期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 人工智能教学建议

人工智能教学建议精品(七篇)

时间:2024-02-04 16:46:41

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇人工智能教学建议范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

人工智能教学建议

篇(1)

>> 研究生人工智能原理教学改革 研究生人工智能课程教学探索 研究生“人工智能”课程教学改革探索 人工智能系列课程研究 人工智能课程全英文教学改革 人工智能实验课教学改革研究 《人工智能》硕士课程教学改革的研究与实践 落实科学发展观,深化“人工智能”课程的教学改革 创新型人工智能教学改革与实践 人工智能课程教学方法研究 “人工智能导论”课程的教学与实践改革探索 新形势下本科教育阶段人工智能课程教学研究 人工智能课程研究型实验教学的探索与实践 航天类专业“人工智能”课程的教学探索 林业院校人工智能课程教学的思考 应用DBR的人工智能课程教学 人工智能导论课程的兴趣教学法 人工智能概论课程的教学思考 “人工智能”课程教学的实践与探索 面向人工智能的信息管理与信息系统专业教学改革 常见问题解答 当前所在位置:l.

[5] 王海,许德章.“机器人学导论”专业课双语教学改革的实践[J]. 科技咨询,2009(3):182-183.

[6] 徐新黎,王万良,杨旭华.“人工智能导论”课程的教学与实践改革探索[J]. 计算机教育,2009(11):129-132.

[7] 李竹林,郝继升,马乐荣. 人工智能双语教学体系结构的探索与实践[J]. 计算机教育,2010(12):81-83.

[8] 冀俊忠. 落实科学发展观,深化“人工智能”课程的教学改革[J]. 计算机教育,2009(24):105-107.

[9] 朱映辉. 基于导向驱动的《人工智能》课程教学改革研究[J]. 现代计算机:专业版,2009(5):94-96.

Research on Artificial Intelligent Series Courses of Graduate Students

REN Xiao-ping1,2, REN Qing-xiong3, GUO Fan2

(1. Institute of Intelligent System and Software, Central South University, Changsha 410083, China ; 2. Institute of Information Science and Engineering, Central South University, Changsha 410083, China ; 3. Shanxi Institute of Metrology Supervision & Verification, Taiyuan 030002, China)

篇(2)

关键词:人工智能;专家系统;Prolog;面向人工智能

中图分类号:G642 文献标识码:A

1 引言

人工智能(AI)是计算机科学的一个重要分支,同时也是计算机科学与技术专业的核心课程之一。本课程在介绍人工智能的基本概念、基本方法的基础上,主要是研究如何用计算机来模拟人类智能,即如何用计算机实现诸如问题求解、规划推理、模式识别、知识工程、自然语言处理、机器学习等只有人类才具备的“智能”,本课程重点阐述这些方法的一般性原理和基本思想,使得计算机能更好地为人类服务。

2 人工智能课程体系

人工智能主要研究传统人工智能的知识表示方法,其中包括状态空间法、问题归约法、谓词逻辑法、语义网络法、框架表示、剧本表示等;搜索推理技术主要包括盲目搜索、启发式搜索、消解原理、规则演绎算法和产生式系统等。

人工智能的研究课题主要包括计算机视觉、规划与行动、多Agent系统、语音识别、自动语言理解、专家系统和机器学习等。这些研究论题的基础是通用和专用的知识表示和推理机制、问题求解和搜索算法,以及计算智能技术等。

经过笔者调研发现,目前在本科高校绝大部分将“人工智能”课程性质设为专业选修课或专业必修课,而在高职院校相关专业基本上不开设此课程,但是在具体实践教学过程中发现,在其它专业课程的教学过程中也会与人工智能理论或技术相结合,比如数据库技术、信息系统安全方面等领域,当讲到相关课程,同时会结合人工智能的理论,授课过程中发现大部分同学对该课程很有兴趣。

本课程在我校计算机科学与工程学院作为一门专业选修课开设,总学时数为:60(其中理论学时为36,实验学时为24),随着计算机技术的不断更新发展,人工智能的应用领域也变得越来越广,因此,人工智能(AI)这个学科已不再陌生,很多学生对其充满兴趣和好奇,所以在选课人数上远远超过其他选修课的人数,另外结合我校的实际情况,部分理论或实验又可以与农学、生命科学系等其它专业结合起来而应用。

3 人工智能理论教学实践

多年以来,人工智能获得很大的发展,已经引起众多学科和不同专业背景学者们的日益重视,成为一门广泛的交叉和前沿科学,但是直到目前为止人工智能至今仍尚无统一的定义,要给人工智能下一个准确、科学和严谨的定义尚有困难,其现有的一些定义多数是立足于各自的专业而定义的,存在片面性。

同时“人工智能”是一门交叉性的学科,其主要涉及到了控制论、语言学、信息论、神经生理学、心理学、数学、哲学等许多学科,所以该学科具有知识点多、涉及面广、内容抽象、不易理解、理论性强,与此同时需要学生具备较好的数学基础和较强的逻辑思维推理能力等特点,从而形成在教学实践中老师讲得吃力、学生听得吃力的局面。尽管在多年的研究和教学过程中笔者已积累了一些经验,但是对于如何把握好这门课程的特点,激发学生的学习兴趣和热情,帮助学生更好的理解和应用这门课程,目前仍然有很多问题需要研究和解决。

针对“人工智能”课程相关内容比较抽象,公式推导比较繁琐等特点,教师除了具有完善的教学大纲、合理的教学计划以及合适的教材外,还应该根据学校的实际硬件条件尽可能地选择多媒体教学手段来辅助教学,因此在实践教学中,笔者经常会配合教学内容,充分利用计算机、投影仪以及互联网的优势,结合多种教学方法与手段去组织整个教学过程。例如:在讲述搜索推理技术时,使用一些小的演示软件,将相关推理技术的理论通过动画的形式一步一步演示出来;而在讲专家系统相关理论知识时,尤其是各种类型的专家系统,利用互联网上的一些在线视频资源为例,给同学进行详细讲解,通过具体的案例来进行专项知识点的讲解及实现与应用;在自动规划这一章,给同学们选择演示发达国家目前研制的各种类型机器人,通过这些形象生动、行为举止高仿真的机器人来给学生讲理论,这样学生通过亲自观看视频资源,不仅可以拓宽知识面及视野,同时也可以及时地了解国际及国内机器人的发展水平及差距,不断纠正自己的错误观点并更新自己新的专业认识;另一个方面也可以同时激发学生们的学习兴趣热情和积极性,俗话说:“兴趣是学生最好的老师!”这一点在课堂实践教学中得到验证,得到广大同学的认可和赞同,整个教学课堂不再那么单调枯燥乏味,基本可以达到在娱乐轻松的氛围中学习专业知识,同时再整个教学过程中,师生互动机会增多,学生不再是被动地接受知识。

4 实验教学实践

4.1 客观存在问题

本校开设“人工智能”课程,主要是面向计算机专业的大学三年级的同学,同时作为一门专业选修课而设,理论课程为36学时,而实验学时24学时;与此同时经过对其它兄弟院校的调研发现,很多高校虽然也是设为专业选修课,但建议学生们都去学习这门新学科,从而为今后的专业知识及具体应用打下一定的基础;当然在调研中也发现,部分本科高校虽然开设了“人工智能”课程,但是仅是纯粹理论教学,从一定角度来讲,理论原理是前沿,但是由于太过于抽象,而且空洞、难以理解,多数同学反映学习效果并不理想,有关具体理论部分的具体实现仍然不解。

本科高校一般都严格按照培养方案进行科学设置,同时各个学校根据本校人才培养方案分配各门课程的学时。由于现在我国的教育提倡注重对学生动手能力的培养,培养综合型、应用型人才,因此笔者再结合实践教学经验及对学生的调研,发现“人工智能”课程除了要进行理论方面的讲解外,还应注重实验教学。此外,在高职院校的培养方案中,侧重加强学生的动手能力的培养,也建议将此课程列为开设的范围之内,而在实验学时上可以安排相对多的实验学时,在了解“人工智能”理论的前提基础之上,主要进行相关理论的具体应用与实现,通过这样的教学安排,可以提高学生的实践动手编程能力,例如图1,专家系统的知识库、工作存储器及界面的设计与实现。

篇(3)

关键词:人工智能;音乐教育;智能乐器;大数据

1引言

随着人工智能技术的不断进步,重新塑造音乐使得音乐教育的学科素养培育、审美感知、艺术表现和文化理解变得更有支持和创意。探索应用人工智能技术推进音乐教学的改革与发展有具有十分重要的意义。本文通过研究与实践,引导学生学会用科学的方法培育计算思维创作音乐,用科学的意境欣赏音乐陶冶学生的音乐审美感,用科学的评价提升音乐课堂教学效率。通过这些措施,可以使学校音乐教育精准地开展因材施教差异化教学,彰显音乐教育的特色。

2人工智能与音乐

人工智能技术与音乐教育有机融合,丰富了课堂教学资源,拓展了智能乐器的功能,提升了音乐教育技术手段。它支持个性化学习,可以观察音乐课堂学习,分析音乐的旋律与节拍,有效评价教学效果,激发音乐教师运用人工智能技术创新音乐教学的热情,发挥教师在课堂教学中的主导作用。

2.1乐器的智能化

乐器是学习音乐的重要工具。乐器植入人工智能技术,形成了智能化乐器。它能够大量储存多种乐器的音乐数据。尤其是在音乐键盘中运用,功能的提升特别突出,应用于音乐教学中引发了多种形式的教学模式。例如,图1显示了融合多媒体计算机、主控系统、音乐课堂教学智能评价系统将多部电子钢琴连接起来的智能乐器实验室。通过语音室方式授课,可以实现多种乐器的分组教学。这在传统的音乐课堂上是无法完成的。

2.2智能化乐曲创作

智能乐器不仅能够储存乐器音色,而且还能用指令对各种音色播放进行控制,各种音色按照指令进行演奏。这种创作功能是以往其他乐器都无法比拟的[1]。例如,能唱出《月亮代表我的心》十七声部的合唱团,很好听,但很难。运用智能乐器按指令合成该十七声部音乐则轻而易举。2.2.1机器学习生成乐曲人工智能技术赋能智能乐器,使得机器学习的功能日趋进步。机器学习在音乐领域所做的事情,就是提取音乐作品的“数据”,输入给定模型学习音乐的“特征”,再对音乐数据进行分析和编排。例如,如果输入的是《梨园金曲》民族音乐,则机器就能学会民族音乐的曲调特征,生成掌握特征模型的民族音乐作品。2.2.2用软件生成乐谱使用MuseScore3forMac软件可以制作乐谱,在工具栏选择对应时值的音符输入音符。例如,在MuseScore3窗口输入如图2所示的“我和我的祖国”乐谱,再导出MP3文件进行播放。2.2.3代码生成乐曲用Python代码生成曲子,要借助音乐标准格式MIDI—乐器数字接口,运用Python-midi库编写程序,编译MIDI文件生成音乐。例如,生成一个简单乐谱的MIDI文件需要使用Python-midi,其中:Pattern对象表示乐谱;Track对象表示音轨,通常乐谱都有多条轨道组成,每种乐器是一个轨道;midi.NoteOnEvent表示每个音符的开端,在参数表中可以定义每个音符的音长和音高;midi.NoteOffEvent表示每个音符的结束。参考代码如下:importmidi#定义patternpattern=midi.Pattern()#定义轨道track=midi.Track()#添加轨道到patternpattern.append(track)#音符开始,并定义位置、音量、音高on=midi.NoteOnEvent(tick=0,velocity=50,pitch=midiG_3)track.append(on)#音符结束off=midi.NoteOffEvent(tick-100,pitch=midi.G_3)track.append(off)#轨道结束eot=midi.EndOfTrackEvent(tick=1)track.append(eot)#存储midi.write_midifile("example.mid",pattern)程序运行结果生成了如图3所示的简单音符:这样如图2的“我和我的祖国”乐谱,也可以通过Python代码生成MIDI文件。

3AI赋能音乐课堂

在AI赋能的音乐教育环境,促使音乐教学实践变革以及学生学习音乐方式。例如,图4所示的集音乐创作教学及教学评价于一体的“智能化音乐课堂教学评价系统”,在教学设计的优化、教学方法的高效、教学手段的更新、教学评价的智能、教学策略的调整方面都具有借鉴意义[2]。

3.1大数据学习

大数据云计算可以将所有音乐家们音乐数据存储在云中,运用人工智能技术为学生提供更多有价值的音乐数据。学生通过音乐云学习音乐知识,欣赏音乐魅力、体验音乐节奏、理解音乐韵律。它使得优质音乐教学资源跨越校园,开放延伸音乐教学,远程辐射共享资源。这样就扩展了学生的视野,音乐知识的来源无限扩大,整个音乐云皆有学生的学习教材。特别是大数据音乐云不仅可以推送给学生更多的即兴音乐和更多的音乐信息,还能指导音乐爱好者创作出雅正、健康的音乐作品。

3.2个性化学习

人工智能技术从音乐学习行为数据搜集、数据分析与运用、个性化学习评价多方位帮助学生定制个性化的学习成长路径。推送在线音乐教育资源,指导表演建议乐器学习技巧。搭建音乐教育虚拟课堂,匹配音乐教学资源,实现因材施教的个性化学习,支持一对一的教学辅导和群组式讨论。通过这些措施提高教学质量和效率。

3.3教学评价智能化

运用人工智能技术将多个音乐辅助教学设备连接的音乐创作教学系统,基于音乐课堂教学的学生学习特质分析与教学效果分析的音乐课堂教学管理系统,来实现音乐教学的全程智慧管理,使音乐学习更有效率。例如,在虚拟音乐课堂乐器教学可以变成一对多的自选教学模式,使课堂变得轻松、愉快。教师可以开启课堂教学观察模块,捕捉每位学生同步练习的音准、节奏、力度数据,分析判断将评价信息同步反馈,给出学习指导建议。3.3.1创作教学模块“智能化音乐课堂教学评价系统”中的音乐创作教学模块,集视、听、练和反馈评价为一体,适时演示教师教学作品和评价学生练习作品。例如,在进行《我和我的祖国》授课时导入电影片段,欣赏“我和我的祖国”音乐的表现形式、演唱形式以及歌曲风格,可以使学生更好地体验作品的创作意境,激发创作意识。使用MuseScore创作“我和我的祖国”三声部习作音乐,并能储存、刻录,编辑等二度创作。3.3.2课堂教学评价模块音乐课堂教学评价有着传统音乐教学评价无法比拟的灵活性、客观性和实用性。从大数据分析角度获取音乐课堂教与学相关数据,对学生的音乐基本素养与学习态度进行科学分析判断。例如,以创作《红河谷》中的和声与音乐作品风格内容的“编配伴奏音乐”教学过程为例。课前在“课堂教学评价模块”上安排学生根据作品风格完成伴奏的音乐;播放制作好的《红河谷》MIDI音乐(在第二和第六个小节缺失编配和弦);使学生感受、探讨大小三和弦的表现力,形成对大小三和弦的感知。然后要求学生试着用MuseScore为《红河谷》缺失的两小节选配和弦,以适合歌曲的伴奏风格。学生需要边哼唱歌曲边试着套用不同的伴奏风格,找到他们认为最恰当的和弦伴奏风格,说出理由并提交[3]。评价系统将学生提交的作业比照音乐要素进行评价。及时反馈学习评价的信息,并对学生的学习进程制定一个个性化的学习方案[4]。同时通过教学反馈深度优化决策模型,促进教师实时改进教学策略,提高教学效率和效果,提升教学质量。

4结语

人工智能技术在音乐教育领域中的广泛应用,为传统的音乐教育模式注入了活力,为音乐教师创新音乐教学理念开辟了新思路[5],为因材施教提供了新的适合学生学习的音乐教学模式。人工智能在音乐教育模式方面的探索,不仅给音乐教育教学的发展带来了物质技术层面的进步,还从音乐教学层面促进计算思维培育开辟新途径。这对音乐教育理念、教学手段、教学方式和方法以及拓展学生音乐视野、学习音乐、享受音乐、创造音乐等都带来深刻的变化和积极的影响。

参考文献

[1]邹孟雨.人工智能及其在音乐教育中的应用.北方音乐,2018(15):254-255

[2]郭文进.“互联网+教育”运行模式探究.决策与信息(下旬刊),2015(9):63

[3]段晓军.电脑音乐系统与中小学音乐教学实践.中国音乐教育,2006(6):26-28

[4]王迪.浅析娱乐教育中元学习能力的培养.河北广播电视大学学报,2007(1):79-80

篇(4)

关键词:互联网+;会计;教育

一、“互联网+”会计的影响

“互联网+”会计,从思维到实际操作层面都对会计行业造成了巨大的影响,赋予了传统的会计工作更多的可能性。通过分析“互联网+”背景下,人工智能、大数据、云计算等新兴科技融合会计工作的现状与影响,能够帮助思考新时代会计人才的培育方向。

(一)会计信息处理效率大大提升

人工智能在会计工作中能够快速实现会计信息的处理与数据的运算与存储,使得会计人员的作业重心从数据的录入、整理、归纳、运算等烦琐漫长的工序转移到关键信息的筛选、核查、审阅等重要环节上,大大缩短了信息处理的时间,优化了数据的处理功率,同时人为失误也得到了最大限度地削减。

(二)会计工作内容变动整合

人工智能等新科技在会计行业的使用与推广一方面降低了会计工作的强度,节省了会计工作的用人需要,另一方面也势必会对传统的会计工作者产生冲击,尤其是工作内容简单且重复性高的初级管账人员。而大数据的整理分析、计算机软件的熟练操作与使用、人工智能的运用与管理等也逐渐将成为会计人员工作中的重点。

(三)会计信息更为真实可靠

传统会计手工记账的业务处理容易出现操作失误等情况,运用人工智能与大数据的应用最大程度上减少了人为失误,且数据信息得到了良好的存储管理,易于追溯、查询与审核,从而大大提高了会计信息的真实性。同时,人工智能的使用相比会计人员相比更能降低因为主观判断造成的失误,使得会计信息更客观中立,为利益相关者的投资决策提供更为真实可靠的信息。

(四)“互联网+”会计技术仍待进一步改进

人工智能、大数据等新兴科技引入会计行业后,在保证其能够快速获取、有效处理、精准转化决策信息的同时,确保人工智能系统可靠、安全、正常的运营是极其重要的工作。在激烈的市场竞争面前,会计技术的运营需要控制在稳定的技术及安全环境下,以防范财务数据的泄露或崩溃而给企业带来难以弥补的损失。人工智能等新兴科技在引入财务工作的过程中,其安全性、可靠性、稳定性等重要性能仍然需要进一步的研究、实践和优化升级。

二、传统会计专业教育的不足

“互联网+”时代对会计人才培养提出了新要求,传统的会计专业教育的缺陷逐渐暴露。具体问题如下:

(一)教育思维固化

在“互联网+”会计的背景下,会计专业人员不仅需要会计专业知识储备,在计算机软件、数据统计与分析等方面也需要具备一定的技能。但前者属于管理类学科,具有人文科学的特点,后者则属于理工科的内容,二者之间存在一定的隔阂,但绝不是泾渭分明、非此即彼的关系。而许多高校尚未完成从培养“专业性人才”到培养“复合型人才”的观念转变,没有将二者进行很好的融合,会计思维与数据、逻辑、计算机思维仍然互不沟通。

(二)课程设计缺陷

我国多数高校如今对于会计专业课程的设置不尽合理,会计与计算机的融合操作教学一般都只对高年级开设,且其比重与传统的理论教学相比只占学生专业课程中很小的一部分。而课程内容也主要在于培养学生会计系统的运用能力,让学生成为“应用型“会计人员,理论与实践没有实现深度融合,学习的更多的是操作应用而非创新创造,使得学生对会计信息开发系统仅仅处于一种肤浅的认知与操作阶段,缺乏对前沿会计信息技术的深入理解与运用。

(三)教学方式落后

当前许多高校的会计教学方法仍为传统的“理论解读和实务演练”。教师讲述个人对会计知识的理解,学生被动的接受知识与观点,但没有主动的对会计知识进行探索;而实务层面,也主要由教师进行示范演练,学生对示范进行单调的模仿学习,重复既定的规范步骤,这种教学方式拘束了学生的自我探索空间,难以培养学生的自主创新意识,虽然能够快速学习实务操作的程序步骤,但对于学生分析、解决问题与自主创新等能力的培养仍存有不足。

三、会计专业教育的发展方向

(一)培养学生自主学习与创新能力

在“互联网+”时代的大背景下,人工智能、大数据、云计算等技术高速发展,企业商业模式变化日新月异,在会计行业中只有时刻保持着对前沿知识技术的敏感、具备强大的自主学习能力与自主创新能力才能不被智能科技取代。因此在会计人才的培养教育中,应有意识的引导学生改被动接受为主动学习、改单调模仿为自发创造,不断提高学生的职业胜任素质。

(二)培养“互联网+”会计思维方式

会计专业教育不能割裂人与计算机、会计与新科技的联系。人工智能等新兴科技在会计工作中的使用主体仍然是会计人员。因此在会计教学工作中,应逐渐培养学生树立“互联网+”会计的思维,注重会计知识与计算机实务操作的融合,培育学生处理信息、驾驭系统的能力;增加“互联网+”会计相关课程占总体知识群的比重,紧密结合人工智能的开展方向及最新动态,融合人文与科学思维、管理与计算机思维。

(三)培养复合型会计人才

结合我国当前会计行业结合互联网技术后的发展现状进行分析,未来新技术的深入发展需要依据中国会计准则,不断完善会计信息化软件建设,丰富各类复杂业务的会计处理方式,因此高校需要加大“互联网+”会计的“跨界”复合型人才培养力度,使之兼具经济管理、数据分析、会计实务、信息技术等知识能力,迎合当前会计劳动力市场在快速发展的科技时代背景下的用人需要。

篇(5)

人工智能在培训行业的应用,除非已经进化到像电影《黑客帝国》中的场景一样,可将所需知识直接下载至脑中,否则,还是得回归学习的本质。人工智能无法替代人类学习,学习是个性化的,并且还要经历内化的过程,才能最终完成。然而,这并不代表人工智能在培训行业没有用武之地,恰恰相反,“智能化”学习技术的发展正为培训行业注入一股新动能,而其中有些应用值得重点关注。

辅助系统

在学习环境中,与传统学习管理平台注重管理与记录不同的是,智能化辅助系统会提供给学习者(learner)个性化的反馈。学习者参加完测验后,可以更好地了解自己的弱项,进一步获取相关的学习资源及后续所建议的学习路径。智能化辅助系统扮演了助教的角色,有效指导并促进学习者的学习。在工作环境中,智能化辅助系统可以依照角色或流程等属性,即时提供给任务执行者(performer)个性化且适量的内容,扮演了教练的角色,加速问题解决并提升工作成效。

课程规划

想像一下,你所经历的学习与工作都留下了记录,你曾经去过哪儿、看过什么、读过什么,都被记录分析。之后通过电脑演算模型,人工智能就可以根据你的程度与需求,为你匹配相关的资源,选取真正对你有用的内容,提供多元与个性化的学习历程(learning experience),从而摒弃以往齐头并进式的课程规划。

内容资源

通过学习元件(learning objects)或知识元件(knowledge objects)在元数据(meta data)的标签,内容资源可以具备学习者能力、角色、工作场景及业务流程等属性。之后,结合智能推荐引擎,内容便可以依照单一或多元属性呈现,作为获取知识的来源被自动推送给学习者,或者作为问题解决的资料来源被推送给任务执行者。

精确搜索

语言可能是模棱两可的,通过建立知识图谱(knowledge graph),学习者可以快速缩小搜索范围。智能化搜索也可以更好地理解学习者搜索的信息,总结出与搜索话题相关的内容。由于知识图谱构建了一个与搜索结果相关的完整知识体系,所以学习者往往会获得意想不到的发现。在搜索中,学习者可能会了解到某个新的知识或新的联系,从而进行一系列全新的搜索与学习。

数据分析

学习无处不在,当学习或者历程记录可以通过xAPI这类学习技术标准,来收集多元数据的时候,学习数据就不会只停留在以往SCORM课件阅读的纪录模式,而是可以实现学习历程数据的集中。过去单纯的学习记录也可以上升到预警及预测的层次,甚至通过数据收集与深度分析,提供学习者如何建构所学内容的意义、如何形成理解、以及学习过程中所做决策的报告,这对教学设计会有莫大的帮助。

项目运营

篇(6)

(一)模仿操作,缺乏主动性

五年制高职会计专业一般在三年级上学期开设电算化课程,多采用畅捷通T3软件教学和练习。教学方法一般为教师讲解演练、学生模仿操作,学生被动地接受电算化的流程,并不去思考为什么要这样流转,缺乏学习的主观能动性。学生对于未经过大脑思考、加工的知识,理解层次浅、记忆时间短。

(二)案例陈旧,缺乏真实性

畅捷通T3教材中的案例未能随着会计准则、财经法规的变化而变化,与实际工作脱节,缺乏有效性和真实性。教师仍然按照书本案例教给学生会计知识和操作技能,对于学生来讲电算化课堂就是学一些简单的操作流程,课堂上学习的理论知识已经是过时的了,很难调动学生的学习积极性,教学效果也大打折扣。

(三)软件单一,缺乏综合性

畅捷通T3是由用友财务软件简化而来的教学用软件,学生学会了畅捷通T3里的所有流程,并不代表就会运用用友财务软件,更不等于就会运用其他财务软件(例如企业常用的金蝶、管家婆等财务软件)。因此,单一软件的学习会导致学生的思维固化,将来毕业也难以适应新的会计工作岗位。

二、五年制高职会计电算化教学模式改革建议

(一)培养师资,提升教学水平

名师出高徒,要培养优秀的学生,首先要培养优秀的师资。在人工智能时代,会计专业教师应积极参加各类培训和学习,了解最新的技术发展,熟悉先进的教学理念,倾听优秀电算化教师的教学经验,观摩兄弟院校电算化教学软件和硬件设施。职业学校应鼓励会计专业教师下企业挂职锻炼,提升专业教师的会计工作水平,培养真正的“双师型”教师。

(二)创建平台,鼓励自主学习

职业学校要创建教学平台,搭建教师与学生沟通的桥梁。教师可以把简单的电算化操作流程按模块录屏,根据最新的会计政策和法规编写案例、优秀教学资源等,上传至教学平台,学生可以自主登录学习,不受时间和空间的限制。在教学平台中,可以实现在线测试、在线评分、师生互动、生生互动,帮助学生及时解决难题,切实提高教学效果。

(三)财务共享,实现真账实操

职业学校要努力打造财务共享中心,把企业搬进校园,让学生能接触到最新的、真实的经济业务,根据纸质的原始凭证或者扫描的原始凭证进行分析、判断,然后在财务软件中分岗位进行操作,实现真账实操。财务共享中心可采用企业的管理模式,让学生有切身的职业体验,为今后的会计职业道路做好铺垫。

(四)优化软件,打造业财融合

人工智能环境中,会计人员不仅要精通财务会计知识,还要有扎实的财务管理知识、税收筹划知识、企业管理知识等。因此,电算化课程的教学软件应增加财务决策模块、纳税申报模块,通过电算化课堂教学,完善学生的知识体系,要让学生知其然并知其所以然。同时,电算化课程还应借助ERP实训软件,开展ERP沙盘情景模拟教学,使学生了解企业运营模式,熟悉业务到财务的全过程。

(五)校企合作,感受真实情境

校企合作的单位是会计专业教师非常重要的教学资源,教师可带领学生一起参观不同的企业,让学生感受真实的企业环境和工作岗位,了解企业对会计专业学生的需求,促使职业学校不断完善会计专业学生的培养模式,改进电算化课程的教学模式。职业学校也可聘请企业财务经理作为客座教师,为学生讲解自身的工作经验、会计电算化实际工作中的技能和技巧,指导学生的职业生涯规划。人工智能对会计行业的影响将是深远的,职业学校要一直保持教育的先进性以及职业的敏感度,不断思考和探索会计专业学生的培养模式以及会计学科的教学模式,为会计专业学生进入工作岗位奠定良好的基础。

参考文献:

[1]李峰.人工智能对未来会计的影响研究[J].中国总会计师,2019(04):166-167.

篇(7)

关键词:新工科;高等院校;计算机类专业;师资

1新工科建设下计算机类专业背景分析

自2017年2月起,国家教育部积极推进新工科建设,引导工程教育的探索新阶段,为高等教育在强国建设中发挥重要作用助力。新工科专业,以互联网和工业智能为核心,包括大数据、云计算、人工智能、区块链等相关工科专业。新工科专业是以智能制造、云计算、人工智能等用于传统工科专业的升级改造,未来新兴产业和新经济需要的是实践能力强、创新能力强、具备国际竞争力的高素质复合型新工科人才。[1]相关专业包括:计算机科学与技术专业、物联网工程专业、数字媒体技术专业、数据科学与大数据技术专业、智能科学与技术专业、智能建造专业、智能制造工程专业等。[2]由于计算机类相关专业是新工科专业的重要组成和有力支撑,近年来的招生报考呈现越来越火爆的趋势,呈现出生源充足、考生认可度高的特点,与之形成对比的是:计算机类师资储备不足、招聘难度较高。尤其是部分近年新开办的专业,尚无直接对口的高校毕业生,因此,如何通过招聘和培养让师资有效的适应新工科背景下学科建设及人才培养的需求,是高校亟待解决的问题。

2高等院校计算机类专业师资现状及存在问题

2.1现有的高校计算机类专业师资来源,主要有以下两个渠道

(1)来自高校。高校毕业生通过招聘环节进入高校工作,通过岗前培训取得教师资格证,完成从学生到教师的角色转换,无业界实践工作经历或业界实践工作经历不足一年。(2)来自业界。从高校毕业进入相关行业从事计算机类对口工作,有深入、丰富的实践经验后转型到高校担任教师,多数具有行业资格证书,能直接指导学生实践。

2.2高校计算机类专业师资构成,主要有两种类型

(1)专任教师。教育部明确指出,专任教师是指具有教师资格,专门从事教学工作的人员。我国对高校专任教师与学生的比例有基本的要求。(2)兼职教师。兼职教师是高校师资的重要补充力量,高校会根据教学需要聘请一定数量的校外企业、社会实践经验丰富的名师专家、高级技术人员或技师等担任兼职教师,担任实践类课程教学。

2.3高校计算机类专业师资存在的主要问题

(1)来自高校的教师普遍缺乏对行业的深入了解。没有业界工作经验的高校教师,由于不熟悉实战项目,难以直接指导学生实践,而对计算机类专业而言,是否具备项目开发经验对教师胜任力是关键评价指标。(2)互联网、工业智能专业人才的薪资要求高,招聘难度大。新工科专业以互联网和工业智能为核心,大数据、云计算、人工智能、区块链都是快速发展的新兴行业,业界薪资待遇高,从业人员以青年人为主,正处在人生拼搏期和事业上升期,薪资待遇和发展平台的悬殊,导致业界人士鲜少选择到高校从事教学工作。(3)业界教师教学能力有待提高。来自业界的教师经验丰富、实践能力强,但因多年在企业工作,学科基础理论知识脱离时间长、逐渐淡忘,理论课教学能力偏弱。(4)兼职教师授课时间受限、不稳定、波动性大。由于兼职教师大多来自校外企业和社会,授课时间受到限制,不能持续稳定的参与教学工作,波动性较大。(5)计算机类专业教师能力有待不断提高。随着新技术发展,人工智能时代的全面来临,计算机类专业知识更迭快,对教师知识更新、能力提升的要求高。

3高等院校计算机类专业师资紧缺的解决建议

3.1合理化薪资结构调整、改善福利待遇,建立绩效考核和激励体系

高校应该合理调整薪资结构,提高紧缺专业师资待遇,争缩小与行业从业人员的薪资落差,充分利用高校的自身优势吸引人才,提高福利待遇。建立科学合理的绩效考核、激励体系:考核评价要发挥导向作用,对不同类型的教师(教学科研型、教学型、科研型)分别细化不同的考核标准,条块结合、标准明确、公正科学、奖惩分明,同时充分发挥大数据的作用,利用数据化的考核方式让考核更加具体充分。通过绩效考核体系,加强对于紧缺、骨干师资的评定和激励。

3.2制定教师双向进修计划,加强师资培训培养力度

要建设综合素质好、学术水平高的教师队伍,既有丰富理论知识、又有较强职业技能和一线实践经验:面向来自高校和业界不同类型的教师,针对性的开展培训,区分侧重点--为高校教师提供更多参与行业实践、深入企业项目的锻炼机会;为业界教师提供更多进修、访学、学术会议等交流学习机会,帮助教师提升自身素质。同时,师资培训结合脑科学、心理学、教育学,提升教师的跨领域融合能力。

3.3建立兼职教师人才库,储备充足的兼职教师

高校应建立计算机类专业兼职教师人才库,通过网络平台、专场招聘、定向联系等各种渠道、多种方法,推进兼职教师的储备工作,保证充分数量的兼职教师队伍。

3.4开展企业合作定制培养班,引进企业导师参与实践类课程教学

新工科建设要求下,高校计算机类专业应利用校企合作资源,大量引入企业项目和研发骨干人员进入课堂,共同参与学生培养,达到高校、企业、学生共赢的局面。通过开展企业合作定制培养班,让企业导师参与实践类课程教学,同时需要适当放宽对企业导师学历、职称等门槛要求,重点关注其实践项目研发经验和能力。