时间:2024-02-04 16:46:40
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇高分子化学与工程范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
关键词:高分子材料;高分子化学;实验教学
高分子化学实验是高分子化学课程教学的一种最有效的实践教学形式,它可以帮助和促进学生课堂理论知识的学习与消化,建立和巩固高分子化学基本概念和理论,获取高分子化学知识,培养科学素质和操作技能。我国著名化学家戴安邦指出:“只传授化学知识和技术的化学教育是片面的,全面的化学教育要求既传授化学知识和技巧,又训练科学方法与思维,还培养科学精神和品德,学生在化学实验中是学习的主体,在教师指导下进行实验,训练用实验解决化学问题,使各项智力皆得到发展”。这番话指出了开设化学实验课的深刻内涵和重要价值。2004年国家教育部颁布的《普通高等学校本科教学工作水平评估方案》在评估指标的二级指标“实践教学”中,从“实践教学内容与体系,综合性、设计性实验课的比例及效果,实验室开放”三个方面明确了实践教学改革和发展的方向。近几年高校的化学类实验教学改革取得了令人瞩目的成果。高分子材料科学与工程专业是很多高校在近年来新开设的专业,在实验教学与改革方面的成果积累较少,尤其高分子化学实验教学采用陈旧的教学内容和教学方法依然居多。通过调研发现,目前国内高校高分子材料科学与工程专业的高分子化学实验教学依然不同程度地存在一些问题。
一、高分子化学实验教学现状剖析
1.实验教学体系和内容欠争理
多数的实验教学附属于理论教学,没有单独设课和单独考核,实验课时相对较少虽然有些高校高分子化学实验已经独立设课,但仅作为考查课。实验教学内容中传统的、陈旧的实验较多,而体现现代科学技术发展成果的实验很少认知性、验证性实验所占的比理偏高,培养学生创新能力的综合性、设计性、应用性和创新性的实验偏少,而且实验环节偏重于理论,突出高分子材料应用性特点的实验太少,不利于培养学生的工程观念。
2.实验教学方法单一
学生按照实验讲义预习,然后进实验室。实验前教师把实验目的、实验原理、仪器使用方法、测试方法、实验步骤和数据记录表格及数据处理方法等进行详细的集中讲解。学生只需按教师指导的过程按部就班或者依照讲义“照方抓药”,就可以完成一个实验。一部分学生糊里糊涂地来到实验室,只动手不动脑地完成实验,然后又迷迷糊糊地离开实验室。实验的现象和结果没有给他们留下太深的印象,对学生观察能力、分析问题和解决问题的能力以及创新意识的培养都很不够。这种统一模式、统一要求、齐步走的教学方法,一方面造成了学生对教师的过分依赖,另一方面抑制了学生个性思维的发展和创新能力的培养。
3.实验嫩学手段落后
在现代信息技术迅速发展的今天,虽然网络技术、多媒体技术等现代教学技术在理论教学中得到了普遍应用,但虚拟、仿真等实验技术手段未能在实验教学中推广应用。这样对于一些耗费过高、时间过长、毒性过大、危险性过高的实验,只能最低限度地开设,且开设过程中费用大和危险性高,导致学生对此类重要实验缺乏足够的认知和感受的机会。
二、新教学模块的实践性探索与成效
针对目前国内高校高分子材料科学与工程专业高分子化学实验教学中存在的一些问题,借鉴其他化学实验教学改革的优秀成果,提出了基础技能实验、综合设计实验、研究创新型实验的三个高分子化学实验教学模块体系,并在每个模块中结合常熟理工学院教师的科研成果引入_些新的实验教学内容,采用开放式实验教学方法。通过实验教学实践发现新的体系和教学方法在培养学生的创新意识和工程实践能力方面起到了较好的效果。
1.基础技能实验教学模块
基础技能实验模块构建的目的着重建立高分子化学实验与相关基础理论知识之间的有机联系。培养学生的实验安全意识、清洁卫生习惯和严谨的实验态度。训练学生掌握熟练规范的实验操作技能和技巧,为后续的实验教学模块的实施打下良好的基础。
基础技能实验模块的教学内容设计在课时总量的40%~50%为宜,课时数约30学时,开设8~10个实验。教学内容设计涉及到高分子化学反应机理,如自由基、阴离子,阳离子等连锁反应机理,缩聚、基团转移聚合等逐步反应机理,开环聚合反应机理等。在实验实施方法方面涉及到本体聚合、溶液聚合、悬浮聚合、乳液聚合、熔融缩聚、界面缩聚等。如设计膨胀计发测定苯乙烯本体聚合动力学实验,让学生直观感受到了诱导期概念、聚合过程体积减小的现象以及聚合物溶液的粘性特征等非常重要的高分子化学理论知识。设计过硫酸钾引发甲基丙烯酸甲酯自乳化聚合实验,除让学生明确了乳液聚合的基本原理外,还了解到了聚合物大分子链端基的重要作用。设计己二酰氯和己二胺界面缩聚实验,让学生深入理解了界面缩聚的概念和聚合物的可纺成纤性能等主要高分子知识。通过设计一些自由基、阴离子、阳离子等连锁反应机理的实验,使学生进一步掌握了活性中心的概念,同时在实验过程中认知了这些引发剂的活性、安全使用和贮存事项。
2.综合设计实验教学模块
综合设计实验教学模块旨在培养学生较强的实际动手能力,自主设计和分析解决问题的能力。本实验模块是实验教学的较高层次,注重学生实验的自主设计性和综合性。
教学内容设计在课时总量的20%~25%为宜,课时数约15学时,开设2~3个实验。本教学模块的特点之一是实验内容的综合性,可以将同一门课的几个实验,或者是几门课的实验组合在一起,形成一个大实验。本教学模块的特点之二是实验方案的灵活性和设计性,侧重培养学生的自主实验和学习的意识和良好习惯。例如关于高分子合成实验先确定好采用的聚合机理和聚合方法,在原材料配方组成、引发剂种类及用量、合成温度等工艺条件方面给出一个大致的框架,然后让学生在所给的框架内进行自行设计和实施实验。譬如悬浮法制备聚苯乙烯珠粒实验,水的用量范围为苯乙烯质量的100%~200%、分散剂为磷酸钙或聚乙烯醇两种、引发剂过氧化二苯甲酰用量为苯乙烯质量的0.2%~1.0%、反应温度设定在75℃~85℃范围等。学生通过自行设计的方案实施实验获得了不同的实验结果,通过对不同组之间实验结果的综合分析,找到了影响悬浮法制备聚苯乙烯珠粒的一些因素,激发了学生动手实验的兴趣,发挥了学生自主实验和学习的主观能动性。
3.研究创新实验教学模块
设置研究创新实验教学模块培养学生的科研和创新意识、提高学生的综合素质和应用开发能力,为实现培养高质量的应用型人才的教育目标提供重要的教学内容实体支撑。
本实验模块是实验教学的最高层次,注重学生实验的独立自主陛、综合性、应用性和创新性,教学内容设计在课时总量的20%~25%为宜,课时数约15学时,开设2~3个实验。本实验教学模块的特点之一是实验项目的独立自主性和综合性。也就是说确定好实验项目之后,让学生在实验教师指导下独立自主地进行实验项目方案的调研、设计、实施和结果分析。本实验教学模块的特点之二是实验项目的应用性和创新性,所拟定实验项目必须关联生产实践中的聚合物产品,充分体现实验项目的应用性。实验项目设计主要针对这些高分子产品生产实践中存在的共性问题和关键问题的解决来进行设计。通过研究创新实验的实施,发现学生学习积极性很高,乐此不疲,为培养学生创新意识和展示高分子化学实验的应用性特征提供了最佳学习平台,尤其是开发一些联系生活实际的应用型实验,可使学生亲身感受到高分子化学实验的实用价值,能强烈激发学生的创造动机。此外,研究创新实验往往需要多名学生共同完成,有利于培养学生的团队合作精神。例如,聚氨酯绝缘漆的制备及性能测定实验,每个学生做一个实验配方,每5名学生一组,5名学生的实验结果综合在一起可以得出高分子树脂配方组成与漆膜性能之间的关系曲线,以及固化条件与漆膜性能之间的关系曲线。在实验过程中,5名学生要共同安排实验方案,尽量保持操作的一致性,最后得出的结果要呈规律性变化。如果有一名学生操作有误,这个实验点就会落在规律性以外,影响其他学生对实验现象的观察。因此,实施研究创新实验项目对教师也提出了更高要求。在每次实验前,教师要指导学生拟定方案,并对可能出现的实验现象和各种影响因素进行分析,实验过程中,又有多种意外的实验现象出现,这势必要求师生共同分析和讨论造成这些现象的原因,帮助学生透过现象深刻理解事物的本质。这样做需要教师有相当的知识储备量,并且要求教师也不断进取,充分体现了教学相长的教育理念。
三、结论
基础技能实验、综合设计实验、研究创新实验+教学模块教学的实践证明教学效果显著,特别对提高学生综合实践能力、激发学生理论课学习兴趣、培养学生创新意识和应用开发技能取得了预期效果。基础技能实验模块的教学效果主要体现在实验现象与相关基础理论知识之间的有机联系,高分子化学实验操作技能和技巧的掌握和规范。综合设计实验的教学效果主要体现在学生自主设计和分析解决问题的能力培养。研究创新实验的教学效果主要体现在学生科研和创新意识的建立,以及学生团队意识和应用开发能力的培养。
参考文献:
[1]李晓,等_高分子化工方向专业的课程体系设计[j].化工高等教育,200i,(1):50-52.
[2]谢安邦高等教育学[m].北京:高等教育出版社,1999.3
[3]杨通,范新会.王正品材料类专业实验课程体系的改革[j],实验室研究与探索,2004,23(10):71-80.
[4]虞立宏,王静爱,葛岳静,本科生科学研究项目实施特色[j]中国大学教学,2004,(8):20-21.
[5]王雅珍,等,微型高分子化学实验研究[j]化学教育,2001,22(1):47-48.
关键词:高分子化学实验;协同创新;实验教学;建设
中图分类号:G642 文献标识码:B 文章编号:1002-7661(2013)33-013-01
高分子化学主要包括高分子化学、高分子物理以及高分子工艺。高分子化学主要就是研究高分子化合物合成、化学反应、物理化学、加工成型以及应用等方面的一门综合性学科。
一、高分子化学实验研究
霍夫曼和库特尔在1909年第一次提出C5H8的热聚合专利。一年后1910年海利斯和麦休斯用钠实验,也得到同样的结果C5H8。长期以来,人们对高分子物质研究也取得了一定的成果。有机化学家毕克斯在1920年的《关于聚合反应》一文中,明确提出,成为环状化合物和成为共价键结构的长链高分子化合根本不是一回事。在1922年,发现橡胶“溶液”仍然具有胶体性质。又于1924年明确提出了天然橡胶分子是高分子量的大分子,同时,将其溶于任何物得到的胶体和小分子结合得来的胶体不一样。分别在1926年和1928年,斯本先、多尔(1926)以及施道丁格(1928)同样认为纤维素分子可以从一个晶胞长入另一个晶胞而成为直链形状,而施道丁格并进一步提出,纤维素和橡胶分子的晶胞的大小或晶体的大小与线形高分子的长度无关,之后又在1930年,更进一步提出了高分子稀溶液的粘度和分子量之间的关系,从而引起了定量测定高分子分子量的兴起。1932年,施丁格发表了一部关于高分子有机化合物的总结性论著,标志高分子化学的建立。在此之后,高分子化学理论迅速发展,高分子工业也蓬勃兴起。尤其是1949年之后高分子化学的系统研究大规模地开展起来。
二、协同创新影响下的实验教学项目建设
在新形势下,科学技术正在不断发展,高分子材料也被广泛应用,这为基于协同创新的高分子化学实验提供了可能,加强了其与其他科之间的联系,进行了一系列的综合性以及创新性的实验教学项目的建设。
1、有机结合高分子化学、物理实验
由于高分子材料合成后是要对分子量和其分布量测定的,同时,对于高分子的乳液、溶液镍都也要进行测定,所以必须做到有机结合高分子化学实验和高分子物理实验。通过对高分子化学实验的安排,完成这些必要性能的测定。
2、结合高分子化学实验和食品质量标准
在实验中让学生学会思考、探索,将知识结合到实践中,学会解决问题,是以获得的丰富经验。就如环氧丙烷交联淀粉的制备,考虑它的应用范围,它属于一种粘稠剂,之前还做过食品添加剂,但是,它不符合《食品安全法》,其里面含有一定的氯元素的毒。因此学生对食品添加剂中高分子材料的应用作了研究,为保证聚合物的化学实验进行做了保证,同时,也让学生掌握了这种食物添加剂的检测办法。
3、结合高分子化学实验与药剂学实验
随着新型人才培养的需要,我们结合高分子化学实验与药剂学实验并且在实验中心增设了药剂学实验室。如高分子材料中的羧甲基纤维素钠就是药剂学常用的一种,我们同时也做过很多羧甲基纤维素钠方面的合成实验,甚至在最后得到一种混悬型液体药剂。这种药及对一些皮肤炎症(湿疹、荨麻疹以及丘疹等)效果十分好。
4、高分子化学实验结合固体废弃物处置
随着社会的进步,人们生活水平也有逐步提高,但是白色污染也日益困扰这我们,因此我们对这些高分子材料的废物回收工作必须加以重视,比如生活中最常见的,我们喝过的矿泉水瓶,它们都是聚对苯二甲酸乙二醇酯的,为此我们必须重视对这种高分子材料的矿泉水瓶进行回收,同时思考解决方案(乙二醇降解法),对其加以回收再利用。
5、协同创新影响下的高分子化学实验和水处理技术的结合
自2004年起,环境工程方面的水处理实验室就已开始运行,并将高分子材料运用在其中。为此,我们还专门开设聚苯胺的制备和它对铬离子吸附性进行研究。第一步,用溶液法制备聚苯胺;第二步,把制好的聚苯胺放在有铬离子的水质中;第三步,通过单因素分析实验得出结论:PH值对铬离子的吸附性影响很大。特别是PH值等于3时,去除率是最大的。通过实验,让我们认识到高分子材料对环境和水质方面的影响,为保护环境做了巨大贡献。
6、结合高分子化学实验和塑料成型工艺
由于新型创新人才培养的需要,我们必须加强对学校中实验基地建设,对学生接触塑料成型工艺一高分子化学实验结合到一起讲授,对学生开拓视野以及提高学习兴趣有很大影响,同时加强学生对此的了解。
综上所述,结合多门科学对高分子化学实验教学内容的建设意义十分重大,为此,我们在《高分子化学实验》中,增加了其与其它学科的紧密联系,保证实验内容的全面性、创新性以及导向性。
参考文献:
[1] 李青山,徐明双.微型高分子化学实验与思维创新教育[J].大学化学,2010(12).
论文摘要:高分子化学是研究高分子化合物的合成、化学反应、物理化学、物理、加工成型、应用等方面的一门新兴的综合性学科。那么,高分子化学具体内容及高分子与生活、高科技的发展关系如何呢?以下作简单介绍。
人类从一开始即与高分子有密切关系,自然界的动植物包括人体本身,就是以高分子为主要成分而构成的,这些高分子早已被用作原料来制造生产工具和生活资料。人类的主要食物如淀粉、蛋白质等,也都是高分子。只是到了工业上大量合成高分子并得到重要应用以后,这些人工合成的化合物,才取得高分子化合物这个名称。但提到合成高分子材料(聚合物)的应用与发展,人们在想到它们极大地方便我们的生活的同时,很多人会想到“白色污染”,甚至将水污染、大气污染等各种环境问题的产生怪罪于高分子,这说明他们对高分子并不十分了解。当今社会高分子的功用无处不在,而人们认识高分子时,往往忽略了它带给人类生活的巨大变化和种种利益,不了解它为人类文明做出的贡献是巨大的。
一、高分子化学的内涵
1.何为高分子化学
顾名思义,高分子就是相对分子质量很高的分子,它是高分子化合物的简称。高分子化合物,又称聚合物或高聚物,是结构上由重复单元(低分子化合物—单体)连接而成的高相对分子质量化合物。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干个原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。
2.高相对分子质量与高强度
相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。
3.高分子科学的主要内容
既然高分子化学是制造和研究大分子的科学,对大分子的反应和方法的研究,显然是高分子化学最基本的研究内容。高分子科学不仅是研究化学问题,也是一门系统的科学。高分子科学的主要内容有:如何将低分子化合物连
接成高分子化合物,即聚合反应的研究。高分子化合物的结构与性质关系。不同性质的高分子,其结构必然是不同的。为了得到不同性质的高分子,就要去合成具有特殊结构的高分子。
二、高分子材料化学的应用
材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。
第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。
第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。
第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。
第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。
三、高分子化学与高科技的结合
当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。
随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。
第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹性功能材料,如热塑性弹性体等。
第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。
第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。
可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。
四、高分子化学的可持续发展
研究高分子合成材料的环境同化,增加循环使用和再生使用,减少对环境的污染乃至用高分子合成材料治理环境污染,也是21世纪中高分子材料能否得到长足发展的关键问题之一。比如利用植物或微生物进行有实用价值的高分子的合成,在环境友好的水或二氧化碳等化学介质中进行化学合成,探索用前面提到的化学或物理合成的方法合成新概念上的可生物降解高分子,以及用合成高分子来处理污水和毒物,研究合成高分子与生态的相互作用,达到高分子材料与生态环境的和谐等。显然这些都是属于21世纪应当开展的绿色化学过程和材料的研究范畴。
参考文献
[摘要]高分子化学课程是高分子材料与化工专业的专业基础课,涵盖内容多,需要合理安排教学,运用其他课程知识,用学生容易接受的实例解释理论问题,能够增强学生学习的兴趣,达到较好的讲授效果。
[关键词]高分子化学;教学;实例
高分子化学课程是高分子材料与化工专业的专业基础课,是研究高分子化合物的合成原理和化学反应的科学。学生应具备一定的无机化学、有机化学、物理化学和概率论与数理统计知识才能学好该课程。国内高校多采用潘祖仁先生主编的国家级优秀教材高分子化学[1-2],对这门课的掌握程度,影响后续课程的学习。因此学生一般比较重视[3]。但对于初学者来说,认为该课程的内容较多,比较分散,系统性不强,有些知识点理解不透。
1高分子化学的课程特点
高分子化学主要介绍高分子的合成原理及高分子的化学反应,合成原理以聚合反应动力学为主线,衍生到聚合速率和分子量,而这二个指标正是工业生产控制的主要工艺参数,再通过聚合理论方程,讨论温度、介质、单体、引发剂等对聚合的影响。对于连锁聚合,每一种聚合机理都有特殊的引发体系,因此引发剂或引发体系也是高分子化学的重点内容之一。最后一章,聚合物的化学反应,主要介绍聚合物化学反应特征、聚合物的基团反应及接枝、扩链、交联、降解和老化,提出促使降解或防止老化的途径。有学者总结高分子化学课程有“五多”的特点,即内容多、概念多、头绪多、关系多和数学推导多[4]。该课程专业理论性强,概念复杂,抽象难懂,一定程度上影响了学生的学习兴趣[5]。
2课程知识点浅析
该课程序论中,除了介绍高分子化合物的基本概念、命名、发展历程及结构方面的基本知识外,重点介绍分子量。高分子的分子量大且具有一定的分布是高分子化合物的主要特点,其作为材料的力学性能主要由分子量及其分布决定。该部分内容介绍,需使学生明白高分子的分子量与小分子的相对分子质量的区别。缩合和逐步聚合反应中,首先通过二种双官能团单体参与的线形缩聚过程示例,第一步反应,得到二聚体,第二步反应可以得到三聚体、四聚体,此时体系中含有一、二、三、四聚体的分子,第三步聚合,体系中可能含有八、七、六、五、四等聚体,假若反应就此终结,体系中产物的聚合度不同,由此使同学们很容易理解聚合反应得到的产物即聚合物,分子量存在一定的分布。同时自然引入官能团等活性概念,才能从纷乱的聚合反应中抽取出本质特征,用一个速率常数描述同种官能团的反应特征。在课程体系中,活性中心等活性概念是高分子化学的基本思想,因此要借助实验数据进行例证,分子碰撞理论进行阐释。还需要明晰N0和N的含义。有二个相同的羟基,肯定体系中存在另一个分子含有二个羧基,因此平均每个分子链含有一种基团;对于均缩聚,更是如此。这点一定让同学理解,因为后面的理论方程推导要不断用到。另外,反应程度p是一个非常重要的概念和度量,定义为参与反应的基团数(N0-N)占起始基团数N0的分数[2],代表某种基团的转化率,反映了聚合反应的反应进程。缩聚反应中产物分子量分布,Flory利用统计法,根据等活性概念假设,以双官能团单体均缩聚为例,形成x-聚体每个键的成键几率为p,分子末端一个不成键几率为(1-p),推导了线形缩聚的分子量分布关系[2]。实质上,每一个键的成键几率不同,按照反应程度概念,应该是随着聚合度增大,p增大,为了处理简便,等同化,根据乘法原理,即得x-聚体的数量分布函数。后面自由基聚合、共聚合、离子聚合和配位聚合,都属于连锁或链式聚合机理,聚合一般都包含链引发、链增长、链终止和链转移几个基元反应。首先,要有活性中心的形成,进行链引发反应;正是根据其活性中心的不同,将其分为以上自由基聚合、离子聚合等。
有关其机理及分子结构的形成,与有机化学中的空间位阻效应、共轭效应有关。聚合动力学与物理化学知识有关,需要同学学前不妨复习下以前学过的有关内容。对于自由基聚合,介绍其英文词汇为Radical,含有“激进、活泼”之意,故可以作为活性中心,故教材中一般用R•表示,黑点代表单电子。聚合物中单元结构主要在链增长阶段完成,故链增长过程直接影响聚合物分子结构。①键接结构。增长过程中,结构单元间的连接存在“头—尾”、“头—头”(或“尾—尾”)两种可能形式,一般以头-尾结构为主。原因是以尾-尾连接,活化能大。列举生活中的实例,如小轿车、“和谐号”动车车头,都采用流线型,头部体积较小,阻力较小。微观上的化学反应也遵循同样道理。②立体构型。自由基上C为SP2杂化,与单体作用时既可从上方也可从下方进行作用,自由基聚合物分子链上取代基在空间的排布是无规的,但从空间位阻考虑,无规结构中,间同结构略占优势。③几何构型。双烯类单体,还存在几何异构,倾向于形成反式结构,都可以根据空间位阻进行解释。这样同学就容易理解高分子结构比较复杂的特性。另外自由基聚合的引发效率,主要是①诱导分解。诱导分解实际上是自由基向引发剂的转移反应,也就是说,自由基诱使引发剂分解,消耗掉引发剂,作无用功,故使引发效率降低。②笼蔽效应,主要指溶液聚合中,引发剂分子处于溶剂的包围中而不能发挥作用,可以想象,引发剂分子周围存在一层层的溶剂分子和单体分子相隔的球形包围圈(好像笼子一样),初级自由基遇到单体,直接作用,形成单体自由基,若遇到溶剂分子,不能作用,被弹回,有可能与下一个初级自由基结合,甚至与溶剂分子结合,使引发剂分子白白消耗,引发效率降低,称为笼蔽效应。由此派生出单体的活性与浓度、体系粘度和引发剂浓度,都影响引发效率,使同学将知识学通、学活。自由基共聚合中,关于链自由基的活性,一般认为带有共轭取代基的链自由基稳定,同学不易理解,以射击为例,若自由基上存在共轭基团,单电子不再归属于某个原子,离域程度大,行踪不定,这样用枪瞄准难度增加。单体相当于枪,就不易和它反应,故该类自由基活性差。
若链自由基带有非共轭取代基,其单电子位置固定,活动空间小,容易瞄准击中,即容易和单体发生反应,该类自由基活性高。烯类单体的离子聚合中,单体适宜于进行阳离子聚合还是阴离子聚合,主要取决于单体的结构,考虑取代基的诱导效应和工轭效应。带有π-π共轭体系的单体都能进行阴离子聚合。如果取代基具有吸电子性质,更易进行阴离子聚合。因为吸电子基降低双键上电子云密度,有利于阴离子进攻,并使形成的碳阴离子的电子云密度分散而稳定。而具有推电子取代基的烯类单体可进行阳离子聚合,因为推电子取代基增大了双键上电子云密度,有利于阳离子进攻,并使形成的碳阳离子的正电性降低而稳定。苯乙烯,丁二烯等含有共轭体系的单体,由于其π电子云的流动性强,易诱导极化,能进行阳离子、阴离子或自由基聚合。阴离子的活性聚合在理论上和实际应用中具有重要意义,要让学生明白活性聚合的原因、应用价值。配位聚合,要重新复习下无机化学中的配合物知识,其引发体系中,过渡金属为中心原子,它提供空轨道,烯类单体作为配体在空轨道上活化、按照一定的方向或方式进行配位、插入到增长链中,因此所得产物立构规整度一般较高。聚合物的化学反应,是聚合物改性、扩大聚合物品种的手段之一。接枝、交联等使聚合物分子量增大,降解、老化使聚合物分子量降低。用鲜活的实例向同学介绍,这样学生学习时不觉得生硬,便于接受。
3结语
作为一名高校教师,能够将复杂的原理讲解得浅显易懂,抽象的理论能够结合现实生活具体化、简单化,语言生动,课堂气氛活跃,学生对所讲内容有强烈的兴趣,这门课程的授课质量才有保证。
参考文献
[1]王小龙,何乃普,王九思.《高分子化学》教学中有机化学知识的有效利用探索[J].高分子通报,2009(11):62-65.
[2]潘祖仁.高分子化学(第五版)[M].北京:化学工业出版社,2011.
[3]王国建.《高分子化学》课程教学体会点滴[J].高分子通报,2012(11):97-100.
[4]陈传祥.金属材料工程专业高分子化学教学改革探索[J].化工高等教育,2007(2):37-39.
关键词 本科教育 课程改革 实验能力 创新意识
中图分类号:G642 文献标识码:A
高分子材料以其质轻、耐蚀、易加工等性能,正处于迅速发展时期,随着新技术、新工艺、新设备不断涌现,越来越多的企业迫切需要大量创新能力强、综合素质高的高分子材料专业人才。建立面向市场和企业,适应现代高分子材料发展要求,培养具有创新精神和竞争能力强的复合型专业人才,已成为现有高校高分子材料与工程专业所面临的重要问题。①②③④本文结合我校高分子材料与工程近年来的教学实践,提出构建新的实验实践教学体系,实验教学分层次、按模块进行,加强了实验教学的基础性、系统性、综合性和创新性,增加实践教学比重,改变实践教学模式,加强学科平台建设,强化对学生创新性实验能力的培养。
1 创新性实验教学改革的必要性
实验和实践教学不同于理论教学,在很长时间里,实验和实践教学得不到应有的重视,实验和实践教学附属于理论教学,在实际教学过程中多是验证性和认知性实验,启发式、设计性以及综合性实验偏少,不利于学生创新能力和工程化能力的培养。高分子材料与工程专业是一门应用性较强的专业,以塑料、橡胶、胶黏剂、纤维、涂料为代表的高分子材料已在国民经济建设中发挥越来越重要的作用,因此培养更多创新能力的从事高分子材料的合成、改性、共混复合、加工成型等方面的高素质人才是社会发展的必然要求。
以高分子材料与工程专业实验课程建设为核心,深化实验教学改革,通过按模块教学,强化学生实验技能,增加以新产品设计开发为导向的创新性实验,兼顾趣味性和挑战性,通过老师的引导,在实验过程中培养学生如何分析问题和解决问题,提高学生工程创新能力。我校高分子材料与工程专业成立于1994年,2005年被批准为湖北省立项建设本科品牌专业,并于2010年通过合格验收,同年被批准为国家特色专业建设点,2012年被批准为湖北省普通高等学校战略性新兴(支柱)产业人才培养计划项目,是我校首批在一本进行招生的专业。高分子材料与工程专业是与湖北省国民经济和社会发展联系紧密的应用型本科专业,在湖北省内乃至中南地区具有较大影响,为地方经济建设培养了大批高层次应用人才,并提供了大量实用型科技成果。
2 创新性实验教学的具体措施
2.1 构建创新性人才实验培养方案,改革实验课程体系
制定创新性人才实验培养方案。高分子材料与工程专业是培养高分子材料及相关学科的基础理论知识,通过理论学习及实验、实践教学训练,掌握材料的制备、加工、分析测试等基本方法,能从事高分子材料成型加工和改性以及聚合物合成与相关产品的生产设计、研究、开发和技术管理等工作的创新型高级工程技术人才。⑤坚持“夯实理论基础、拓宽专业口径、增强工程和创新能力、提高科学素质”的人才培养思路。⑥注重理论和实践相统一,重视工程创新能力的培养,加强对新材料相关产业和领域发展趋势和人才需求研究,吸纳相关产业、行业和用人部门共同研究课程计划,制定与生产实践、社会发展需要相结合的培养方案。
改革实验课程体系。结合现代高分子材料发展状况,及时完善高分子材料与工程专业实验课程内容,补充高分子材料新技术、新工艺,参考国外知名大学的具体措施,我们在实验课程体系与教学内容等方面进行全面的改革,建立有利于学生实验创新能力培养的教学体系。根据学生认知能力的不同阶段和理论课程进度计划,按模块化设计优化实验教学内容。形成了由“化学基础实验”、“高分子化学与物理基础实验”、 “高分子工程实验” 和“高分子综合设计实验” 四个实验模块组成的高分子材料与工程专业实验教学新体系。其中化学基础实验模块不仅包括无机化学、有机化学、分析化学和物理化学四大基础化学实验,而且还涵盖仪器分析和化工原理实验,在编制新的实验课程体系时,结合高分子材料与工程专业的特点,对传统实验进行有目的的筛选、分类、整合和更新,突出学生基本技能的培养和训练。高分子化学与物理基础实验包含高分子物理和高分子化学实验内容,不仅巩固学生所学的高分子科学实验的基本理论,而且培养学生制备高分子材料、测试材料物理性能及高分子的结构表征和测试等技能。高分子工程实验模块包括橡胶、塑料、胶粘剂、涂料四大实验,从材料加工、成型、性能测试以及应用,独立设计实验内容,旨在培养学生的实际操作能力,分析和解决实际问题的能力。高分子综合设计实验模块是教学的最高层次,结合学生实际情况,有针对性选取实验内容,应体现实验的知识性、综合性和创新性。
2.2 加强实践教学建设与改革,强化学生实践创新能力
全书分为9章:1.介绍聚合物的基本知识,如结构、命名、分类、功能、物理特性、结构与性能之间的关系、聚合过程中的热力学,以及分子量与分子量分布等;2.逐步聚合,介绍了逐步聚合的原理、反应过程、聚合度、聚合产物的分子量分布以及凝胶点的预测,并举例详细介绍了逐步聚合在各种热固性树脂、工程塑料和高性能聚合物中的应用;3.自由基聚合,包括单体的性质、链引发、链生长、链终止等反应过程和反应动力学,并详细介绍了活性自由基聚合的相关原理与过程;4.阴离子聚合,主要介绍活性阴离子聚合,如烃类溶剂中非极性单体活性阴离子聚合、乙醚溶剂中苯乙烯活性阴离子聚合、极性单体的活性阴离子聚合等;5.配位聚合,从催化剂的种类着手介绍配位聚合的原理与过程,如Zieglar-Natta催化剂,茂金属催化剂和后过渡金属催化剂,并介绍了烯烃的活性聚合方法;6.阳离子聚合,介绍单体的亲核性与亲电子性,以及链引发剂和链生长剂,并介绍了光引发阳离子聚合;7.开环聚合,介绍开环聚合的基本特性,并举大量实例具体介绍不同聚合物的开环聚合方法与过程;8.链式共聚合,介绍了两种共聚合模型和活性自由基共聚合;9.多相聚合,包括悬浮聚合,乳液聚合,反相乳液聚合,细乳液聚合,微乳液聚合,分散聚合和多相活性自由基聚合。本书知识体系清晰且全面,每章后面都有一组习题,以便读者及时消化所学知识。其阅读对象为从事高分子化学、高分子材料和高分子工程科学研究和学习的广大科研工作者、教师、研究生和高年级本科生,特别适用于理工科类大学和科研院所高分子化学专业的读者。
鞠思婷,博士生
(国家纳米科学中心)
Ju Siting, Ph.D Candidate
(National Center for Nanoscience
and Technology)国外科技新书评介2013年第11期(总第319期)地球/环境科学地球/环境科学国外科技新书评介2013年第11期(总第319期)John R Fanchi
Energy in the 21St Century
2013
关键词:应用型本科 高分子课程 考核方法
中图分类号:G642.0 文献标识码:A 文章编号:1674-098X(2014)06(a)-0197-01
应用型本科教育的培养目标定位于技术工程师,既要具有较强的专业基础理论知识,又能够解决生产实际中的具体技术问题。而在培养过程中,专业基础课和专业课起到了从书本的理论到实际应用的过渡。因此,应用型本科院校在这类课程的设置上减少了理论课的课时,增加实验和实践课的课时[1-4]。而在教学过程中,我们发现学生往往不能将理论与实践相结合,对于理论的掌握也往往通过死记硬背的方式,对于实验和实践中出现的问题也不太会分析解决。究其原因,目前评价学生学习的好坏主要是通过考试成绩来判定,而考核形式单一,笔试为主,这就使得学生的学习也常常以成绩为导向,以考试为目标,考试之外的东西他们很少去关心思考。因此,在应用型本科人才的培养过程中,对于专业课和专业基础课的考核方法、考核体系的改革势在必行。该文以笔者在实际教学工作中在高分子系列课程上的一些教学思考提出了一些改革措施。
1 构建包括基本理论、基本知识在内的基础理论考核系统
高分子是材料科学与工程专业知识体系构建的一个重要方向,主要由高分子化学、高分子物理、高分子材料检测、聚合物成型加工、高分子材料等构成了这个专业方向的主要的专业课与专业基础课。这些课程讲述的内容实现了从小分子变成实际使用的高分子材料的过程,如图1所示。其中高分子化学是讲述从单体变为高聚物的聚合过程,而高分子物理是讲述高聚物的结构与性能,聚合物成型加工是讲述从聚合物变为材料的成型加工过程,高分子材料是讲述高分子制品的应用,高分子材料检测是讲述高分子材料的性能检测。
对高分子化学、高分子物理、高分子材料、高分子材料检测、聚合物成型加工等系列课程中的基本理论、基础知识内容,在原有闭卷考核方式的基础上,建立涵盖系列课程知识的试题库,题型包含:基本概念的名词解释和填空、基本理论的比较和是非判断、基于基本知识的简答和计算。相关课程的老师根据自己课程的需要,选择考核试题,注重考查学生对高分子知识体系关联性的理解。
2 构建以实际工程问题的理论分析为主的基础理论应用考核系统
在教学过程中注重教学内容的变革,积极推行案例教学、专题性教学、研究性学习,积极开展观摩教学与评教活动,并构建以实际工程问题的理论分析为主的基础理论应用考核系统,建立案例分析试题库,让学生用已有的基本理论和基本知识来分析实际案例。例如,如何制备既具有弹性,又具有一定强度的尼龙纤维?首先涉及的知识是聚合物成型加工中的尼龙纤维的制备方法,尼龙纤维可以通过湿法纺丝来实现,这样学生可以加深对湿法纺丝的过程的了解;其次如何实现材料的高强度,这就可以从高分子物理里面的聚合物的聚集态分析,具有结晶、取向等状态的高聚物的力学强度较好,因此要想纤维具有高强度就必须通过一定的方式使其结晶或取向,而结晶和取向两者之间又是相互影响的,取向会促进结晶,因此在成型加工过程中需要通过一定的方式使其取向,这又回到成型加工的过程中,通过定向拉伸的方法使其取向;最后要使纤维具有一定的弹性,这就需要使纤维能在一定程度解取向,恢复高分子的弹性,而解取向的方法可以利用热处理来实现,这就要求增加材料制备的后处理过程。总之,通过这样以实际工程问题的理论分析为主的考题,使学生建立基本理论和实际应用的联系,深入理解相关课程理论知识间的关联。
3 建立实际问题解决能力考核系统
建立以能力培养为目标的考核体系,改单一的试卷考核方式为大作业、小论文、课题答辩等多种考核方式,改一次性课程终结考核为过程监测考核、理论和实践动手综合考核。通过目前科学和工程上存在的问题,考核学生解决实际问题的能力,并将相关的问题贯穿相关的专业基础课、专业课和实践课程的教学与考核中。例如,实际高分子材料制备中的问题可以在高分子物理中作为案例分析题;经过分析后的问题又可以在聚合物加工工艺中做为一个大作业,让学生自己提出解决方案,并给出评分;然后在实践课上让学生完成此方案,并在实现的过程中学会利用已有的知识对方案做出优化和调整,给出实践课的评分;最后通过高分子材料检测课程分析材料的结构与性能。
4 结语
考核方法是课程建设的重要组成部分,是评价学生学习以及能力的最直接的方法,也是对教学效果最直接的评价方法。因此在课程改革过程中,考核方式的改革成为推动课程建设,实现应用型本科院校的培养目标必不可缺少的环节,在应用型本科院校工程类专业上有着很好的推广价值。
参考文献
[1] 胡小红,王淮庆,郝凌云,等.应用型本科院校材料科学与工程专业材料物理课程教学中的几点思考[J].金陵科技学院学报,2010,29(6):39-42.
[2] 陈晓宇,郝凌云,胡小红.“情景”教学法在高分子材料检测课程教学中的应用[J].中国科教创新导刊,2013(32):118.