息化的不断发展,交通智能化更受关注,在刚刚开幕的上海世博会上表现是可圈可点的,正式建成并投入试运行的交通服务信息工程,其智能交通的信息技术新应用可算是个热点。总之,加快城市交通智能化步伐是构建“以低碳排放为特征的工业、建筑、交通体系”,推动我国经济建设可持续发展的重要手段。
参考文献:
[1]李沙.加快城市交通智能化步伐.重庆日报,2000,7.
【关键词】 整合 系统
1 构想起因
从小学到中学,我发现路越来越堵。虽然摄像头和电子警察越来越多,但交通违法行为屡禁不止。
法学家贝卡利亚说,对于犯罪最有约束力的不是刑罚的严酷性,而是刑罚的必定性。交通违法行为没有得到有效的遏制,就是因为它是否被记录和处罚有很大的偶然性。
于是,我兴致勃勃地开始了社会调查和初步构想。
2 基础调查
2.1 现有的城市交通管理系统没有发挥应有作用
广义的交通管理系统包括交通警察、交通监测子系统(包括路面图像监控和电子警察装置)、交通控制子系统(包括智能红绿灯系统)、交通导引子系统(包括流量指示和导引装置、可变车道指示装置),体现了一个城市的信息化水准。其中,与交通违法行为关系最密切的装置是交通监测子系统。
交通监测子系统最大的缺陷是路面图像监控和电子警察装置相互割裂——图像监控主要基于治安管理的需要,故虽然记录了车辆的图像和数据,却不具备电子警察的功能。而电子警察固然有很多优点,缺陷也很致命:成本高,位置固定易被发现,只能被动记录不能主动预防,无法覆盖全部路面,甚至经常有车辆突然发现电子警察而紧急减速、严重危及后车安全的情形。
2.2 现有的车载行车辅助装备只服务于车主
目前,常见的车载行车辅助装备有电子狗,导航仪、行车记录仪、车载智能服务系统。
电子狗能提示限速、路口及电子警察装置,不过功能单一,需要不断升级,但信息还是经常不准,已被基本淘汰。
导航仪除了电子狗的功能外,还可以接收GPS信号定位开展导航,但经常把驾驶人指引得晕头转向。
行车记录仪类似于车载摄像头,主要被驾驶人用来预防“撞车党”“碰瓷”。
车载智能服务系统以通用的OnStar系统和丰田的G-BOOK为代表。服务中心通过GPS和无线通信技术提供服务,包括碰撞自动求助、路边救援协助、车门远程开启和锁闭、停车位置提示、车况检测、音控领航等。
上述行车辅助装备为车主服务本身没有问题,问题是一味的迎合助长了驾驶人的侥幸心理。通用推出OnStar系统之初并无电子狗功能,但进入2013年,导航下发的路线就自动附带了电子警察提示。这些服务表面上使驾驶人避免了交通违法行为,但事实上往往导致其违法变本加厉——驾驶人往往会在没有得到辅助装备警告的路段肆意违法行车。
2.3 上述系统不成体系
目前,城市交通管理系统和车载行车辅助装备是相对独立甚至割裂的,没有结合起来成为一个互动的、完整的系统,相当于配备了大量高端的个人电脑甚至银河计算机却没有联网应用,没有实现作用最大化。
3 初步构想
3.1 系统概况
要整合城市交通管理系统,首先,强制规定所有上路行驶的机动车安装“行车伙伴”智能服务装置,并经交警部门登记信息。其次,将现在的交通管理系统和企业商业化服务运营中心整合成城市交通管理信息监控处理中心。最终,“行车伙伴”与城市交通管理信息监控处理中心通过网络相连,形成完整、互动的系统,实时监督车辆运行和城市交通状况、提供特定的服务。
3.2 系统构成
(1)机动车“行车伙伴”智能服务装置。“行车伙伴”智能服务装以现有的OnStar、G-BOOK等智能服务系统为基础,国家实行标准化管理,统一、强制具备以下功能:一是实时定位。基于我国自主研发的“北斗”系统,实现实时定位,并记录路线、速度等要素。
二是信息上传。即时将信息上传城市交通管理信息监控处理中心保存。三是记录备份。就像“黑匣子”,自己备份信息,起到双保险作用。“行车伙伴”与城市交通管理系统(比如红绿灯、设置等)联网后,能直接记录机动车超速、闯红灯等行为,和路面图像监控装置联网后还能记录遮挡号牌等电子警察无法记录的行为,实现对车辆行驶情况的全覆盖。
当然,“行车伙伴”可以保留现有的OnStar、G-BOOK等智能服务系统的商业化功能,由车主根据各自的需要自主选择。
(2)城市交通管理信息监控处理中心。城市交通管理信息监控处理中心以现在的交通管理系统为基础,整合了现有企业商业化服务运营中心的部分功能,与“行车伙伴”通过网络相连,形成完整、互动的系统,实时监督车辆运行和城市交通状况、提供特定的服务。简言之,具备系列功能:一是提供证据。向交警部门提供车辆违法行驶的证据,帮助交警部门实现违法必究。二是预防违法。系统足够强大时,对有违法、事故的倾向和行为的车辆自动发出语音警示。三是预防犯罪。一旦车辆行驶异常,危害公共安全,系统自动远程控制车辆停车、锁闭车门并呼叫治安部门前往处置。
(3)企业商业化服务运营中心。整合城市交通管理系统后,企业商业化服务运营中心仍然保留,由企业实行商业化运作,继续根据车主的要求,使用与“行车伙伴”独立的各自的装置提供差别化服务,包括智能导航、车门远程应急开启和锁闭、停车位置提示等。
4 主要支撑
(1)法律支撑。立法是前提和基础,有利于系统被强制、迅速推行。要修改《道路交通安全法》和《标准化法》,完善相关配套法规、规章。(2)技术支撑。主要是统一标准前提下的技术开发。在现有科技水平条件下,技术层面不应该有问题。(3)经济支撑。“行车伙伴”绑定于车辆,可由国家财政、汽车生产商、车主共同负担。城市交通管理信息监控处理中心由财政支持。企业商业化服务运营中心实行商业化运作,由企业自主经营,车主按需选择。政府对企业提供端口数据服务收取合理费用。
我国交通管理工程技术是在20世纪70年代才开始引入,开始主要以借鉴国外经验、开展大规模道路规划建设为主。进入20世纪80年代,全国各地相继成立了交通工程学会,许多大专院校设立了交通工程专业,交通工程学科建设得到快速发展[6]。20世纪90年代,随着城市“畅通工程”的实施,各大中城市引入了科学交通管理理念,城市交通组织规划得到了重视,各地对城市交通管理工程技术进行了初步应用[7]。在城市道路交通供需矛盾日益突出的情况下,城市交通管理工程技术的初步应用推动了城市交通通行秩序的改善,较好地缓解了城市交通机动化初期的拥挤问题。20世纪80年代后期,北京、天津、上海等一些大城市引进了英国SCOOT(Split,CycleandOffsetOptimizationTechnique)、澳大利亚SCATS(SydneyCoordinatedAdaptiveTrafficSystem)等城市交通信号控制系统[8]。20世纪90年代中期,ITS概念进入我国,ITS技术开始得到开发、应用。在城市交通管理中,注重交通信息采集设备和交通监控设备等科技设施的建设,各地投入大量资金用于城市交通指挥中心建设。“十五”期间,科技部将“智能交通系统关键技术开发和示范”作为重大项目列入国家科技攻关计划,并随着北京奥运会和上海世博会的相继召开,实施了城市智能交通应用示范工程[9]。可以说,我国城市智能交通已从探索阶段进入实际开发和应用阶段,特别是在硬件建设方面效果显著,提升了城市道路交通科技管控的效能(图2)。总体来看,我国城市交通管理工程技术的发展早于城市“畅通工程”的实施。在“畅通工程”实施前期,交通管理工程技术得到了一定程度的深化应用,许多大中城市还制定了交通组织规划。在“畅通工程”实施的中、后期,各地逐渐形成以科技设施投入和智能交通技术应用为核心的趋势或局面,但在交通管理工程技术的精细化应用方面关注、投入很不够,导致城市道路交通系统的基础功能发挥有限,道路通行效率未能充分发挥。
2现阶段我国城市交通管理工程技术应用的反思
ITS的概念和技术在我国的推广应用有效地推动了我国城市交通管理技术的发展。但是由于对ITS产生、发展的理解和研究不够深入、全面,在推广其应用的同时,忽视了基础的交通管理工程技术应用发展的重要性和必要性,甚至可以说对城市交通管理工程技术发展的基本规律尊重不够,导致城市道路的基础通行能力未得到有效、充分的发挥。当前我国城市面临的交通拥堵问题,固然有城市化进程快、机动车发展迅速、城市规划和路网规划不合理、公交体系不完善等重要因素作用,但也需要在交通管理工程技术应用上进行深刻的反思。1)交通管理工程技术应用缺少规划引导。纵观近十年来城市交通管理工程技术的应用,虽然取得了一些成绩,但是基本上还是技术引导需求,技术应用经历起伏较大:先是引进国外的交通工程科学与技术,开展交通基础设施建设和工程技术初步应用;然后,跟随国外的信息技术发展,转向了科技设施建设和智能化技术。结果导致我国许多大城市在交通硬件建设方面已达到国际先进水平,但却无法发挥其应有的效能,道路通行效率未得到有效提升。其根本原因在于,交通管理工程技术的发展缺少纲领性文件和长远规划,导致交通管理工程技术的研究、开发和应用缺乏前瞻性,创新和可持续发展能力不足;只是盲目追踪国外的发展脚步,尚未形成适合我国国情的技术应用体系。2)道路时空资源可挖掘空间较大。城市“畅通工程”的实施改变了许多传统的城市交通管理理念,城市交通精细化管理越来越受重视。单向交通、可变车道、禁止左转等管理措施逐步实施,待转区、导流线、渠化岛等渠化方法普遍应用,线协调控制技术得到推广应用。但是,一些问题仍然较普遍地存在:路口渠化不精细,交通标志和标线不规范、不协调、不连续;信号配时未根据交通流量和流向变化及时调整,盲目使用多相位,感应控制鲜有应用,非机动车和行人控制考虑得少,造成区域、干线、节点的通行效率低下。究其原因在于,交通管理工程技术应用时缺乏专门、细致的设计,交通管理工程技术应用精细化不够;在路口时空资源挖掘技术上还处于粗放式应用阶段,道路时空资源还未得到充分挖掘,并没有真正做到“寸土必争、寸秒必争”的精细程度,有待于进一步优化。3)交通管控系统功能未得到有效发挥。各地纷纷建设由交通信息采集设备和各种管控设备构成的信息采集终端,以及交通信号控制系统、交通诱导系统、交通指挥调度系统等,这些系统对于交通管理也发挥了一定的作用。但是,“重建设、轻应用”的倾向较为突出,由于采集设备种类多样,数据格式和接入不规范,导致数据难以融合处理,交通流运行态势无法准确获取;各种管控系统各自独立,接入标准不统一,导致信号控制系统无法互联互通,动态交通诱导缺少实时信息支持,实时指挥调度无法实现。上述问题的内在原因在于,信息采集终端和管控系统还未实现标准化;缺少对系统的功能要求和测试验证;在平台架构设计时,没有根据管控需求而盲目设置系统,导致出现系统不兼容、无法进行协控等问题,影响系统功能的发挥。4)交通管理工程技术缺少深入的研究和相应的专业人才支撑。近年来,有关城市交通管理的理论方法和工程技术研究较多,成果也颇为丰富,特别是随着“畅通工程”的开展,各地也涌现了一些应用案例。但是,现有大部分研究的针对性、实用性和可操作性不强,对交通管理工程技术的应用条件、范围及不同类型路口的实际应用方案等缺乏系统、深入的研究、开发,仍未真正形成能指导一线交通管理人员的实用技术规范,缺少典型示范工程的引领和适合我国交通流特性的指导手册。而且,交通管理工程专业人才匮乏,实践中还大多依靠经验式管理的传统手段。国外“工程案例+指导手册+专业人才”的模式值得借鉴,我们需要典型示范工程的引领,同时也需要制定指导手册,开发辅助软件,并配套大量的交警培训服务,吸引一批专业技术人才充实到交通管理队伍中,提高实战能力。5)交通管理工程技术咨询行业发展有待规范。国外在城市交通管理工程技术应用的实践中,培育了交通咨询设计行业,城市总体规划、路网交通规划和城市交通咨询同时平行地进行,而且往往交通技术咨询公司与城市规划咨询公司及其他咨询公司,共同组成项目“联合体”进行合作,为政府开展研究、编制方案、制定战略和提出策略建议。近年来国内城市总体规划和交通规划的发展有目共睹,据统计,城市总体规划和综合交通规划合同额已由10年前的3.72亿元增长到现在的93.2亿元,10年间增长了25倍[10]。但是,与国内外城市总体规划和路网交通规划咨询行业相比,目前国内的交通管理工程技术咨询行业仍然处于无序的发展状态,做规划的多,做设计的少,宏观规划与微观设计不匹配、不协调;缺少配套环境和行业规范,咨询收费也缺少统一标准;未能与城市总体规划和路网交通规划同步发展,结合也不紧密。城市交通管理工程技术咨询行业并未发挥出应有的作用,亟待进一步规范。
3对我国城市交通管理工程技术下一步发展的思考
关键词:城市智能;交通控制系统;分类;设计
中图分类号: S611 文献标识码: A 文章编号:
一、城市交通控制系统的分类
城市道路交通控制系统可以从不同的角度进行分类,这里分别从空间关系、控制方式上对城市道路交通控制系统简单分类。
1、按空间关系划分
从空间关系上可以把城市交通系统分划为单交叉口控制(点控制)、交通干线的协调控制(线控制)和区域交叉口的网络控制(面控制)三种形式。
(1)单个交叉口的点控制
单个交叉口的点控制是一种最基本的控制方式。孤立交叉口点控制的控制参数是信号周期和绿信比,控制的目标一般是车辆延误和交叉口的通行能力。在理想的情况下,希望总延误时间最小和交叉口的通行能力得到最大的利用。由于点控制的设备简单、投资省、维护方便,至今仍是应用较多的一种信号控制方式。从技术上讲,它又分为离线点控制和在线点控制两种形式。前者采用定时信号配时技术,目前仍然是其他控制方式的配时基础;后者是交通响应控制或车辆感应控制,它是根据交叉口各个入通流的实际分布情况,合理分配绿灯时间到各个相位,从而满通需求。
(2)干线交通的协调控制
城市路网中的交通干线承担着很重的交通负荷,保证干线的交通畅通对改善一个地区甚至一个城市的交通状况往往起着至关重要的作用。在城市交通路网中,有时交叉口相距很近,两个相邻的交叉口之间的距离通常不足以使一小队车流在有限时间内完全疏散。单个交叉口分别设置单点信号控制时,车辆经常遇到红灯,时停时开,行车不畅,环境污染严重。为了减少车辆在各个交叉口的停车次数,特别是当干线的车辆比较畅通时,相邻交叉口之间的控制方案宜采用相互协调的控制策略。最初协调信号计时的方法是基于绿波的概念,相邻交叉口执行相同的信号控制周期,主干线相位的绿灯开启时刻错开一定的时间,交叉口的次干线在一定程度上服从主干线的交通。
当一列车队在具有许多交叉口的一条干线上行驶时,协调控制使得车辆在通过干线交叉口时总是在绿灯开始时到达,因而无需停车即可通过交叉口,形成一条交通流的绿波带。绿波控制能有效提高车辆行驶速度和道路通行能力,确保道路畅通,减少车辆在行驶过程中的延误时间和能源消耗。干线交通协调控制的控制参数是周期长度、绿信比和相位差,控制的目标一般是车辆的平均延误和停车次数。干线信号协调控制方法的设计流程图如图1所示。
图1干线信号协调控制方法的设计流程图
(3)区域交通网络的协调控制
区域交通信号控制的对象是城市或某个区域中所有交叉口的交通信号。随着计算机技术、优化方法、自动控制和车辆检测技术的发展,人们研究把一个城市区域内或一个局部小区内所有交叉口的交通信号联合起来综合加以协调控制,以使得区域内的车辆在通过某些交叉口时所产生的总损失最小。在这种控制方式下,交通信号机将交通量数据实时地通过通信网传至上位机,上位机根据路网交通量的实时变化情况,按一定时间步距不断调整正在执行的配时方案。上位计算机同时控制一个城市区域中的多个交叉路口,实现区域中交叉口之间的统一协调管理,提高路网的运行效率。通过这种控制方式,容易实现交通路网的统一调度与优化管理。区域信号协调控制配时优化的设计如图2所示。
图2 区域信号协调控制配时优化的设计流程图
2、控制方式划分
(1)定时控制
定时控制方式以历史交通流数据为依据,找出每个日/周和时间段的不同交通流变化规律,用人工方法或计算机仿真等手段预先准备好不同日/周和不同时间区段内使用的配时方案,它属于开环控制,不易根据车流状况实时调整控制方案。由于定时控制对交通信号机的要求低,无需实时交通量的检测,因而仍然是目前城市道路交通系统中应用较为广泛的一种控制策略。
(2)感应控制
感应控制的原理是根据车辆检测器测量的交通流数据调整相应的绿灯时间的长短和时间顺序,以适应交通流的随机变化。这种方式比定时控制有更大的灵活性。
(3)智能控制
严格意义上讲,智能控制不仅仅是交通信号的控制,而是整个交通系统的控制,即智能交通系统。智能交通系统是交通控制的最高层次,它将先进的信息技术、数据通讯技术、检测传感技术、自动控制理论、运筹学、人工智能和计算机及其网络等一系列高新技术综合运用于交通运输各个子系统,从而建立起一种大范围、全方位发挥作用的实时、准确、高效的交通运输综合管理体系。智能交通系统把人、车、路和环境等交通运输系统的各个环节有机整合,从而使车、路的运行功能一体化和智能化。智能交通系统是解决交通问题的必由之路,安全、高效、环保、低耗、快捷、舒适的绿色交通是智能交通的发展方向。
二、城市智能交通控制系统设计
智能是一种应用知识对一定环境进行处理的能力,或对目标准则进行衡量的抽象思考能力。另一种定义是在一定环境下针对特定的目的而有效地获取信息、处理信息和利用信息从而成功达到目的的能力。智能交通系统,是利用人工智能的理论和方法,解决交通问题的综合系统。人工智能近年发展的成果,为智能交通系统的研究提供了坚实的理论基础,可以利用这些成果解决传统方法无法解决的问题。这是因为: 一方面交通系统是结构复杂、影响因素多、随机性很强的系统,利用数学方法解决交通问题的难度很大,所建立的模型往往过于复杂,难于求解,同时也很难用一种或几种模型来概括交通流系统的多样性。另一方面,交通系统又是一个动态的时变系统,交通管理与控制的实时性要求非常高。因此,从实际情况出发,基于数学描述的交通管理控制方法难以满足在线实时控制的要求,可操作性较差。而人工智能的方法,借鉴人类求解问题的方法,通过知识的表达、推理和学习解决复杂的问题,将以往用纯数学来描述交通系统转变为用知识或知识与数学模型相结合来描述。通过逐步适应环境的学习能力,来不断提高管理和控制效果。
多智能体系统是当今人工智能中的前沿学科,是分布式人工智能研究的一个重要分支,其目标是将大的复杂系统建造成小的、彼此相互通讯及协调的、易于管理的子系统,通过子系统的自治能力和相互协调能力来解决复杂系统控制问题。城市区域交通网络由于其道路交通规模的复杂性和交通流动态特性的实时性,使得将多智能体系统应用到城市交通网络控制学比较关注的研究课题。本文在此基础上设计出城市智能交通控制结构图,如图3 所示。
图3 城市智能交通控制结构图
图3中,左边为基于多智能体的城市交通流系统,右边为信号控制系统。在交通模型中,路段智能体既具有单个路段流量实时更新的能力,又能够为相连接的信口提供交通流数据,以进行和优化信号配时; 根据上级区域交通流信息进行车流调控,同时通过路口与其他路段进行数据交换; 与其相对应的信号控制模型中,根据段智能体提供的信息,进行信号配时,并协调路段之间交通流的动态平衡。
区域控制之间传递的则是该区域内交通流信息,若某一区域出现拥挤路口,调节区域内以及相邻区域信号配时,引导车流分散以缓解拥挤,并通过路边信息指示牌或交通电台信号引导车辆分流。而区域控制与交通控制中心之间传递的是区域交通流信息。调节路网交通流动态平衡,并向中央交通控制中心提供信息,以实现城市交通集中与分散的控制方式。
结束语
总之,提高智能交通系统的整体水平,需要各行业的协调发展,这样才能共同促进城市交通水平的提高。
参考文献:
(1.天津智慧信源科技有限责任公司,天津300308;2.中国医学科学院生物医学工程研究所,天津300192;3.深圳出入境检验检疫总局,广东深圳518045)
摘要:随着我国城市化进程加快,城市机动车数量急剧增长,城市交通管理的压力逐年增加,停车难也成为影响城市交通的重大问题。城市智能停车联网平台采用无线射频识别、视频识别、云存储以及云服务等先进技术,通过整合城市停车场泊位资源,提供多方位信息和泊位预定平台,以达到提升泊位利用效率,缓解停车难问题。城市智能停车联网平台,是车联网和智慧城市的一个典型应用案例。
关键词 :无线射频识别;智能停车联网平台;车联网;智慧城市
中图分类号:TN915.5?34 文献标识码:A 文章编号:1004?373X(2015)13?0156?04
收稿日期:2015?01?09
0 引言
随着我国城市化进程加快,城市机动车数量急剧增长,城市交通管理的压力逐年增加,停车难也成为影响城市交通的重大问题[1]。一方面机动车保有量迅速增长,总量远远超出现有的停车泊位数;另一方面,经常出现市内部分停车场昼夜车满为患,处于相同区位的某些停车场却长期门前冷落的奇怪现象[2]。究其原因,除了停车设施类型、布局不足的客观条件和驾车者自身选择偏爱等主观因素外,不可否认一定程度上是因为相当数量的停车设施没有可靠的信息渠道向驾驶员提供停车资源信息造成的。
近年来,射频识别技术,物联网技术不断发展,部分大城市开始推广电子车牌和城市自由流不停车收费,使得利用电子标签,整合停车场资源,有效停车资源信息,缓解停车难问题成为可能。城市智能停车联网平台就是在这种背景下应运而生的[3]。
1 城市智能停车联网平台组成
城市智能停车联网平台是将所有停车场进行资源整合,以信息化的方式对公众及相关部门提供服务,在提高停车场利用率、降低管理成本、提高管理效率等方面有着极为重要的意义。
城市智能停车联网平台由智能停车场系统,运营服务系统,智能停车门户,城市停车路面诱导系统四大系统组成,如图1所示。
(1)智能停车场系统:指所有在停车场内部的系统,实现停车场内的所有管理功能及与运营服务系统之间的交互。与传统的停车场不同,智能停车场系统不再是一个孤立的系统,而是采用标准化协议将停车场资源通过联网服务平台进行共享,从而将原来一个个孤立的停车场集结成停车网络为大众所用。智能停车场系统由入口工作站,出口工作站,停车场服务器,停车场内部引导系统,反向寻车系统,射频识别采集系统,联网服务接入系统组成。
(2)运营服务系统:指所有与运营服务相关的后台系统,实现整个智能停车综合管理系统的后台服务,包括联网服务平台,运营平台,地理信息系统,数据平台,应急指挥系统。
联网服务平台:作为本系统的核心部分,提供与停车场联网相关的所有业务功能;
运营平台:作为本系统的支撑部分存在,提供客户管理、后台付费等相关业务的支撑功能;
数据平台:对整个系统数据的存储、安全、容灾、备份、恢复提供统一的云存储服务;
地理信息系统:为系统提供标准的地理信息服务;
应急指挥系统:通过视频采集实现对停车场的监控,结合指令互动实现停车的综合管控,实现应急指挥,进行预案指定并执行应急预案,以完成特定条件(大型会议、外事活动等)下的停车场综合管控。
(3)智能停车门户:指所有与外部客户相关的系统,实现对车主,公众的云服务功能,向大众提供统一服务门户,包括新闻广告、网页停车诱导、网上营业厅、出行指南等增值服务;包括门户网站、网上停车诱导、网上营业厅、智能终端诱导,营业厅系统,呼叫中心。
(4)城市停车路面诱导系统:在区域、干道、停车场附近实时指示停车场空余车位状态,有效引导车主停车,包括一级,二级,三级交通诱导系统[4]。
2 城市智能停车联网平台系统架构
城市智能停车联网平台系统架构如图2所示。
智能停车场系统和城市停车路面诱导系统处在数据采集层,为城市智能停车联网平台的基础设施;运营服务系统处在数据处理层,是智能停车综合管理系统的运营及服务核心;
智能停车门户系统是数据的展示层,是智能停车综合管理系统对外部用户的接口;
外部系统包括交管平台,银行系统等,与本系统进行数据交换和业务处理。
城市智能停车联网平台包含A1,A2,A3,B1,C1,D1,D2,D3,E1,F1,F2,F3接口。
(1)A1接口为射频识别采集系统与联网服务接入系统之间的接口,主要接口内容为:管理射频采集子系统;建立及维护连接;接收采集到的车辆信息,包括车牌、车型、电子车牌号等;发送控制信息控制射频识别采集系统的射频发射与关闭。
(2)A2接口为联网服务接入系统与停车场内工作站系统之间的接口,主要接口内容为:获取车位信息;发送入场记录;发送出场纪录;发送缴费请求;接收各种信息应答;发送、获取交易图片的请求[5];接收现金交易记录;发送其他控制信息。
(3)A3接口为联网服务接入系统和城市停车路面诱导系统之间的接口,主要接口内容为三级诱导信息的内容。
(4)B1接口为智能停车场系统与运营服务系统之间的接口,主要接口内容为:获取车位信息;接收交易记录;接收支付、认证等请求;信息同步;接收各种信息应答;发送、获取交易图片的请求;发送其他控制信息;系统信息同步。
(5)C1接口为联网服务平台与运营平台之间的接口,主要接口内容为:交易认证请求;信息同步;停车场信息请求;其他信息交互。
(6)D1接口为数据平台与联网服务平台之间的接口,主要接口内容为联网服务平台所需各种数据的接口。
(7)D2 接口为数据平台与运营平台之间的接口,主要接口内容为运营平台所需各种数据的接口。
(8)D3接口为地理信息系统与联网服务平台之间的接口,主要接口内容为各种地理信息服务。
(9)E1接口为运营服务系统与智能停车门户系统之间的接口,主要接口内容为:停车场信息服务;客户信息服务;资费、账户信息服务;提供各类门户所需信息。
(10)F1接口为运营服务系统与外部交管平台之间的接口,主要接口内容为:提供停车场配置信息;提供车位动态信息;获取交通拥堵流量信息。
(11)F2接口为运营服务系统与外部银行之间的接口,主要接口内容为运营相关的支付接口。
(12)F3接口为交管平台和城市停车路面诱导系统之间的接口,主要接口内容为一级、二级诱导信息的内容。
3 城市智能停车联网平台网络架构
图3为城市智能停车联网平台网络架构图。智能停车场系统分布在城市各个停车场,城市停车诱导系统分布在干道和停车场周围,运营服务系统和智能停车门户位于中心机房,系统之间通过互联网和专网进行通信。
4 城市智能停车联网平台关键流程
4.1 车位预定流程
车位预定流程如图4所示,流程说明如下:
(1)车主通过网页界面、手机客户端、呼叫中心提交预定申请;
(2)预定管理接受预定申请、发送预定指令到停车场系统;
(3)停车场系统接收到预定指令,保留车位,返回预定结果;
(4)预定管理发送预定扣费请求到支付服务,支付服务完成扣费并返回结果到预定管理;
(5)预定管理通过短信中心发送预定结果到车主。
4.2 车辆进出入停车场流程
车辆进出入停车场的流程如图5所示,流程说明如下:
(1)射频识别采集系统检测到车辆入场,将入场信息上报给联网服务接入系统;
(2) 联网服务接入系统发送入场信息到入口工作站;
(3)入口工作站执行入场操作,抬栏杆,上报入场数据到停车场服务器;
(4)射频识别采集系统检测到车辆出场,将出场信息上报给联网服务接入系统;
(5)联网服务接入系统发送出场信息给停车场服务器;
(6)停车场服务器发起扣费请求;
(7)联网服务接入系统将扣费请求传送给联网服务平台;
(8)联网服务平台向运营平台进行请求;
(9)运营平台进行认证,扣费操作,同时发送确认消息;
(10)出口工作站收到确认消息后进行相应操作,同时将交易记录上传。
4.3 交通诱导流程
交通诱导流程如图6所示,流程说明如下:
(1)停车场系统上报车位信息到联网服务平台;
(2)联网服务平台汇集信息,生成一级、二级、三级标准诱导信息,将信息通过数据交换发送至交管系统,由交管系统发送一、二级诱导信息至路面诱导系统显示终端[6];
(3)联网服务平台将停车诱导信息发送到手机客户端和门户网站;
(4)车主可以通过门户网站的网页诱导、手机客户端进行诱导信息的查看;
(5)车主行驶在路面上分别可以在区域的入口、主干道、停车场入口附近接受路面诱导系统的一、二、三级诱导。
5 结语
城市智能停车联网平台由智能停车场系统,运营服务系统,智能停车门户,城市停车路面诱导系统四大系统组成,利用无线射频识别、视频识别和互联网技术将停车泊位信息收集整合,通过诱导信息屏、门户网站、手机增值业务包、广播等多种渠道推送停车泊位信息,通过门户网站、手机应用、短信、呼叫中心等多种途径提供停车泊位预定,从而有效提高停车设施利用率,缓解重点区域停车难,改善重点区域交通拥堵的问题。
城市智能停车联网平台,是车联网和智慧城市的一个典型应用案例。
参考文献
[1] 邵源,宋家骅.大城市交通拥堵管理策略与方法[J].城市交通,2010,8(6):1?7.
[2] 何建中.中国城市交通可持续发展对策[J].环境经济,2010(9):23?25.
[3] 刘小明.城市交通与管理?中国城市交通科学发展之路[J].交通运输系统工程与信息,2010,10(6):11?21.
[4] 北京市质量技术监督局.DB11/T667?2009 停车诱导系统技术要求[S].北京:北京市质量技术监督局,2009.
[5] 中华人民共和国公安部.GA/T833?2009机动车号牌图像自动识别技术规范[S].北京:中华人民共和国公安部,2009.
[6] 中华人民共和国公安部.GA/T484?2010 LED道路交通诱导可变信息标志[S].北京:中华人民共和国公安部,2010.
作者简介:张益,硕士。负责物联网相关的软件平台、中间件、设备管理软件、行业应用软件的系统分析及架构设计。长期从事软件平台、电信网管软件、物联网软件、车联网等领域的研究。