期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 垃圾渗滤液特性

垃圾渗滤液特性精品(七篇)

时间:2024-01-20 10:56:33

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇垃圾渗滤液特性范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

垃圾渗滤液特性

篇(1)

关键词:垃圾滤液;处理方案;研究动态;新型处理技术

Abstract: According to the sources and characteristics of the MSW landfill leachate, describes the various programs of landfill leachate treatment, leachate treatment technology advantages and disadvantages by dynamic comparison of domestic and foreign, make mature economy the most important means of leachate treatment - biochemical method.Key words: landfill leachate; treatment programs; Research Trends; new processing technology

中图分类号:[TE991.3] 文献标识码: A文章编号:2095-2104(2012)

垃圾渗滤液是垃圾填埋过程中产生的二次污染,是一种成分复杂的高浓度有机废水,主要来源于降水和填埋废物本身的内含水,其对环境的污染是填埋场最主要的环境问题之一。它可以污染水体、土壤、大气等,使地面水体缺氧、水质恶化、富营养化,威胁饮用水和工农业用水水源,使地下水丧失利用价值,有机污染物进入食物链将直接威胁人类健康。

1.垃圾渗滤液的来源和污染特性

1.1来源

垃圾渗滤液,是指垃圾在堆放和填埋过程中由于发酵和雨水的淋浴、冲刷,以及地表水和地下水的浸泡而滤出来的污水,它是垃圾填埋过程中产生二次污染的主要因素之一,造成水体、土壤、大气、生物等多方面的污染。它的来源按照产生量的大小排列主要分为三个部分:

1.1.1大气降水、地表径流及反渗的地下水;

1.1.2垃圾自身含水;

1.1.3由于微生物的厌氧分解作用而垃圾产生的水。

垃圾含水47%时,每吨垃圾可产生0.0722吨渗滤液,而生化反应产生的水要少得多,大气降水具有集中性、短时性和反复性,未及时引流的降水渗过垃圾层形成的渗滤液占总量的绝大部分。

1.2污染特性

1.2.1水质复杂,污染物种类繁多,危害性大。垃圾渗滤液中不仅含有多种耗氧有机污染物,还含有各类金属离子和植物营养素(氨氮等),在有工业垃圾进入的垃圾填埋场,渗滤液中还会含有毒有害有机污染物。

1.2.2污染物浓度极高。垃圾渗滤液中CODcr含量最高达8000 mg/L,BOD5含量最高达3500 mg/L,NH3-N含量最高达7400 mg/L。和城市污水浓度相比,浓度非常高[3]。

1.2.3明显的变化性,水质水量变化较大[1]。

①产生量呈季节性变化,雨季明显大于旱季。②污染物组成及其浓度随填埋年限的延长而变化。一般而言, CODcr、BOD5、BOD5 / CODcr随填埋场的“年龄”增长而降低,碱度上升。一般将填埋龄3~5年的填埋场的渗滤液称为早期渗滤液,其中易生物降解的挥发性脂肪酸含量较高,约占总有机碳的60%~70%,BOD5 / CODcr比值较高,一般在0.4~0.8,氨氮浓度为1000 mg/L左右。填埋龄超过3~5年后,渗滤液易生物降解的有机物比例会明显下降,称为晚期渗滤液。其BOD5 / CODcr比值一般为0.1~0.2,氨氮浓度反而增高,此时的处理目标以氨氮的去除为主。

2.垃圾渗滤液的处理方案

目前,国内外渗滤液的处理分为场内、场外和场内外联合三大类处理方案〔3〕,具体方案有以下几种:

2.1场外合并处理

合并处理就是将渗滤液引入附近的城市污水处理厂,利用污水处理厂对渗滤液的缓冲、解释作用和城市污水中的营养物质实现渗滤液和城市污水的同时进行处理,是目前最为简单的处理方案,它不仅可以节省单独建设渗滤液处理系统的大额费用,还可以降低处理成本。采取此种方案必须考虑输送成本和渗滤液污染物浓度较高的特性。

2.2场内外联合处理

在进行合并处理时,为减轻直接混合处理时渗滤液中有毒有害物质对污水处理厂的冲击危害,必须对垃圾渗滤液在填埋场内进行一定的预处理,然后通过管道排入污水处理厂合并处理,在投资及运行成本均较少的条件下能在场内去除相当部分对后续生物处理影响较大的污染物,从而对渗滤液的污染负荷加以缓冲并使下步的合并处理运转更顺利。

2.3场内回灌处理

渗滤液的循环喷洒是一种较为有效的处理方案。通过回喷可以达到两个方面的作用:

2.3.1可提高垃圾层的含水率(由20%-25%提高到60%-70%),增加垃圾的湿度,增强垃圾中微生物的活性,加速产甲烷的速率、垃圾中污染物溶出及有机物的分解。2.3.2不仅降低了渗滤液的污染物浓度,还因喷洒过程中挥发等作用而减少渗滤液的产生量,对水量和水质起稳定化的作用,有利于废水处理系统的运行和费用的节省。

2.4场内完全处理

通常,综合对垃圾渗滤液处理的地理位置、经济投入、技术水平等各种因素的考虑,很多填埋场内必须建立场内完全处理系统。但是由于渗滤液的高污染负荷、成分随时间改变等特性,尤其是各种有毒有害物质含量较高,加大了处理难度,而且一般都要求进行各种工艺进行组合处理才能达到排放标准。

3.垃圾渗滤液的处理技术

3.1垃圾渗滤液常见处理技术

目前,对垃圾渗滤液常见的处理技术〔13-14〕如图1所示:

图1 垃圾渗滤液常见处理技术

3.1垃圾渗滤液常见处理技术

3.1.1物化处理技术

物化处理的主要目的是去除渗滤液中的有毒有害重金属离子及NH 3-N,虽然物化处理不能完全代替生物处理,但某些方法,如混凝、吸附、吹脱和氧化等,则可作为预处理或深度处理而为渗滤液的达标排放和生物处理系统有效运行创造良好的条件。而且物化处理一般不受渗滤液水质水量的影响,出水水质比较稳定,尤其是对BOD/COD比值较低(0.07-0.20),难以生化处理的渗滤液,有较好的处理效果,当COD浓度为2000-400mg/L时,物理化学法的COD去除率一般可达到50%-80%.但物化处理技术针对性太强,处理效果单一,且成本高,不适于大量渗滤液的处理,一般需要复杂的工艺才能对渗滤液进行全面处理。

3.1.2生化处理技术

生物处理包括好氧处理、厌氧处理及两者结合处理的方法,它具有处理效果好、操作简单、投资及运行成本低等优点,适合于处理生化性较好的渗滤液,是目前应用最多,最为有效的处理方法,也将是将来垃圾渗滤液处理最主要的手段。

3.1.3土地处理技术

土地处理是人类最早采用的污水处理方法,主要通过土壤颗粒的过滤、离子交换、吸附和沉淀等作用去除滤液中县浮固体并将可溶解成分固定在颗粒上。同时通过土壤中的微生物使渗滤液中的有机物和氮进行转化和稳定,通过蒸腾作用减少渗滤液的量。目前用于渗滤液处理的土地法主要是回灌法和人工湿地,具体包括慢速渗滤的量。

3.2垃圾渗滤液新型处理技术(原理)

从垃圾渗滤液的特性出发,其处理的难点在于其高污染负荷,特别表现是COD和氨氮负荷,尽管一些的处理技术能够使处理的出水满足国家污水排放标准但是依然存在各方面的问题,国内外都对渗滤液的处理尤其是渗滤液的脱氮进行了积极的探索并取得一些具有指导意义的成就〔24,31-32〕。

3.2.1短程硝化反硝化(Shortcut nitrification-denitrification)

短程硝化反硝化(Shortcut nitrification-denitrification)又称亚硝酸化反硝化,是指将硝化过程控制在HNO2阶段而终止,随后进行反硝化.这个过程的反应式(1-3)如下:

NH4+含氮化合物的中间形态NH2-(亚硝化过程,好氧)(1)

NH2-含氮化合物的中间形态N2(反硝化过程,厌氧)(2)

总过程:NH4+HNO2N2 (3)

(2)同步硝化反硝化(SND,Simultaneous nitrification-denitrification)

根据传统的脱氮理论,硝化与反硝化反应不能同时发生,硝化反应在好氧条件下进行,而反硝化反应在缺氧条件下完成。因此大多数的生物脱氮工艺都将缺氧区和好氧区分隔开,即形成所谓的前置反硝化或后置反硝化工艺。然而,最近几年国外有不少试验和报道证明存在同步硝化反硝化现象(SND)尤其是有氧条件下的反硝化现象确实存在于各种不同的生物处理系统,如生物转盘〕、SBR、氧化沟〔、CAST工艺等。Paul等人利用厌氧滤池和RBC对氨氮浓度高达2140mg/L的垃圾渗滤液〕,在RBC的氨氮负荷为1.5-3.0g/(m2·d)的条件下,氨去除率高达80%-90%。反应器中碱度消耗和COD去除的情况说明氨氮去除是通过同步硝化反硝化的途径。

(3)厌氧氨氧化(ANAMMOX,Anaerobic Ammonia Oxidation)

在无氧环境中,同时存在氨和NO2-或NO3-时,NH4作为反硝化的无机电子供体,NO2-或者NO3-作为电子受体,生成氮气,这一过程称为厌氧氨氧化Anammox。

4.结语

由于垃圾渗滤液成分复杂,水质水量变化较大,所以在选择处理方案和技术时必须因地制宜并详细测定渗滤液的各种成分,分析其特点,通过实验研究取得可靠的工艺参数,选择最佳的处理方案和工艺,以获得理想的处理效果。

参考文献

[1]杨霞,杨朝辉,等.城市生活垃圾填埋场渗滤液处理工艺的研究〔J〕.环境工程,2000,18(5):12-14.

[2]Kang K,Shin H,Park H.Characerizaion of humic substances present in landfill leachate with different landfill aes an its implications[J].Waer Res,2002,36:4023-4032

[3]Christensen TH,StegmannR.Landfilling of waste leachate[J].Elsevier Applied Science,1992:185-202.

[4]喻晓,张甲耀,刘楚良.垃圾渗滤液污染特性及其处理技术研究和应用趋势[J]。环境科学与技术,2002,25(5):43-45.

[5]Vertraete W,Pohillips S.Nirificaion denirification processes and echnologies in new conexts[J].Environmenal Polluion,1998(1),102:717-726.

[6]U.van Dongen,M.S.M.Jetten and M.C.M.van Loosdrecht.The SHARON(r)-Anammox(r) Process for reament of ammonium rich waste water[J].Water Science and Technology,2001,44(1):153-160.

[7]Mervyn C Goronszy ,Gunnar Demouiinand Mark Newland.Aeraed nitrification in full scale activated sludge faciliies.Water Science and Technology,1997,35(10)

[8]侯文俊,余健,孙江,垃圾渗滤液处理技术的新进展〔J〕。中国给水排水,2003,19(11):22-23

[9]H.Siegrist,S.Reithaar,G.Koch,et al.Nitrogen loss in a niifying roaing contactor reaing ammonium-rich waste waer without organic carbon[J].Waer Science and Technology,1998,38(8-9):241-248.

作者简历:

篇(2)

【关键词】 填埋场 渗滤液 处理方法

1 渗滤液的产生

垃圾处理厂填埋是我国目前垃圾处理的基本方法之一。但是垃圾填埋场中渗滤液的处理一直是填埋场设计、运行和管理中非常棘手的问题。渗滤液是填埋场中液体重力流动的产物,主要来源于雨水和垃圾内的水分。渗滤液的成分个体差异很大,主要取决于填埋场的运行时间、地表深度、生物环境及垃圾成分。另外,当地降雨情况、填埋场的地质情况及覆土层的性质等因素影响渗滤液产生多少。渗滤液产生有三个部分:一是外部水分渗入垃圾中,主要是降水、地表水和地下水;二是垃圾自身的水分;三是垃圾中有机微生物分解产生的水。由于影响渗滤液成分的因素包括物理因素,化学因素以及生物因素,所以渗滤液个体差异较大,没有共同性,本身有复杂性和污染性。如不加以处理而直接排放进环境,会造成严重的环境污染。以保护环境为目的,对渗滤液的处理是必不可少的。

2 渗滤液的特性

渗滤液具有不同于其他污水的特点,比较难处理,主要有以下特点:

(1)渗滤液组成成分比较复杂,含有多种有毒有害的物质。其中有机污染物多达77种(其中促癌物、辅致癌物5种),还含有难以生物降解的酚类化合物和苯胺类化合物等各种危险有机物。(2)垃圾渗滤液中化学需氧量、五日生化需氧量浓度可达到每升数千到几万毫克,和一般污水相比,浓度大的惊人。(3)垃圾渗滤液中含有十多种金属离子,其中铁的浓度可高达2050mg/L,铅的浓度可高达12.3mg/L,锌的浓度可高达130mg/L,钙的浓度可高达4200mg/L。(4)氨氮含量很高,且随填埋场的运行时间增加而升高,最高浓度可以达到每升数千到数万毫克,严重抑制和降低了生物处理中微生物的活性。(5)营养元素的比例失调。由于氨氮含量高,C/N的比值经常出现失调的情况:且磷元素缺乏,一般BOD5/TP大于300,比值与微生物所需要的碳磷比(100:1)相差很远。这些性质给垃圾渗滤液的处理带来了一定难度。

3 渗滤液的影响与危害

渗滤液的组成成份十分复杂,而且如果渗透土壤,就会给周围的地下水带来严重污染,从而影响人类健康。据监测,通常在距离垃圾填埋场最近的地下水中有害物质的含量和种类最多,而且一千米外仍然含有有机污染物。另外,渗滤液还有渗透持续时间长、污染物浓度高、个体差异大等特征,给治理工作带来很大困难。地下水源和周围土壤一旦被污染,想通过人为净化补救,基本上很难实现,费用也极其昂贵,从而会给环境和人民健康带来不可估计的损失。

4 渗滤液的处理方法

垃圾渗滤液的处理是城市垃圾填埋场正常运行的必不可少的环节之一。很多不同的处理方法都在研究讨论中,但是现在垃圾渗滤液处理的方法主要是生物处理、物化处理和土地处理。

4.1 生物处理

垃圾渗滤液的生物处理可分为厌氧和好氧处理2种,主要是利用微生物的分解作用、硝化和反硝化作用来去除渗滤液中的有机物和氨氮。

(1)厌氧生物处理技术:厌氧生物处理的运用已有近百年的历史。但直到近20年来,随着微生物学、生物化学等学科的发展和工程实践经验的积累,不断开发出新的厌氧处理工艺,克服了传统工艺的水力停留时间长、有机负荷低等缺点,使它在处理高浓度的有机废水方面取得了良好的效果,而且对水质、水量的变化具有很强的适应能力。它构造简单,设有气、水、液三相分离器。且不需要搅拌和水力回流、污泥回流等机械设备,耗能和建造费用少,维护管理容易。

(2)好氧生物处理技术:好氧生物技术在垃圾渗滤液处理中运用广泛,其主要有:活性污泥法、生物膜法、生物氧化塘、好氧膜生物反应器等处理方法。生物膜法和活性污泥法是在本世纪发展起来并得到广泛运用的污水处理工艺。垃圾渗滤液作为高浓度的有机废水,生物膜法和活性污泥法在其处理当中运用比较广泛。活性污泥法因其费用低、效率高而在垃圾渗滤液的处理中得到广泛的应用。这些方法对降低垃圾渗滤液中的BOD5、CODcr和氨氮有一定的效果,还可以去除另一些污染物如铁、锰等金属离子。生物膜法具有耐水量冲击的优点,可用于复杂的水质,而且生物膜上能够生长世代较多的微生物,如硝化菌之类。我国也进行了低氧一好氧两段活性污泥处理垃圾渗滤液的研究,杭州天子岭填埋场采用该法处理渗滤液,但效果不稳定。

4.2 土地处理

土地处理是人类最早采用的污水处理方法。渗滤液的土地处理包括慢速渗滤系统(SR)、快速渗滤系统(RI)、表面漫流(OF)、湿地系统(WL)、地下渗滤土地处理系统(UG)以及人工快速渗滤处理系统(ARI)等多种土地处理系统。土地处理主要通过土壤颗粒的过滤,离子交换吸附和沉淀等作用去除渗滤液中悬浮颗粒和溶解成分。通过十壤中的微生物作用,使渗滤液中的有机物和氮发生转化,通过蒸发作用减少渗滤液量。目前用于渗滤液处理的土地法主要是回灌和人工湿地。

但是土地处理系统多用于城市污水处理,在垃圾渗滤液的处理中也有人作过研究,认为施浇垃圾渗滤液后土壤的养分含量提高,通气空隙增多,土壤的肥力明显提高,但是对于重金属和有毒有害物、质浓度高的垃圾渗滤液不大适合。英国也有运用回灌法处理渗滤液的例子,但是被认为是一种非彻底的渗滤液处理方法。

4.3 物化处理

物化法和生物处理相比,物化法不受水质水量的影响,出水水质比较稳定,尤其对BOD5/CODcr比值较低,难以生物处理的垃圾渗滤液,有较好的处理效果。物化处理一般作为垃圾渗滤液处理中的预处理和深度处理,前期的物化预处理可以去除大部分垃圾渗滤液中的有毒金属离子和悬浮物。物化处理还能去除一些很难生物降解的有机物(腐植酸、富烯酸和卤代烃类化合物)。所以物化处理方法又常放在垃圾渗滤液的深度处理中。

篇(3)

关键词:垃圾渗滤液处理;机电设备;COD 负荷波动系数;污水冷却系统;污泥回流量

引言

随着城市生活水平的不断提高,中国城市垃圾产量也急剧增大,卫生填埋仍将是中国当前主要的垃圾处理方式之一。垃圾填埋过程中,由于厌氧发酵、有机物分解、雨水冲淋等产生多种代谢物质,形成高浓度的有机废液,即垃圾渗滤液。垃圾渗滤液是一种高浓度的有机废水,受垃圾种类、当地环境及降水量、填埋场容积、填埋时间等诸多因素影响,其水质和水量变化较大。它是垃圾填埋过程中产生二次污染的主要因素之一,对水体、土壤、大气和生物都有不同程度的影响。垃圾渗滤液若不妥善处理而直接进入环境,将会对环境造成严重污染。按照《生活垃圾填埋场污染控制标准》(GB 16889―2008)的要求,目前国内垃圾渗滤液处理大多采用“生化处理+深度处理”工艺,而生化处理工艺以采用 MBR 居多。MBR 工艺的特点是运行稳定,处理效果良好,出水再辅以深度处理后能满足排放标准的要求。但MBR 工艺也存在工艺流程复杂、机械设备较多的不足。由于机电设备较多,电耗高,运行成本也较高,如何降低机电设备的能耗,对于垃圾渗滤液处理工程的节能来说具有重要意义。

1垃圾渗滤液的水质特性

(1)水质成分复杂:蒋海涛等总结了中国城市垃圾渗滤液的典型污染物组成及浓度变化情况,如表1所示,可见垃圾渗滤液的水质成分十分复杂。

(2)有机污染物和NH4+-N含量高:经鉴定,垃圾渗滤液中有93种有机化合物,其中22种被中国和美国列入EPA环境优先控制污染物的黑名单。高浓度的NH4+-N是“中老年”填埋场渗滤液的重要水质特征之一,也是导致其处理难度较大的一个重要原因。

(3)重金属含量大,色度高且恶臭:渗滤液含多种重金属离子,当工业垃圾和生活垃圾混埋时重金属离子的溶出量往往会更高。渗滤液的色度可高达2000-4000倍,并伴有极重的腐败臭味。

(4)微生物营养元素比例失衡:垃圾渗滤液中有机物和氨氮含量太高,但含磷量一般较低。

2垃圾渗滤液单元处理工艺

(1)生物处理法:活性污泥法最为广泛,该法受温度影响,能耗高,条件控制复杂,耐冲击负荷能力差。

(2)物化处理法:主要包括混凝、化学沉淀、化学氧化、吸附、吹脱和膜分离等。物化法可以有效削减渗滤液中的有机物、氨氮、重金属离子和色度等,改善其可生化性,为后续生物处理工艺创造良好的条件。

(3)土地处理法:主要是通过土壤颗粒的过滤、离子交换吸附等作用去除其中的悬浮颗粒和溶解成分。目前应用较多的是人工湿地和回灌法。回灌法是利用填埋层的厌氧滤床作用使参滤液降解,提高其可生化性。人工湿地则是近几年出现的新型处理工艺当前已有不少生态环境学家正在研究利用藻类、芦苇、香根草以及各种水草等对渗滤液进行净化,也取得了一定的成果。

(4)其它方法:辐射法、电渗析、电凝、超声技术等在国内外都有应用

3 垃圾渗滤液处理工程的机电节能措施

3.1充分利用渗滤液调节池的调蓄能力

生物反应池中好氧区的污水需氧量,包括去除BOD5、氨氮的硝化和除氮需氧量,其中去除 BOD5是总需氧量的重要组成部分。在计算需氧量过程中,应该考虑 BOD5负荷波动系数的影响,对于垃圾渗滤液而言,应以 COD 来计算。由于渗滤液进水COD 浓度很高,如果考虑COD负荷波动系数的影响,会大幅增加鼓风机的鼓风量。对于垃圾渗滤液来说,一般会在填埋场设置渗滤液调节池,储存1-2 个月的渗滤液产生量。在进行渗滤液处理工程设计时,进水 COD 取最高月平均值,这样可以降低鼓风机的风量,达到节约能耗的目的。如果进水 COD 超出最高月平均值,可以减少渗滤液处理设施的进水量,确保处理设施达标排放。而在渗滤液水质偏低的季节增加进水量,可使处理设施全年的处理量达到设计能力。

3. 2 合理配置鼓风机数量

对于垃圾渗滤液而言,随季节的变化其水质变化也很大,国内的一些垃圾填埋场在春夏秋季节,渗滤液的 COD 一般维持在 6000-8 000 mg/L,甚至更低,而在冬季 COD 可达12 000-15 000 mg/L,最高甚至可达20 000 mg/L。渗滤液的氨氮值也呈这一变化规律,春夏秋季节渗滤液的氨氮一般维持在1 200- 2 000 mg /L,而在冬季氨氮可达 2 000-3 000 mg /L。渗滤液处理工程中鼓风机的设置应考虑季节性变化对渗滤液处理的影响,应根据不同季节鼓风量的变化,合理配置鼓风机数量。由于单台风机的最佳变频调速范围有限,应至少配置3 台风机(2 用 1备),这样可以在不同的季节开启不同数量的鼓风机,进而达到节能的目的。

3.3采用变频调速鼓风机

鼓风量受水质变化的影响较大,虽然按照污染物浓度较高季节的水质进行计算,但在实际运行时,由于降雨、垃圾填埋作业、运行管理等因素的影响,渗滤液水质仍会有较大的变化。采用变频调速鼓风机可以适应这种水质变化,从而达到节能的目的。一般鼓风机的变频调速范围是 0-40%,这个范围可以适应渗滤液水质的变化。

3.4污水冷却系统的节能控制措施

垃圾渗滤液处理运行过程中,生物池内会保持较高的温度,但有时会过高,从而抑制了微生物的生长,影响了生物处理效果。为解决生物池内温度过高这一重要问题,在生物池设置污水冷却系统,当水温超过一定温度时,开启冷却系统,使生物池内水温保持恒定,确保生化处理正常运行。该方法已在工程中得到了应用,效果良好。冷却系统机电设备节能控制措施:(1)根据生物池内温度变化,对冷却塔的风机进行变频调速控制,从而达到节能的目的。(2)根据季节的变化控制冷却系统的运行,当环境温度变化较大时,生物池内水温也相应有所变化,当环境温度较低时(如冬季),可以停止冷却系统的运行,或者间歇运行,节省能耗。(3)温度是影响微生物生理活动的主要因素之一,合理控制生物池内水温非常重要。许多工程实例证明,水温达到40 ℃时生化处理仍能维持较佳的运行状况,因此在渗滤液处理工程设计中,可以将生物池最高水温控制在40 ℃,超过40 ℃时开启冷却系统,这样可以减少冷却系统的运行时间,节省能耗。

3.5污泥回流量的控制

用于处理垃圾渗滤液的 MBR一般采用外置式超滤系统,在硝化池出水端设置超滤进水泵,超滤进水泵的设计流量一般为5Q(Q 为系统设计流量),出水流量为 Q,回流量为4Q。设计中将回流管道接入生化池的前端―――反硝化池内,这样可以作为内回流的一部分,减小污泥回流泵的流量,从而达到节能的目的。在污水冷却系统中,污泥冷却水泵由硝化池出水端吸水,经过换热器换热后再回流到生化池的前端―――反硝化池内,同样可以起到内回流的作用,这样在夏季开启冷却塔的情况下,污泥冷却水可以作为污泥回流的一部分,减小污泥回流泵的流量,起到节能的目的。

结论

综上所述,可得到以下结果:(1)充分利用渗滤液调节池的调蓄能力,在计算鼓风机风量时,可不考虑 COD 变化系数的影响。(2)合理配置鼓风机数量,采用变频调速鼓风机可以起到节能的作用。(3)通过控制超滤及冷却系统回流,可以起到污泥回流的作用,从而减小污泥回流泵的流量,节省能耗。

参考文献

[1]张艮林,徐晓军,童雄. 城市垃圾渗滤液的水质特性及其处理现状[J]. 云南冶金,2005,06:60-62.

篇(4)

[关键词] 垃圾渗滤液;陕北地区;DTRO

垃圾渗滤液是一种成分复杂的高浓度有机废水,主要来源于降水、生物降解水和垃圾本身的内含水,如果不能妥善处理,会严重污染生态环境和危害人体健康。垃圾渗滤液的成分与垃圾种类、填埋方式、填埋时间、气候等诸多因素有关,不仅水量变化大,而且变化无规律[1-2]。由于垃圾渗滤液水质、水量的时间和地域变化性,不仅采用单一的处理方法不能满足其处理要求,需要通过不同方法的优化组合与灵活应用才能进行有效地处理,而且适用于某一填埋场或某一地区填埋场渗滤液处理工艺方法往往不是普遍适用的技术,需要因地制宜采用不同的工艺[3]。

1 垃圾渗滤液水质特征[3-5]

1.1 水质复杂,危害性大

垃圾渗滤液中含有大量的有机物,含量较多的为烃类及其衍生物、酸酯类、酮醛类、醇酚类和酰胺类等。张兰英等人采用GC-MS-DS联用技术鉴定出垃圾渗滤液中有93种有机化合物,其中22种被列入我国和美国EPA环境优先控制污染物的黑名单中。此外,垃圾渗滤液中还含有10多种金属和植物营养素(氨氮等),水质成分十分复杂。

1.2 CODcr和BOD5浓度高

通常情况下,垃圾渗滤液中CODcr最高浓度达到90000mg/L,BOD5最高浓度达到38000mg/L,和城市污水相比浓度高。一般规律是,垃圾填埋初期渗滤液中BOD5/CODcr可达0.5以上,表现出良好的可生化性,随着填埋时间的推移,BOD5/CODcr也随之降低,可生化性变弱。

1.3 氨氮含量高

高浓度NH3-N是垃圾渗滤液重要水质特征之一,且随着填埋场年数的增加NH3-N浓度也随之增加,到最后封场时浓度可高达10000mg/L,C/N的比值失调且磷元素缺乏,严重影响到微生物活性,给生化处理带来一定的难度。

1.4 重金属含量高

垃圾渗滤液中含有10多种重金属离子,主要包括Fe、Zn、Pb、Cd、Cr、Hg、Mn、Ni等。其中铁的浓度可高达2050mg/L,铅的浓度可高达12.3mg/L,锌的浓度可高达130mg/L。重金属含量与当地工业废弃物掺入比例紧密相关。在微酸环境下,渗滤液中重金属溶出率偏高,一般在0.5%~5.0%。

2 垃圾渗滤液常用处理技术

2.1 土地处理[2-3, 6]

土地处理技术包括氧化塘、人工湿地及回灌。

⑴ 氧化塘技术是利用水塘天然自净能力处理生活污水的方法。通常垃圾渗滤液中污染物较高,且土地资源有限,很难满足氧化塘需要的大面积、低负荷的要求。

⑵ 人工湿地是近年来兴起的一种渗滤液土地处理技术,是人为创造一个适宜水生生物和湿生植物生长的环境,经预处理后的渗滤进入人工湿地系统处理。但该技术缺乏设计经验参数和规范,且处理负荷低,仅能起到辅助改善水质的作用。

⑶ 回灌技术是目前垃圾填埋场最常用的渗滤液处理方法,原理是通过土壤颗粒的过滤、离子交换、吸附和沉淀作用去除渗滤液中的悬浮固体颗粒和溶解成分,同时将填埋场垃圾层作为一个填料的厌氧生物反应器,利用其中的微生物达到降解有机物的目的。但受气候条件限制,一般只应用于干旱地区。

2.2 生物处理

生物处理技术多种多样,具有处理效果好、运行成本低等优点,是目前垃圾渗滤液处理中采用最多的方法,主要包括厌氧处理、好氧处理以及厌氧-好氧联合处理三种类型。尤其是厌氧-好氧联合处理工艺,可有效去除COD、BOD、氨氮等高浓度有机污染物。

例如北京阿苏卫垃圾卫生填埋场采用"厌氧+氧化沟"的方法处理垃圾渗滤液[7],杭州天子岭垃圾填埋场采用"缺氧+好氧两段活性污泥法"进行垃圾渗滤液的处理[8]。但根据调查,已建成的垃圾渗滤液污水处理普遍存在运行效果差的现象。主要是由于渗滤液废水复杂多变的特性使得微生物不能适应,渗滤液营养比例失调、重金属含量过高都将抑制微生物活性,导致污泥培养不起来或培养好的污泥难以维持。早期渗滤液可生化性高,可以依靠一系列的生物处理方法处理,但到了后期还得采用必要的化学-物理的处理方法来处理[3]。

2.3 物化处理

目前,渗滤液处理采用的物化法主要有混凝沉淀、化学氧化、吸附、吹脱及膜分离等方法。

⑴ 混凝沉淀:是通过投加化学混凝剂与废水中可溶性物质反应发生沉淀或混凝吸附细微悬浮物、胶体下沉,主要用于渗滤液中悬浮物、高分子有机物、重金属的去除。

⑵ 化学氧化:是通过添加强氧化剂使废水中的无机物及有机物氧化分解,从而降低了废水的COD和BOD,以达到净化目的。该法处理中老年垃圾渗滤液的去除效果良好,但成本较高。

⑶ 吸附法:主要用作除臭、去色、重金属以及难生物降解有机物的去除,尤其对直径在10-8~10-5cm或分子量在400以下的低分子溶解性有机物的吸附性较好。吸附法易受pH值、水温及接触时间等因素的影响。

⑷ 吹脱法:用于吹脱水中溶解气体和某些挥发性物质,针对中老年填埋场的渗滤液中营养比例失调,为调整C/N可对其进行氨吹脱预处理。目前氨吹脱主要形式有曝气池和吹脱塔,去除渗滤液中的氨氮效果明显,但处理产生的废气容易造成二次污染,且处理费用明显较高[9]。

⑸ 膜分离法:是指在一定压力差作用下,使高分子溶质流过膜表面时被截留,与溶剂分离,从而达到水质净化的目的。近几年膜处理技术在国内垃圾渗滤液处理方面发展较快,通常采用的膜技术包括微滤、超滤、纳滤和反渗透,其中以反渗透(RO)分离技术应用最为广泛。膜技术对渗滤液的水质处理效果明显,且不受渗滤液水质变化和气候因素的影响,系统运行灵活,自动化程度高[10]。

在实际工程应用中,单独采用一种技术不可能做到达标排放,因此在使用时往往采取组合工艺对渗滤液进行处理。垃圾渗滤液处理推荐采用"预处理+生物处理+深度处理"组合工艺,以达到较好的处理效果。

3 渗滤液处理工艺实例

针对陕北地区干燥、少雨的气候条件,选择榆林市神木县、府谷县和榆阳区3个生活垃圾填埋场为例,同时选择与陕北地区气候相近的鄂尔多斯市(东胜区)生活垃圾填埋场、宁夏回族自治区吴忠市生活垃圾填埋场作为参考对象。

3.1 填埋场实际运行情况

各垃圾填埋场基本情况见表1。

3.2 渗滤液处理工艺

垃圾填埋场渗滤液处理的主流工艺为预过滤(砂滤/芯滤)+反渗透(DTRO),具体工艺流程示意见图1。

垃圾渗滤液首先汇集在调节池,经水量、水质调节后再泵入原水罐,通过加酸调节pH以防止无机盐类结垢,经加压后再进入砂式过滤器和芯式过滤器过滤降低SS浓度。根据实际情况,在进入芯式过滤器前加入适量阻垢剂防止结垢现象的发生,芯式过滤器为膜柱提供最后一道保护屏障。预处理后的渗滤液进入第一级DTRO系统,在膜组件中进行反渗透,产生的透过液进入第二级DTRO系统,第一级DTRO浓缩液排入浓缩液储罐用于回灌填埋区;第二级DTRO系统透过液进入清水储罐,浓缩液则回流进入第一级DTRO的进水端进一步处理。膜组件的清洗由系统根据压差自动执行,只需要在两个清洗剂储罐中分别置入酸性清洗剂和碱性清洗剂即可[11]。

3.3 运行效果

垃圾填埋场渗滤液经二级DTRO工艺处理前后水质情况见表2。

根据垃圾填埋场渗滤液处理设施进、出口水质监测报告分析,对于不同填埋阶段的垃圾填埋场渗滤液水质,二级DTRO系统对CODcr、BOD5、NH3-N等污染物的去除均能达到理想效果,对CODcr的去除率为97.5%~99.8%,对BOD5的去除率为99.2%~99.6%,对NH3-N的去除率为97.6%~99.9%,出水水质满足《生活垃圾填埋场污染控制标准》(GB16889-2008)表2污染物排放浓度限值的要求。

3.4 工艺参数对比

DTRO反渗透处理工艺对污染物的去除率主要取决于膜的截留率,而与膜的截留率有关的系统运行参数主要有:进水电导率、悬浮物浓度、温度、pH、膜通量以及水回收率等[12-13]。通过对比各垃圾填埋场渗滤液DTRO反渗透系统的运行参数,便可找出影响渗滤液处理效果的原因所在,见表3。

从工艺参数对比分析,DTRO反渗透系统在实际运行过程中,进水水质悬浮物浓度超出设计要求的7.3倍,电导率和pH值也超出最佳运行工况范围,由此导致的结果是水回收率大幅降低,并且出现了膜阻塞、频繁更换膜组件等问题。

电导率是间接衡量渗滤液含盐量的指标,主要反映渗滤液中的重金属离子含量。进水水质电导率和悬浮物浓度偏高,导致第一级DTRO反渗透膜的运行负荷增大,直接影响反渗透膜的使用寿命,对于在实际运行操作中,针对高电导率的渗滤液,可以通过优化膜配置,调整第一级DTRO系统的膜通量、水回收率及膜柱数等参数以满足处理要求。

pH值的高低对膜系统性能也有很大影响,垃圾渗滤液在进入DTRO之前需将pH值调为酸性,一方面可防止难溶无机盐结垢,另一方面可使渗滤液中游离氨与酸形成二价铵盐,而DTRO对类似多价离子的截留率很高,可以提高氨的去除率。透过液的流量与pH值成反比,pH值越高,透过液流量越小,最终导致水回收率的下降。

3.5 DTRO处理工艺的可行性

陕北地区生活垃圾填埋场渗滤液采用二级DTRO工艺进行处理,出水水质良好,各项指标均能满足《生活垃圾填埋场污染控制标准》(GB16889-2008)表2规定的排放限值要求,不受渗滤液可生化性、碳氮比变化的影响,在处理老龄垃圾填埋场渗滤液、北方寒冷干燥地区的渗滤液方面具有明显优势。同时,DTRO反渗透系统具备运行灵活,可连续或间歇运行,安装及维修简单等优点[14-15]。

陕北地区气候干燥,蒸发量远大于降雨量,适宜采用回灌的方式处理垃圾渗滤液浓缩液,DTRO反渗透系统产生的浓缩液回灌填埋场,利用垃圾层作为生物反应器可以实现有机物的消解,是渗滤液处理过程中一个经济可靠的环节。

4 结论

陕北地区垃圾填埋场渗滤液采用二级DTRO工艺进行处理,出水效果良好,各项指标均可达到《生活垃圾填埋场污染控制标准》(GB16889-2008)表2规定的排放限值要求。结合渗滤液浓缩液回灌,可以解决陕北地区垃圾渗滤液处理的问题。

DTRO系统运行过程中,在预处理达不到设计效果或运行管理不规范的情况下,反渗透膜容易受到污染,导致设备故障率较高,处理能力下降,渗滤液处理效果与设备的运行管理密切相关。

参考文献:

[1] 杨秀敏,张桂梅.城市垃圾渗滤液对地下水的污染及防治对策[J].山西水利科技,2008 (1):39-40,54.

[2] 刘睿倩,高志永,王琪,等.生活垃圾填埋场渗滤液污染防治技术政策.中国环境科学研究院,2012,8.

[3] 陈长太,曾扬.城市垃圾填埋场渗滤液水质特性及其处理[J].工程与技术,2001,9:19-21.

[4] 胡蝶,陈文清,张奎,等.垃圾渗滤液处理工艺实例分析[J].水处理技术,2011,3:132-135.

[5] 韩静.应用反渗透技术处理垃圾填埋场渗滤液[J].中国环境管理干部学院学报,2012,4:52-54.

[6] 马超,郝桂媛.东北寒冷地区垃圾填埋场渗滤液的处理[J].黑龙江生态工程职业学院学报,2009,9.6-8.

[7] 金永麒.阿苏卫垃圾填埋场渗沥液处理中活性污泥的驯化与调试[J].环境科学与技术,2001,94(2):35-36.

[8] 胡勤海,金明亮,等.吹脱-SBR-吸附混凝法处理垃圾填埋场渗滤液[J].环境污染与防治,2000,22(3):21-23.

[9] 王文斌,董有,刘士庭.吹脱法去除垃圾渗滤液中的氨氮研究[J].环境污染治理技术与设备,2004,6:51-53.

[10] 何红根.UF+DTRO膜处理垃圾渗滤液的研究[D].武汉理工大学学位论文,2007.

[11] 刘飞.DTRO工艺处理垃圾渗滤液的研究[J].环境科技,2015,4:25-29.

[12] 蒋宝军,谢杰,王剑寒.碟管式反渗透垃圾渗滤液处理系统运行效能及分析[J].吉林建筑工程学院学报,2007,6:34-36.

[13] 邱端阳,张辉,柴晓利.两级管网式反渗透工艺处理垃圾填埋场渗滤液[J].中国给水排水,2013,6:15-17,21.

[14] 程峻峰,郑启萍,徐得潜.二级DTRO工艺在垃圾渗滤液处理中的应用[J].工业用水与废水,2014,8:63-65.

篇(5)

关健词:城市生活垃圾;环境污染;渗滤液;污染控制

中图分类号:{X323}文献标识码:A文章编号:

Abstract: with the growth of population and the continuous improvement of people's living standard, city life trash output continued to increase, the waste component has become more complex. Refuse landfill leachate in process on the surrounding environment is a serious threat, to some extent, also has restricted the sustainable development of the city. The city life rubbish landfill, leachate generation and pollution control are reviewed in this paper.

Key words: city life garbage; environment pollution; leachate; pollution control

随着人口的增长、经济的发展和人们生活水平的不断提高,垃圾的产量不断增加,垃圾的成分也发生了很大的变化。许多国家都把垃圾视为环境破坏的祸首。垃圾,既是人类文明的副产品,又是人类生存的“污染物”,垃圾已成为当今世界一大公害。根据联合国人口统计资料,20世纪末世界人口有70%~80%聚集到城市,城市化发展,致使人口密集,人们消费水平不断提高,垃圾量猛增,许多城市形成了“垃圾围城”的严重污染局面,这既侵占了大量土地,污染土壤、空气和水体,破坏生态环境,又易滋生蚊蝇传染疾病。垃圾对人类的危害越来越大,严重地威胁着人们的生活和健康。因此,城市生活垃圾的消纳处理和综合治理,已成为影响和制约城市整体功能正常发挥和城市居民生活及劳动环境的突出因素。

城市生活垃圾的构成

近年来,我国城市生活垃圾在产量迅速增加的同时,其构成也发生了很大变化,主要表现为:有机物增加,可燃物增多,可利用价值增大;这一变化趋势将会对我国城市生活垃圾处理处置技术的发展产生较大影响。当前我国城市生活垃圾的主要构成为:(1)有机物:厨余、果皮、草木等;(2)无机物:灰土、砖陶等不可回收物和塑料、纸类、金属、织物及玻璃等可回收物; 其他:大件垃圾和有毒有害废物。

2、生活垃圾卫生填埋

卫生填埋作为生活垃圾的最终处理方法,目前仍然是我国大多数城市解决生活垃圾出路的主要方法。

卫生填进是在铺设有良好防渗性能衬垫的场地上,将生活垃圾铺设成一定厚度的薄层,加以压实,并加土覆盖。其场地必须具有合适的水文、地质和环境条件,并要进行专门的规划、设计,严格施工和加强管理。为严格防止周围环境被污染,必须设有一个淋滤液收集和处理系统,还要提供气体(主要为甲烷和二氧化碳)的排除或回收通道,并对填埋过程中产生的水、气和附近的地下水进行监测,还需能达到抵御50年一遇以上洪水的设计标准。

3、生活垃圾渗滤液的产生

填埋场的一个主要问题是渗滤液的污染控制。渗滤液是垃圾在填埋过程中由于垃圾中有机物分解产生的水和垃圾中的游离水、降水以及入渗的地下水,通过淋溶作用形成的污水。就渗滤液的性质而言,属于高浓度有机废水,且水质相当复杂。产生量受多种因素的影响,如降雨量、蒸发量、地面流失、地下水渗入、垃圾的特性和地下层结构、表层覆土和下层排水设施设置情况等等,其中降水量和蒸发量是影响渗滤液产量的重要因素。水质则随垃圾组分、当地气候、水文地质、填埋时间和填埋方式等因素的影响而显著变化。

4、填埋场运行

填埋作业应分区、分单元进行,不运行作业面应及时覆盖。不得同时进行多作业面填埋作业或者不分区全场敞开式作业。中间覆盖应形成一定的坡度。每天填埋作业结束后,应对作业面进行覆盖;填埋作业应采取雨污分流措施,以减少渗滤液的产生量。

5、渗滤液的污染控制

5.1填埋场防渗系统

防止填埋场气体和渗滤液对环境的污染是填埋场中最为重要的部分,对它们的周密考虑需要贯穿于填埋场从设计、施工、运行,直到封场和封场后管理的整个生命周期之中。场底防渗系统主要有水平防渗系统和垂直防渗系统两种类型。垂直防渗是对填埋区地下有不透水层的填埋场而言的,在这种填埋场的填埋区四周建垂直防渗幕墙,幕墙深入至不透水层,使填埋区内的地下水与填埋区外的地下水隔离开,防止场外地下水受到污染。水平防渗是在填埋场的场底及侧边铺设人工防渗材料或天然防渗材料,防止填埋场渗滤液污染地下水和填埋场气体无控释放,同时也阻止周围地下水进入填埋场内。

5.2最终覆盖系统

当填埋场的填埋容量使用完毕之后,需要对整个填埋场或填埋单元进行终场覆盖。其作用是减少雨水和其他外来水渗入垃圾堆体内,达到减少垃圾渗滤液的目的;控制填埋场恶臭散发和可燃气体有组织地从填埋场上部释放并收集,达到控制污染和综合利用的目的;抑制病原菌及其传播媒体蚊蝇的繁殖和扩散;防止地表径流被污染,避免垃圾的扩散及其与人和动物的直接接触;防止水土流失;促进垃圾堆体尽快稳定化;提供一个可以进行景观美化的表面,为植被的生长提供土壤,便于填埋土地的再利用等。

5.3渗滤液的处理

填埋场收集到的渗滤液必须加以妥善处理。处理基本方法包括渗滤液回灌和独立的处理系统。国家标准GB16889-2008要求从2011年7月1日起生活垃圾填埋场自行处理渗滤液,不允许排入城市污水处理厂。

5.3.1渗滤液回灌处理

渗滤液回灌是一种较为有效的处理方案。首先,通过回灌可提高垃圾层的含水率(由20%~25%提高到60%~70%),可增加垃圾的湿度;增强垃圾中微生物的活性;加强产甲烷的速率、垃圾中污染物的溶出及有机物的分解。其次,通过渗滤液回灌,不仅可降低渗滤液的污染物质量浓度,还可因回灌过程中水分挥发等作用而减少渗滤液的产生量,对水量水质起稳定化作用,有利于废水处理系统的运行,节省费用。此外将渗滤液收集并通过回灌使之回到填埋场,不可加速垃圾中有机物的分解,缩短填埋垃圾的稳定化进程(使原需15~20年的稳定过程缩短至2~3年)。但回灌也存在以下两个问题:①不能完全消除渗滤液。由于回灌的渗滤液量受填埋场特性的限制,因而仍有大部分渗滤液须单独处理。②通过回灌后的渗滤液仍需进行处理方能排放,尤其是由于渗滤液在垃圾层中的循环,导致氨氮不断积累,甚至最终使其浓度远高于其在非循环渗滤液中的浓度。

5.3.2渗滤液独立的处理系统

生活垃圾渗滤液处理工艺可分为预处理、生物处理和深度处理三种。应该根据渗滤液的进水水质、水量及排放要求综合选取适宜的工艺组合方式。国家标准HJ564-2010推荐选用“预处理+生物处理+深度处理”组合工艺,也可采用“预处理+深度处理”、“生物处理+深度处理”

(1)预处理工艺

可采用生物法、物理法和化学法,目的主要是去除氨氮或无机杂质,或改善渗滤液的可生化性。如水解酸化和混凝技术。

(2)生物处理工艺

可采用厌氧生物处理法和好氧生物处理法,处理对象主要是渗滤液中的有机污染物和氮、磷等。如厌氧工艺可采用升流式厌氧污泥床法(UASB)及其变型、改良工艺。好氧生物处理工艺可采用活性污泥法(膜生物反应器法、氧化沟活性污泥法和纯氧曝气法等)或生物膜法(接触氧化法、生物转盘法)。

(4)深度处理工艺

可采用纳滤、反渗透、吸附过滤等方法,处理对象主要是渗滤液中的SS、溶解物和胶体等。深度处理以纳滤和反渗透为主,并根据处理要求合理选择。

(5)污泥和浓缩液处理

在渗滤液处理过程中产生的污泥宜与城市污水处理厂污泥一并处理,当进入垃圾填埋场处理或单独处理时,含水率不宜大于80%。纳滤和反渗透工艺产生的浓缩液宜单独处理,可采用焚烧、蒸发或其他适宜的处理方式。

(6)二次污染控制

在渗滤液处理过程中主要的恶臭污染源(调节池、厌氧反应设施、曝气设施、污泥脱水设施等)宜采取密闭、局部隔离及负压抽吸等措施,经集中处理后排放达标排放。

生活垃圾填埋应注意的问题

垃圾渗滤液流经的地方应做好防渗处理,防止污染土壤和地下水。

做好垃圾填埋场的底部防渗和封场覆盖。在运行期内,当衬层上的渗滤液深度大于30cm时,应及时采取有效疏导措施排除积存在填埋场内的渗滤液,减少对防渗层的压力。

渗滤液必须自行处理达标后排放。

作者简介:马翠林(1963-),女,汉族,吉林白山人,学士,副高,环境工程专业

参考文献

全国勘察设计注册工程师环保专业委员会,中国环境保护产业协会编写,注册环保工程师专业考试复习教材 中国环境科学出版社,2007

聂永丰主编,三废处理工程技术手册,固体废物卷,化学工业出版社,2000

赵有才,宋玉主编,生活垃圾处理与资源化技术手册,冶金工业出版社,2007

柴晓利,楼紫阳等,固体废物处理处置工程技术与实践,化学工业出版社,2009

钱学德,郭志平等 ,现代卫生填埋场的设计与施工 ,中国建筑工业出版社 ,2001

篇(6)

关键字:上流式厌氧污泥床(UASB)垃圾渗滤液反应动力学温度

1 UASB处理垃圾渗滤液的影响因素

在UASB反应器的运行过程中,影响污泥颗粒化和处理效果的因素很多。UASB反应器的运行主要受接种污泥的性质、进水水质(有机物浓度及种类、营养比、悬浮固体含量、有毒有害物质)、反应器的工艺条件(污泥负荷、有机负荷,温度、pH值与碱度、挥发酸含量)等的影响。以下是影响反应器运行的几个主要的因素。

1.1温度的影响与控制

由试验可知温度范围在7~21℃,温度越高,处理效果越好,当温度低10℃时,平均去除率仅为20%,温度在15℃以上时,反应器具有比较稳定的处理效果。因此采用UASB处理垃圾渗滤液应保证温度在15℃以上。

1.2 pH值的影响与控制

渗滤液的pH值基本稳定在7.6~8.3,在此范围内,处理效果较为稳定[1];当pH8.3时,COD去除率明显降低。当渗滤液pH值在8.1以下,可以认为pH值对反应器影响不显著,因此,采用UASB处理垃圾渗滤液应控制pH值在8.1以下。

1.3有机负荷的影响与控制

有机负荷较低时COD去除率较高,当负荷为8.8~9.7kgCOD/(m3•d)时去除率仅为15%,但当负荷在4~6kgCOD/(m3•d)时平均去除率为50.5%。因此,UASB处理渗滤液的有机负荷宜控制在5kgCOD/(m3•d)左右。

1.4水力停留时间的影响与控制

当HRT由12h增至48h时,COD去除率上升了13.2%;当HRT由48h增加至96h,对COD去除率影响较小。因此,HRT对出水COD的影响不是很明显,UASB反应器处理垃圾渗滤液的水力停留时间可选择2~4d之间[2]。

1.5营养物质比例的影响与控制

在处理各种废水时,当含氮量过低,合成菌体所需的氮量就不足,同时,消化液的缓冲能力也下降,而含氮量过高,有可能使pH升得过高,不利于产甲烷菌的生长及甲烷的合成。大量试验表明,厌氧处理的碳:氮:磷控制为(200~300):5:1为宜[3],在装置启动时,稍微增加氮含量,有利于微生物的增殖,有利于提高反应器的缓冲能力。

2 UASB反应器反应动力学分析

Monod认为可以通过经典的米-门方程式[4]来描述底物浓度与微生物比增殖速度之间的关系,即方程式(1):

(1)

微生物的比增殖速度u和底物的比降解速度v呈正比关系,因此,底物比降解速度可用米-门方程式描述,即式(2):

(2)

底物的比降解速度,即单位时间内单位微生物量所降解的基质量,也可按下式(3)描述:

(3)

根据式(2)及式(3),得出下式(4):

(4)

在高浓度有机底物条件下,由式(2)(4)简化可知,有机底物以最大的降解速度进行降解,与底物的浓度无关,并呈零级反应关系;有机底物的降解速率与污泥浓度相关,而呈一级反应关系。因此,在处理垃圾渗滤液时,基质降解速度与污泥浓度成比例,在实际运行中应提高反应器内的污泥浓度。

将化学工程中的传质阻力理论运用于微生物增长的反应动力学中,给出了如下的方程式(5):

(5)

可将式(5)化为Monod方程的形式,则有下式(6):

(6)

式(6)阐明了Monod方程中饱和常数Ks的物理意义,Ks是生物过程中的综合参数,与生物反应活性、传质特性以及微生物的几何性质有关。同时,反应器的上流速度和进水基质浓度也是影响Ks变化的因素。

图1 UASB反应器数学模型

图1为UASB反应器数学模型图,可将反应器的流型抽象为污泥床和悬浮层认为是完全混合型,而沉淀区则可认为是推流型。而污泥床和污泥悬浮层靠废水流量Q、上升污泥流量Q w b和返回污泥流量Q b w相联系。

根据UASB反应器中废水流动分布进行物料平衡分析建立如下方程(7):

(7)

对UASB反应器污泥床和污泥悬浮层进行COD平衡分析得出方程式(8)(9):

式中:―废水流量,m3/h;

―反应器内上升污泥流量,m3/h;

―反应器内返回污泥流量,m3/h;

―进水COD浓度,mg/L;

―污泥床COD浓度,mg/L;

―悬浮层COD浓度,mg/L;

―不可生物降解的COD浓度,mg/L;

―污泥床体积,m3;

―悬浮层体积,m3;

―污泥床悬浮物浓度,mg/L;

―悬浮层悬浮物浓度,mg/L;

―COD降解速度,d-1;

―饱和常数;

―生物不可降解的COD百分率。

由式(7)(8)(9)可以得出,当改变进水COD浓度或进水流量时,污泥床和污泥悬浮层体积将发生变化。

假设反应器的容积负荷和COD去除负荷不变,则有方程式(10) :

(10)

将式(10)代入污泥床和悬浮层的COD平衡关系式,得出式 (11)(12):

式中:―容积负荷,d-1;

―有效高度,m;

―污泥床高度,m;

―悬浮层高度,m。

由式(11)(12)可得出,当反应器稳定运行时,在反应器的进水流量、进水COD浓度和COD去除率保持不变的情况下,反应器的运行状况与反应器的截面积关系不大,而与反应器的高度相关。

3 工程设计

由研究可知在温度大于20℃,UASB处理垃圾渗滤液的COD去除率基本上能达到60%以上。

3.1 垃圾渗滤液水质及水量预测

通过对西安市江村沟及国内北京、上海、广州等城市垃圾填埋场垃圾渗滤液水质数据[5]进行调研,最终确定铜川市垃圾渗滤液中COD、BOD、SS、氨氮各项指标分别为20000mg/L、10000 mg/L、600 mg/L、800 mg/L。

铜川市垃圾填埋场由于采用了HDPE膜防渗,填埋场内渗滤液的产生量主要取决于降雨情况。渗滤液产生量按多年平均降雨量作计算依据,采用经验公式法进行预测,其计算公式如下:

篇(7)

关键词:渗滤液浓缩液 回灌 蒸发 高级氧化

一、引言

集中卫生填埋是我国现阶段城市生活垃圾处理的主要方式,针对垃圾渗滤液对人类以及环境的危害,为了防止生活垃圾填埋造成的二次污染,各个国家针对国情分别制定的垃圾渗滤液排放标准,用来解决渗滤液排放问题。

浓缩液由于含有严重污染物,直接排放可能会对土壤、地表水、海洋等产生污染;若排入市政污水处理系统,过高的总溶解性固体对活性污泥的生长也不利。因此对于减少浓缩液的产量、浓缩液继续处理的研究很有必要,相关技术的开发研究也是渗滤液处理技术中的一个热点。

二、渗滤液处理浓缩液特点

浓缩液中的主要成分是甲苯、N,N一二甲基甲酰胺、2,4一二甲基一苯甲醛、2,4一二(1,1一二甲基乙基)苯酚、三(2一氯乙基)磷酸、邻苯二甲酸环己基甲基丁基醚、邻苯二甲酸二丁酯、3,5-二叔丁基一4一羟苯基丙酸、乙酰胺、正十六酸、~t-A硫二烯酸,以及少量的十八烷到二十五烷之间的正烷烃等有机物。从这些有机物的特点来看,基本不能作为营养源参与生物反应。

根据我国几家采用反渗透工艺的项目运行经验分析,要保证反渗透出水的各项指标达标,浓缩液的产量非常大,一般会占到进水量的25% 一45%。浓缩液中的COD主要成分是难降解有机物,一般随地域和当地居民饮食习惯的差异,浓缩液的COD浓度在1 000 mg/L一5000 mg/L之间,其中的有机物很难作为营养源参与微生物代谢。根据对不同地区渗滤液处理项目发现,浓缩液中的总氮含量在100 mg/L一1 000 mg/L。浓缩液的色度一般在500倍~1 500倍之间,并且生色团和助色团相对物质量越高,色度越高。根据反渗透截流性的特点,100%的二价以上的无机盐离子、85%~90% 的一价盐离子、30% 左右的硝态氮、亚硝态氮都会存在于浓缩液中。通过数倍浓缩后,浓缩液中的氯离子浓度约为10 000 mg/L一50 000mg/L之间,TDS为20000~60000mg/L,电导率为40000~50 000 0μs/cm,这些含极难降解,且含盐度极高的浓缩液成为了所有渗滤液处理中的一道难题。

三、目前常用处理方法

处置浓缩液是整个渗滤液处理工艺膜系统设计过程中不可缺少的重要部分。如何处置垃圾渗滤液深度处理反渗透及纳滤浓缩液,取决于浓缩液的水量、水质以及处置地点的地理环境和对水源、土壤的潜在影响。浓缩液处置的典型方法有回灌、膜蒸馏、蒸发、高级氧化等。

3.1回灌

回灌工艺是指将垃圾渗滤液通过膜深度处理产生的浓缩液回运到垃圾填埋场再通过人工技术喷灌如垃圾堆体的渗流处理技术,回灌实质是把填埋场做为一个以垃圾为填料的生物滤床,回灌的浓缩液在自上而下流经垃圾填埋层的过程中,其中的有机污染物被垃圾中的微生物所降解。

从1986年开始,浓缩液回灌就作为反渗透法处理垃圾渗滤液的一个有机组成部分而被广泛采用。实践证实:在充分考虑相关填埋场的特征设计基础上,长期采用回灌处理浓缩液的系统,填埋场排出的渗滤液中主要污染物质浓度没有显著变化。然而,回灌对地下水污染的可能性增加,水流可形成短路,使填埋层含水率增加,浓缩液直接回灌也有可能导致垃圾场含盐量增加。

3.2 蒸发技术

蒸发是一个把挥发性组分与非挥发性组分分离的物理过程,由2部分组成:加热溶液使水沸腾气化和不断除去气化的水蒸气。垃圾渗滤液蒸发处理时,水分从渗滤液中沸出,污染物残留在浓缩液中。所有重金属和无机物以及大部分有机物的挥发性均比水弱,因此会保留在浓缩液中,只有部分挥发性烃、挥发性有机酸和氨等污染物会进入蒸气,最终存在于冷凝液中。

浓缩液的低能耗蒸发工艺是在传统的废水蒸发处理技术的基础上的改良和发展。传统的蒸发技术是一个把挥发性组分与非挥发性组分分离的物理过程,通过加热溶液使水沸腾气化和不断除去气化的水蒸气。垃圾渗滤液蒸发处理时,水分从浓缩液中沸出,而污染物会残留在浓缩液中。浓缩液低能耗蒸发工艺利用蒸汽的特性,当蒸汽被机械压缩机压缩时,其压力升高,同时温度也得到提升,为重新利用再生蒸汽作为蒸发热源提供了可能。通过能源循环利用技术,将浓缩液蒸发处置运行成本降到最低。目前市场上的主流材料都很难满足反渗透浓缩液蒸发装置的防腐等级要求。根据目前国内正在运行的采用浓缩液蒸发系统的项目的实际情况看,蒸发装置的主材必须是采用Ti材以上的耐腐蚀材料,造价昂贵以及后期不菲的维养费用。

3.3 组合处理工艺

目前采用的较多的组合处理工艺是生化一强化氧化一混凝沉淀工艺。其中Fenton氧化法是一种高级氧化技术。其原理是通过培养适合在高TDS下生存在菌种,保证生化处理通过传统A/O+MBR工艺对浓缩液生物脱氮。然后在强化氧化段投加遴选的氧化剂和催化剂(双氧水和铁盐),通过1号自由基反应机理对COD和TN进行去除,强氧化段COD去除率为75%,TN去除率为90%。最后通过混凝沉淀工艺对出水的ss进行去除。其核心工艺仍是传统的高级氧化技术。

四、结语