期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 垃圾渗滤液的水质特点

垃圾渗滤液的水质特点精品(七篇)

时间:2024-01-08 15:14:32

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇垃圾渗滤液的水质特点范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

垃圾渗滤液的水质特点

篇(1)

[关键词]垃圾填埋渗滤液 水质特性 影响因素

[中图分类号] X52 [文献码] B [文章编号] 1000-405X(2015)-3-322-2

1引言

由于填埋方式具备处理垃圾量大、运行成本低、易操作等优点,我国城市产生的大量生活垃圾主要以填埋方式处理。但在填埋过程中,垃圾中原含有的水、场内渗入的雨水、地下水、地表水及垃圾降解反应生成的水,在微生物的发酵及压实作用下,经过垃圾层过滤后,会渗出的大量的垃圾填埋渗滤液。它含有大量的重金属、有毒物质及有机污染物。如果处理不当,就会穿过地表及地下土层,严重污染地下水体、毁坏地表植被、威胁人类健康。

2垃圾填埋渗滤液水质特性

2.1污染物浓度含量高

垃圾填埋渗滤液的污染物浓度含量高且变化范围较大。BOD5和COD最高能够达到数千至几万mg/L。在pH=7时,BOD5/COD在0.5至0.6之间。垃圾填埋场的运行时间越长,BOD5、COD、BOD5/COD会降低,但碱度升高。

2.2含有大量有机污染物

表l为我国城市垃圾填埋渗滤液的典型污染物及浓度变化,易知其含有的有机污染物组分复杂且浓度较高。其中存在77种有机污染物(可疑致癌物1种,辅致癌物4种),还含有难以生物降解的氯化芳香族化合物、酚类化合物、磷酸酯及苯胺类化合物等。

2.3水质和水量变化较大

垃圾填埋渗滤液水量随季节的变化而变化,雨季水量远大于旱季水量。另外,污染物的组成和浓度也会呈季节性变化。随着垃圾填埋时间的延长,渗滤液水质变化明显。垃圾填埋时间在5年以下的渗滤液水质特点为色度较大、COD及BOD5的浓度较高,且BOD5/COD也相对较高、pH值相对较低、重金属离子的浓度也很高。垃圾填埋时间在10年以上的渗滤液的水质特点为色度较大、COD以及BOD5的浓度较低,且BOD5/COD也相对较低、pH值一般在6-8之间,为中性或弱碱性、重金属离子浓度开始减少、可生化能力较差。垃圾填埋时间在5-10年的渗滤液的水质特点介于两者之间。

2.4重金属含量多

垃圾填埋渗滤液中重金属离子含量多达10几种,且含量较高,特别当生活垃圾与工业垃圾混合填埋时,重金属离子的含量往往更高。垃圾填埋渗滤液的色度高达2000―4000倍,会散发出极重的腐败臭味。重金属离子中铁的含量可多达2050 mg/L、锌的含量可多达130 mg/L、铅的含量可高达12.3mg/L、钙的含量甚至可高达4200 mg/L。这些含量大的重金属离子会严重抑制生物处理过程。

2.5氨氮含量较高

垃圾填埋渗滤液一个重要的水质特性是氨氮含量较高。另外,氨氮的浓度会随垃圾填埋时间而不断增加,可高达数千至上万mg/L,大约占总氮含量的百分之九十以上。当垃圾填埋渗滤液中氨氮浓度较高时,微生物的活性受到严重影响,进而抑制了微生物的氧化作用。同时,氨氮浓度越高,其抑制性就越强,就大大降低了生物处理的效果。

2.6微生物营养元素比例失衡

由于氨氮含量较高,垃圾填埋渗滤液中C/N的比例常出现失衡情况,另外,因为P元素的缺乏,BOD5/TP值大部分为300以上,与微生物生长所适宜的100:1的碳磷比相差很大。这在一定程度上严重抑制了垃圾填埋渗滤液中微生物的繁殖生长。

3影响因素

垃圾填埋场渗滤液的水质特性与填埋垃圾的种类及填埋场的构造、运行管理、气象条件有关。另外,在同一垃圾填埋场中,渗滤液水质特性与填埋时间呈高度相关。

3.1垃圾种类的影响

垃圾填埋场渗滤液水质特性受填埋垃圾种类的影响比较大。厨余垃圾中的有机物是渗滤液中 CODCr与BOD5的主要来源。厨余垃圾含量的高低能够直接影响渗滤液COD和BOD5浓度的高低。除此之外,因为灰渣、残土等对有机物会有过滤与吸附作用,因此填埋垃圾中灰渣、残土的含量也会较大的影响渗滤液中有机物的浓度。另外,因为城市人群的生活习惯、生活水平及环保意识的不相同,各个城市的垃圾种类也会相差较大,从而使渗滤液的COD及BOD5在数千至上万mg/L间变化,见表2。

3.2填埋时间的影响

垃圾填埋场处理垃圾的过程实际上是一个多次垃圾填充、压实及覆盖过程。不同的填埋区处于不同的填埋年龄。根据垃圾填埋时间,填埋场渗滤液通常分为3-5年的年轻填埋场的渗滤液、5-10年的中年填埋场的渗滤液及10年以上的老年填埋场的渗滤液。填埋时间对垃圾填埋渗滤液水质特性的影响主要在于微生物分解可降解物及大气降雨进入垃圾填埋层后对污染物的洗刷溶解作用。表3是渗滤液水质特性随填埋年龄变化。

3.3填埋工艺的影响

在垃圾填埋场外设置排洪沟,可以排除场外的地表径流;另外,在场底铺设黄粘土或衬垫,能够有效防止地表径流和地下水进入垃圾填埋场,那么渗滤液中有机物浓度就保持相对较高。同时,如果垃圾填埋场的地表径流未截流或截流效果不好、使用一般的粘土来防止渗滤液污染地下水,都会致使渗滤液的有机物浓度降低,大量增加渗滤液水量。

3.4填埋场运行管理的影响

填埋场采用渗滤液回灌方式,能够持续补充并保持垃圾层内的湿度和营养。可以为微生物降解有机物的作用提供了更加适宜的条件,维持填埋场的稳定并改善渗滤液的水质。同时,渗滤液含有的有机物又能够被垃圾层中的微生物分解,大大较少了渗滤液中有机污染物的浓度。

3.5填埋结构的影响

填埋结构直接关系到垃圾填埋渗滤液的生物降解作用及稳定进程,影响主要在于不同的结构会造成垃圾层中氧气状况的差异。好氧填埋场内进行好氧降解,将可降解化合物等降解为C02与水,能更快改善渗滤液的水质。

3.6环境温度的影响

环境温度能够影响微生物的活动及化学反应的进程。温度升高适宜的温度有利于微生物的生长繁殖,加快降解垃圾,可以增加渗滤液水量。而零下温度致使一部分垃圾冻结,使废液减少,抑制一些化学反应。

4结束语

垃圾填埋是我国最常用的生活垃圾处理方式,其产生的渗滤液含有大量有机污染物、重金属、氨氮等,并易受垃圾种类、时间、填埋结构、温度等影响,具有复杂性,其处理也具备一定难度。所以,必须针对其水质特性及影响因素,选择出高效、环保、经济的渗滤液处理工艺。

参考文献

[1]代晋国,宋乾武,王红雨.我国垃圾渗滤液处理存在问题及对策分析[J].环境工程,2011(S1).

篇(2)

关键词:垃圾填埋场;渗滤液;处理技术

中图分类号:X703 文献标识码:A 文章编号:1674-0432(2011)-07-0276-2

随着我国经济的快速发展,城市垃圾量也随之增加,垃圾的妥善处理已成为人们急需解决的问题。我国大多数城市采用卫生填埋或焚烧的方式处理垃圾,由此产生了大量的垃圾渗滤液。垃圾渗滤液中含有多种污染物,包括重金属离子和有机物,不仅在水中存在时间长,范围广,而且危害极大,若不妥善处理将对环境造成严重污染。有效收集和处理垃圾渗滤液已成为城市环境急需解决的问题,垃圾渗滤液的处理技术成为研究者关注的热点和难点。

1 垃圾渗滤液的产生及特点

垃圾渗滤液,又称浸出液或渗沥水,是垃圾填埋场中不可避免的二次污染物[1],主要来源于降水、垃圾含有的水和微生物厌氧分解产生的有机废水[2]。垃圾渗滤液是高浓度有机废水,若未经处理直接排放或未达标排放,会对周围的地下水、地表水和土壤造成严重的污染。

垃圾渗滤液污染物含量受垃圾成分、填埋年限、气候条件和填埋场设计等多种因素的影响[3]。垃圾渗滤液水质特点可以概括为:①污染物种类多,成分复杂,浓度高。刘军等使用GC-MS 对垃圾渗滤液中有机组分进行分析,共有63种有机化合物,大多是难以生物降解的有机化合物,如酚类、杂环类、杂环芳烃、多环芳烃类化合物,约占渗滤液中有机组分的70%以上[3];有机物浓度高,COD和BOD5浓度高,最高可达几万mg/L。②水质、水量变化复杂。垃圾填埋场的水文气候条件、地质条件、地理位置、构造方式、填埋时间等不同,垃圾渗滤液的成分和产量也发生变化。而且生物可降解性随填埋龄的增加而逐渐降低。③营养比例失衡。渗滤液中氨氮含量高,C/N值常出现失调情况,同时p缺乏,微营养比例不能满足水处理的要求。

2 垃圾渗滤液处理工艺技术

在《生活垃圾填埋场污染控制标准》(GB16889-2008) 于2008年7月1日颁布实施后,对垃圾渗滤液的处理控制提出了更严格的要求。渗滤液水质水量受各种因素影响而变得非常复杂,存在大量生物难以降解的有机物,目前渗滤液的处理工艺主要有土地处理、物理处理、化学处理、生物处理等,但采用单一工艺处理,往往只能在某些指标上取得好效果,很难使出水达到排放标准。因此渗滤液的处理工艺不是一种方法能够完成的,而是多种方法的组合工艺。

目前,渗滤液处理的组合工艺主要有两种,一种是以生化反应为主的“生物法+膜法(纳滤/反渗透)”处理系统;另外一种是以DT盘式膜组件为主的高压膜过滤工艺。DT盘式膜组件是独家工艺,过滤原理即为常见卷式反渗透膜过滤的原理,在此不多作介绍,本文重点介绍“生物法+膜法”的处理系统。生化法处理设备和运行管理简单,成本低,对水质和水量的变化有很好的适应能力,适合我国生化垃圾有机物含量高、渗滤液可生化能力较高的特点,当前得到了广泛应用。

2.1 早期生物处理工艺

早期的渗滤液处理工艺缺乏设计经验,对渗滤液的水质特性考虑不够充分,处理工艺主要参照城市污水处理工艺,选择生物法中的氧化沟,SBR及接触氧化工艺的比较多,由于这些工艺在曝气量、停留时间上考虑的不足,最后导致了运行的失败。

例如北京阿苏卫渗滤液处理厂选择“厌氧+氧化沟+沉淀池”的处理工艺,要求出水达到GB16889-1997二级标准,但是由于渗滤液水质水量随时间变化大,尤其随着填埋场时间的增长,可生化性低,导致出水不能稳定达标;昆山市第三垃圾填埋场渗滤液处理采用的是“厌氧+生物接触氧化”工艺,运行过程中进水水质远低于设计值,结果造成厌氧效果大幅下降,整个系统出水无法达标。

另外,早期渗滤液生化处理工艺选择沉淀池进行泥水分离,但是由于高污泥浓度的污水在沉淀池中的沉降性差,抗污泥膨胀的能力差,从而造成生化池中的污泥浓度偏低,出水水质不稳定。

2.2 膜生物反应器(MBR)应用

针对早期生化法在渗滤液处理上的不足,MBR系统在设计生化反应部分时充分考虑渗滤液的水质特性,以反硝化池和硝化池为主,在停留时间、池体深度以及曝气量方面,充分满足渗滤液中有机物降解的需要。

膜技术在垃圾渗滤液处理中的应用引起了我国学者的极大关注。膜生物法(MBR)是近些年发展起来的一种集膜过滤和生物处理于一体的新型、高效的处理技术,在处理高浓度难降解有机物废水方面有着广泛的应用前景。在MF和UF基础上研发的MBR系统已经广泛应用于生化反应末端的泥水分离过程,利用膜的截留作用使微生物完全被截留在生物反应器中,实现水力停留时间和污泥龄的完全分离,使生化反应器内的污泥浓度从3-5g/L提高到10-20g/L,从而提高了反应器的容积负荷,使反应器容积减小,大大提高了生化系统的运行效果。

据相关实例数据表明,MBR系统对COD的去除率在90%以上,NH3-N在95%以上。任鹤云等采用MBR法处理渗滤液,生化部分采用硝化/反硝化工艺,膜部分采用的超滤+纳滤膜,出水COD小于60mg/L,SS小于50mg/L,氨氮小于18.8mg/L重金属等未检出[4];康建雄等应用UASB-A/O-膜工艺处理垃圾渗滤液取得良好效果,CODcr,BOD5和氨氮的去除率分别达97.3%、98.6%和92.8%,出水水质优于国家排放标准[5]。

2.3 膜处理技术

膜处理技术包括微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)和反渗透膜(RO)等,常用于二级处理后的深度处理,多以微滤(MF)、超滤(UF)代替沉淀、过滤、吸附、除菌等常规深度处理中的预处理,以纳滤(NF)、反渗透(RO)进行水的软化和脱盐。在垃圾渗滤液处理系统中,由于渗滤液的生化性较差,单独依靠生化反应和MBR系统并不能完全实现水质达标排放,因此MBR的出水需要进一步深度处理。根据目前的处理技术,MBR出水还可通过NF或RO系统进一步处理,RO和NF都能去除细菌、微生物、溶解盐等,但RO效果更好。一般RO和NF之前的进水都必须进行预处理,对SS及浊度都有明确的要求,一般SS≤1mg/L,浊度≤5NTU,pH控制在中性左右。对RO、NF影响比较大的环境因素除进水水质外,还有压力、温度等,这些因素是可控的,因此系统运行的稳定性有了一定保证。

苏也研究表明,MBR-NF工艺经过4个多月的运行,运行稳定,在进水CODcr远高于设计值的情况下,出水状况仍然良好,满足设计要求[6]。

2.4 组合工艺流程

目前由于环境污染的不断加重,国家从加强环保的角度出发,颁布了《生活垃圾填埋场污染控制标准排放标准》(GB16889-2008),其中出水总氮成为一个重要的指标(非敏感地区40mg/L,敏感地区20mg/L)。为了满足新的垃圾渗滤液排放标准中对总氮的要求,原有MBR工艺进一步优化,增加一个二级硝化反硝化环节,如图1所示,MBR工艺优化为A/O/O+A/O+外置超滤膜(UF)可以保证出水总氮达标排放。

图1 工艺流程图

综上所述,渗滤液处理的工艺以“生物法+膜处理”为主,该工艺技术处理渗滤液可以达到2008年《生活垃圾填埋场污染控制标准排放标准》的排放要求。其中,生化处理过程可以有效地降解、消除污染物,膜分离处理过程可以有效地分离去除不可生化降解的残余污染物。

3 结论和建议

垃圾渗滤液是一种成分复杂的高浓度有机废水,其处理技术各有利弊,单独采用任何一种处理技术很难使渗滤液达标排放。因此,必须将处理工艺由单一化向多元化发展,通过组合工艺充分发挥各工艺的优势,以达到满意的处理效果。“生物法+膜处理”工艺技术处理渗滤液可以达到2008年《生活垃圾填埋场污染控制标准排放标准》的排放要求,但在垃圾渗滤液的处理过程中仍存在一些问题。

3.1 老龄化填埋场渗滤液可生化性差

渗滤液的可生化性差,新生渗滤液用生化法处理是可行的,但是随着填埋场时间的延长,渗滤液的可生化性降低,尤其是在填埋后期,可生化性很差,B/C不足0.1,生化法使用受到限制。应根据填埋场所处阶段来选择合适的工艺进行渗滤液处理。

3.2 浓缩液处理

膜分离过程可以有效地分离去除不可生化降解的残余污染物,但同时会产生浓缩液,浓缩液的最终处理也是目前水处理行业中一个亟待解决的问题。目前浓缩液的处理方法主要有回灌法、蒸发法、高级氧化+混凝沉降组合法、活性碳吸附和离子交换法等,但是回灌法势必造成盐的累积;蒸发法能耗相当大,而且蒸发器要有很强的抗腐蚀能力;高级氧化+混凝沉降法对有机物有很好的去除效果,但是对总氮去除效果不明显;活性碳吸附和离子交换法用来处理浓缩液很容易达到饱和容量,再生困难,运行费用昂贵。

渗滤液水质如果可生化性好的话,优先选择生化法,但是渗滤液中含有大量难降解的物质和毒性物质,生化出水仍需要深度处理,膜技术的应用解决了深度处理的问题,但是膜处理也存在膜污染和浓缩液处理的问题,如何通过技术改进和工艺组合降低运行成本和减少膜污染是今后研究的方向。

参考文献

[1] 陈玉成,李章平.城市生活垃圾渗沥水的污染及全过程控制[J].环境科学动态,1995,4:15-17.

[2] 王宗平,陶涛,金儒霖.垃圾渗滤液处理研究进展[J].环境科学进展,1999,7(3):32-39.

[3] 刘军,鲍林发,汪苹.运用 GC-MS 联用技术对垃圾渗滤液中有机污染物成分的分析[J].环境污染治理技术与设备,2003,4(8):31-33.

[4] 任鹤云,李月中.MBR法处理垃圾渗滤液工程实例[J].给水排水,2004,10:36-38.

[5] 康建雄,李静,闵海华,等.UASB-A/O膜工艺处理渗滤液工程设计案例[J].华中科技大学学报(城市科学版),2003,20(2):85-87.

篇(3)

关键词:垃圾渗滤液 物理 化学法 生物法

0 概述

城市垃圾填埋场渗滤液的处理一直是填埋场设计、运行和管理中非常棘手的问题。渗滤液是液体在填埋场重力流动的产物,主要来源于降水和垃圾本身的内含水。由于液体在流动过程中有许多因素可能影响到渗滤液的性质,包括物理因素、化学因素以及生物因素等,所以渗滤液的性质在一个相当大的范围内变动。一般来说,其pH值在4~9之间,COD在2000~62000mg/L的范围内,BOD5从60~45000mg/L,重金属浓度和市政污水中重金属的浓度基本一致。城市垃圾填埋场渗滤液是一种成分复杂的高浓度有机废水,若不加处理而直接排入环境,会造成严重的环境污染。以保护环境为目的,对渗滤液进行处理是必不可少的。

1 渗滤液处理工艺的现状

垃圾渗滤液的处理方法包括物理化学法和生物法。物理化学法主要有活性炭吸附、化学沉淀、密度分离、化学氧化、化学还原、离子交换、膜渗析、气提及湿式氧化法等多种方法,在COD为2000~4000mg/L时,物化方法的COD去除率可达50%~87%。和生物处理相比,物化处理不受水质水量变动的影响,出水水质比较稳定,尤其是对BOD5/COD比值较低(0.07~0.20)难以生物处理的垃圾渗滤液,有较好的处理效果。但物化方法处理成本较高,不适于大水量垃圾渗滤液的处理,因此目前垃圾渗滤液主要是采用生物法。

生物法分为好氧生物处理、厌氧生物处理以及二者的结合。好氧处理包括活性污泥法、曝气氧化池、好氧稳定塘、生物转盘和滴滤池等。厌氧处理包括上向流污泥床、厌氧固定化生物反应器、混合反应器及厌氧稳定塘。

2 渗滤液处理介绍

垃圾渗滤液具有不同于一般城市污水的特点:BOD5和COD浓度高、金属含量较高、水质水量变化大、氨氮的含量较高,微生物营养元素比例失调等。在渗滤液的处理方法中,将渗滤液与城市污水合并处理是最简便的方法。但是填埋场通常远离城镇,因此其渗滤液与城市污水合并处理有一定的具体困难,往往不得不自己单独处理。常用的处理方法如下。

2.1 好氧处理

用活性污泥法、氧化沟、好氧稳定塘、生物转盘等好氧法处理渗滤液都有成功的经验,好氧处理可有效地降低BOD5、COD和氨氮,还可以去除另一些污染物质如铁、锰等金属。在好氧法中又以延时曝气法用得最多,还有曝气稳定塘和生物转盘(主要用以去除氮)。下面将分别予以介绍。

2.1.1 活性污泥法

2.1.1.1 传统活性污泥法

渗滤液可用生物法、化学絮凝、炭吸附、膜过滤、脂吸附、气提等方法单独或联合处理,其中活性污泥法因其费用低、效率高而得到最广泛的应用。美国和德国的几个活性污泥法污水处理厂的运行结果表明,通过提高污泥浓度来降低污泥有机负荷,活性污泥法可以获得令人满意的垃圾渗滤液处理效果。例如美国宾州Fall Township污水处理厂,其垃圾渗滤液进水的CODCr为6000~21000mg/L,BOD5为3000~13000mg/L,氨氮为200~2000mg/L。曝气池的污泥浓度(MLVSS)为6000~12000mg/L,是一般污泥浓度的3~6倍。在体积有机负荷为1.87kgBOD5/(m3·d)时,F/M为0.15~0.31kgBOD5/(kgMLSS·d),BOD5 的去除率为97%;在体积有机负荷为0.3kgBOD5/(m3·d)时,F/M为0.03~0.05kg BOD5/(kgMLSS·d),BOD5的去除率为92%。该厂的数据说明,只要适当提高活性污泥法浓度,使F/M在0.03~0.31kgBOD5/(kgMLSS·d)之间(不宜再高),采用活性污泥法能够有效地处理垃圾渗滤液。

许多学者也发现活性污泥能去除渗滤液中99%的BOD5,80%以上的有机碳能被活性污泥去除,即使进水中有机碳高达1000mg/L,污泥生物相也能很快适应并起降解作用。在低负荷下运行的活性污泥系统,能去除渗滤液中80%~90%的COD,出水BOD5<20mg/L。对于COD 4000~13000mg/L、BOD51600~11000mg/L、NH3-N 87~590mg/L的渗滤液,混合式好氧活性污泥法对COD的去除率可稳定在90%以上。众多实际运行的垃圾渗滤液处理系统表明,活性污泥法比化学氧化法等其它方法的处理效果更佳。

2.1.1.2 低氧好氧活性污泥法

低氧好氧活性污泥法及SBR法等改进型活性污泥流程,因其具有能维持较高运转负荷,耗时短等特点,比常规活性污泥法更有效。同济大学徐迪民等用低氧好氧活性污泥法处理垃圾填埋场渗滤液,试验证明:在控制运行条件下,垃圾填埋场渗滤液通过低氧好氧活性污泥法处理,效果卓越。最终出水的平均CODCr、BOD5、SS分别从原来的6466 mg/L、3502mg/L以及239.6mg/L相应降低到CODCr<300mg/L、BOD5<50mg/L(平均为13.3mg/L)以及SS<100mg/L(平均为27.8mg/L)。总去除率分别为CODCr 96.4%、BOD5 99.6%、SS 83.4%。

处理后的出水若进一步用碱式氯化铝进行化学混凝处理,可使出水的CODCr下降到1 00mg/L以下。

两段法处理渗滤液的氮、磷也均较一般生物法为佳。磷的平均去除率为90.5%;氮的平均去除率为67.5%。此外该法运行弥补厌氧好氧两段生物处理法第一段形成NH3-N较多,导致第二段难以进行和两次好氧处理历时太长的不足。

2.1.1.3 物化活性污泥复合处理系统

由于渗滤水中难以降解的高分子化合物所占的比例高,存在的重金属产生的抑制作用,所以常用生物法和物理化学法相结合的复合系统来处理垃圾渗滤液。对于BOD51500m g/L、Cl-800mg/L、硬度(以CaCO3计)800mg/L、总铁600mg/L、有机氮100mg/L、TSS 300mg/L、 SO2-4300mg/L的渗滤液,有学者采用该方法进行处理,发现效果很好,其BOD5 、COD、NH3-N、Fe的去除率分别达99%、95%、90%、99.2%。该系统中的进水通过调节池后,可以避免毒性物质出现瞬时的高浓度而对活性污泥生物产生抑制作用;在澄清池中加入石灰,可去除重金属和部分有机质;气提池(进行曝气,温度低时加入NaOH)能去除进水NH3-N的50%,从而使NH3的浓度处于抑制水平之下;由于废水中磷被加入的石灰所沉淀,且 pH值过高,因而需添加磷和酸性物质;活性污泥系统可以串联或并联使用,运行时可通过调节回流污泥比来选用常规法或延时曝气法处理,具有较大的操作灵活性。

2.1.2 曝气稳定塘

与活性污泥法相比,曝气稳定塘体积大,有机负荷低,尽管降解进度较慢,但由于其工程简单,在土地不贵的地区,是最省钱的垃圾渗滤液好氧生物处理方法。美国、加拿大、英国、澳大利亚和德国的小试、中试及生产规模的研究都表明,采用曝气稳定塘能获得较好的垃圾渗滤液处理效果。

例如英国在Bryn Posteg Landfill投资60000英镑建立一座1000m3的曝气氧化塘,设2台表面曝气装置,最小水力停留时间为10d,氧化塘出水经沉淀后流经3km长的管道入城市下水道。此系统1983年开始运行,渗滤液最大CODCr为24000mg/L,最大BOD5为10000mg/L,F/M=0.05~0.3kgCOD/(kgMLSS·d),水量变化范围0~150m3/d,出水BOD5平均为 24mg/L,但偶然有超过50mg/L的时候,COD去除率达97%,但在运行过程中需投加P,考虑到日常运行费用,投资偿还及其利息,与渗滤液直接排至市政管网相比,每年可节约750英镑。

英国水研究中心(Water Research Center)对东南部New Park Landfill的CODCr> 15000mg/L的渗滤液也做了曝气稳定塘的中试,当负荷为0.28~0.32kgCOD/(kgMLSS·d)或者说为0.04~0.64kgCOD/(kgMLSS·d),泥龄为10d时,COD和BOD5去除率分别为98%和91%以上。在运行过程中也需要投加磷酸。

2.1.3 生物膜法

与活性污泥法相比,生物膜法具有抗水量、水质冲击负荷的优点,而且生物膜上能生长世代时间较长的微生物,如硝化菌之类。加拿大British Columbia大学的C.Peddie和J.Atwater用直径0.9m的生物转盘处理CODCr<1 000mg/L,NH3-N<50m g/L的弱性渗滤液,其出水BOD5<25mg/L,当温度回升,微生物的硝化能力随即恢复。但是应当指出,这种渗滤液的性质与城市污水相近,对于较强的渗滤液此方法是否适用还待研究。

2.2 厌氧生物处理

厌氧生物处理的有目的运用已有近百年的历史。但直到近20年来,随着微生物学、生物化学等学科发展和工程实践的积累,不断开发出新的厌氧处理工艺,克服了传统工艺的水力停留时间长,有机负荷低等特点,使它在理论和实践上有了很大进步,在处理高浓度(BOD5 ≥2000mg/L)有机废水方面取得了良好效果。

厌氧生物处理有许多优点,最主要的是能耗少,操作简单,因此投资及运行费用低廉,而且由于产生的剩余污泥量少,所需的营养物质也少,如其BOD5/P只需为4000∶1,虽然渗滤液中P的含量通常少于1mg/L,但仍能满足微生物对P的要求。用普通的厌氧硝化,35℃ 、负荷为1kgCOD/(m3·d),停留时间10d,渗滤液中COD去除率可达90%。

近年来,开发的厌氧生物处理方法有:厌氧生物滤池、厌氧接触池、上流式厌氧污泥床反应器及分段厌氧硝化等。

2.2.1 厌氧生物滤池

厌氧滤池适于处理溶解性有机物,加拿大Halifax Highway101填埋场渗滤液平均COD为12850mg/L、BOD5/COD为0.7,pH为5.6。将此渗滤液先经石灰水调节至pH=7.8,沉淀1h后进厌氧滤池(此工序还起到去除Zn等重金属的作用),当负荷为4kgCOD/(m3·d)时,COD去除率可达92%以上;当负荷再增加时,其去除率急剧下降。

加拿大Toronto大学的J.G.Henry等也在室温条件下成功地用厌氧滤池分别处理年龄为1.5 年和8年的填埋场渗滤液,它们的COD各为14000mg/L和4000mg/L,BOD5/COD各为0.7和0.5,当负荷为1.26~1.45kgCOD/(m3·d),水力停留时间为24~96h时,COD去除率均可达90%以上。当负荷再增加,其去除率也急剧下降。由此可见,虽然厌氧滤池处理高浓度有机污水时负荷可达5~20kgCOD/(m3·d),但对于渗滤液其负荷必须保持较低水平才能得到理想的处理效果。

2.2.2 上向流式厌氧污泥床

英国的水研究中心报道用上向流式厌氧污泥床(UASB)处理COD>10000mg/L的渗滤液,当负荷为3.6~19.7kgCOD/(m3·d),平均泥龄为1.0~4.3d,温度为30℃时COD和BOD5的去除率各为82%和85%,它们的负荷比厌氧滤池要大得多。

在厌氧分解时,有机氮转为氨氮,且存在NH4+NH3+H+反应。若pH>7时,平衡中的NH3占优势,可用吹脱法去除。但厌氧分解时pH近似等于7,因此出水中可能含有较多的NH4+,将会消耗接纳水体的溶解氧。

2.3 厌氧与好氧的结合方式

虽然实践已经证明厌氧生物法对高浓度有机废水处理的有效性,但单独采用厌氧法处理渗滤液也很少见。对高浓度的垃圾渗滤液采用厌氧好氧处理工艺既经济合理,处理效率又高。COD和BOD的去除率分别达86.8%和97.2%。

2.3.1 厌氧好氧生物氧化工艺(厌氧硝化和生物氧化塘)

西南师大生物系对pH为8.0~8.6,COD为16124mg/L,BOD5为214~406mg/L、NH3- N为475mg/L的渗滤液采用厌氧好氧生物化学法处理,取得出水pH为7.1~7.9,COD为170.33~314.8mg/L,BOD5为91.4mg/L、NH3-N为29.1mg/L的良好效果。

2.3.2 厌氧氧化沟兼性塘工艺

下面结合广州市李坑垃圾填埋场作以下说明及分析。李坑垃圾填埋场污水处理厂按流量300m3/d设计,进水BOD5为2500mg/L、CODCr为4000mg/L、NH3-N 为1000mg/L、SS为600mg/L、色度为1000倍;出水BOD5为30mg/L、CODCr为80mg/L 、NH3-N为10mg/L、SS为70mg/L、色度为40倍。选用工艺流程为:厌氧氧化沟兼性塘絮凝沉淀。当进水水质较好,兼性塘出水达标时,即可直接将兼性塘水向外排放;而当进水水质较差,兼性塘出水达不到排放标准时,则启用混凝沉淀系统,再排放沉淀池上清液。

从目前该套工艺的运行情况来看,当进水的COD较高时,出水水质良好;一旦COD 降低,特别是冬季低温少雨,COD降低到不利于生化处理时,出水各水质成分均偏高难以达标,出水呈棕褐色,尽管启用絮凝沉淀系统,效果仍不理想。由此可见,对于渗滤液的色度和NH3-N的有效去除,对生化处理将产生有利影响。

2.3.3 厌氧气浮好氧工艺

大田山垃圾卫生填埋场渗滤液处理采用的是此工艺。根据广州市环境卫生研究所对类似垃圾填埋场渗滤液检测资料及模拟试验,结合本场实际情况定出渗滤液污水处理设计参数。进水水质CODCr为8000mg/L、BOD5为5000mg/L、SS为700mg/L、pH值为7.5 ;出水水质CODCr为100mg/L、BOD5为60mg/L、SS为500mg/L、pH值为6.5~7.5。针对该场远离市区的特点,为便于管理和节省能耗,经比较后选用厌氧和好氧联合处理工艺。厌氧段为上向流式厌氧污泥床反应器,好氧段为生物接触氧化法,加化学混凝沉淀和生物氧化塘,净化处理达标后排放。剩余污泥经浓缩后送回填埋场处理。

考虑到渗滤液水质变幅较大的特点,在厌氧段后加入气浮工艺,提高处理能力以应付进水水质偏高的情况。目前深圳下坪垃圾填埋场设计采用厌氧气浮好氧工艺处理渗滤液。

2.3.4 UASB氧化沟稳定塘

福州市于1995年建成全国最大的现代化的城市垃圾综合处理场--福州市红庙岭垃圾卫生填埋场。处理垃圾渗滤液水量为1000m3/d;垃圾渗滤液水质(入口)为CODCr为 8000mg/L、BOD5为5500mg/L;处理水质要求(出口)为CODCr去除率95%、 BOD5去除率97%。

设计采用上向流式厌氧污泥床奥贝尔氧化沟稳定塘工艺流程。垃圾填埋场的垃圾渗滤液集中到贮存库,依靠库址的较高地形,自流到集水池、格栅,经巴式计量槽计量后,靠势能流至配水池,再依靠静水头压至上向流式厌氧污泥床。经厌氧处理后的污水流至一沉池进行固液分离,上清液自流到奥贝尔氧化沟,沉淀污泥靠重力排至污泥池,污泥定期用罐车送到垃圾填埋场或堆肥利用。

污水在奥贝尔氧化沟进行好氧生化处理,奥贝尔氧化沟采用三沟式A/O工艺,具有先进的污水脱氮处理效果。该工艺突出的优点是在第一沟中既能对氨氮进行硝化,又能以BOD为碳源对硝酸盐进行反硝化,总氮去除率可达80%,由于利用了污水中BOD作碳源,导致污水中的 BOD5被去除,减少了污水中的需氧量。为了提高氧化沟脱氮效果,把第三沟的出水用潜水泵再抽至第一沟进行内回流,在第一沟中进行反硝化。

经氧化沟处理的污水流入二沉池进行固液分离,澄清水自流至稳定塘进行生物处理。二沉池的剩余污泥靠重力排至浓缩池。浓缩池中的上清液回流至氧化沟处理,其浓缩后的污泥用潜水泵抽至罐车输送到垃圾填埋场填埋,或进行堆肥处理。

2.4 土地处理

土地处理法亦即土壤灌溉法,是人类最早采用的污水处理法,但是土地处理系统的应用多见于城市污水处理。对于渗滤液的处理方法,将渗滤液收集起来,通过喷灌使之回流到填埋场。循环填埋场的渗滤液由于增加垃圾湿度,从而提高了生物活性,加速甲烷生产和废物分解。其次由于喷灌中的蒸发作用,使渗滤液体积减小,有利于废水处理系统的运转,且可节约能源费用。北英格兰的Seamer Carr垃圾填埋场,有一部分采用渗滤液再循环,20个月后再循环区渗滤液的COD值降低较多,金属浓度有较大幅度下降,而NH3 -N、Cl-浓度变化较小。说明金属浓度的下降不仅是由于稀释作用引起的,也可能是垃圾中无机成分对其吸附造成的。

由于再循环渗滤液具有诸多优点,所以设计填埋场时顶部不要全部封闭,而应设立规则性排列的沟道以免对周围水源的污染。低浓度渗滤液不能直接排放,因NH3-N、Cl-浓度仍较高,温度较低季节,蒸发少,生物活性弱,再循环渗滤液的效果有待进一步研究。

2.5 硝化和反硝化

"老"的填埋场往往处于甲烷发酵阶段,其渗滤液中氨氮含量较高,通常为100~1000mg /L。去除氨氮主要有两种方法:一是硝化和反硝化;另一种是提高pH值至9以上,再用空气吹脱。Robinson和Maris将年龄为20年的填埋场渗滤液在温度为10℃,泥龄为60d的条件下曝气(实际上此与氧化塘运行条件相仿),可完全硝化。其它用生物转盘等好氧方法也都取得了成功,因此普遍认为渗滤液的硝化是不成问题的。

2.6 英Rochem's反渗透处理厂

在英国垃圾渗滤液处理厂使用Rochem's专利圆盘管反渗透系统对初级渗滤液进行处理。这种处理技术是由南亨伯赛德郡温特顿填埋场所设计和生产的Rochem's离析膜系统。

这个系统的心脏是Rochem's专利圆盘管。这个圆柱体的组成包括板片、八角型钢和一个圆管内的耐磨膜垫层,它能处理那些快速堵塞普通的反渗透膜系统的渗滤液。在膜的压力下渗滤液进入Rochem's处理系统进行曝气和pH校正。当含有污染物的渗滤液流经圆柱体内膜表面时,渗滤液中的污染物质由于反渗透作用而分离出来并经膜排出。整个系统清理的操作是自动化的,当需要对该系统进行化学清洗时,控制指示器就会显示出信息来,同时自动清洗系统就会用已经程式化的化学制剂对该系统进行内部清洗,使其恢复到最初的功能。因为渗滤液在封闭情况下,在膜的表面形成湍流,减少氧化,产生恶臭,所以到一定时间要进行内部清洗,但这种清洗的间隔时间较长,Rochem's 离析膜系统能够去除重金属、固体悬浮物、氨氮和有害的难降解的有机物,处理后的水满足严格的排放标准。

现在德国的Ihlenbery填埋场安装投入使用的Rochem's处理系统,其处理能力的污水量为50m3/h,水的回收率为90%。

3 处理工艺的分析比较

与好氧方法相比,厌氧生物处理具有以下优点。

(1)好氧方法需消耗能量(空气压缩机、转刷等),而厌氧处理却可产生能量(产生甲烷气) 。COD浓度越高,好氧方法耗能越多;厌氧方法产能越多,两者的差异就越明显。

(2)厌氧处理时有机物转化成污泥的比例(0.1kgMLSS/kgCODCr)远小于好氧处理的比例(0.5kgMLSS/kgCODCr),因此污泥处理和处置的费用大为降低。

(3)厌氧处理时污泥的生长量小,对无机营养元素的要求远低于好氧处理,因此适于处理磷含量比较低的垃圾渗滤液。

(4)根据报道,许多在好氧条件下难于处理的卤素有机物在厌氧时可以被生物降解。

(5)厌氧处理的有机负荷高,占地面积比较小。

但是,厌氧处理出水中的COD浓度和氨氮浓度仍比较高,溶解氧很低,不宜直接排放到河流或湖泊中,一般需要进行后续的好氧处理。另外,世界上大多数垃圾渗滤液多是偏酸性的 (pH值一般在5.5~7.0)。pH在7以下,产甲烷菌将会受到抑制甚至死亡,不利于厌氧处理,而好氧处理对pH的要求就没有这么严格。再者,厌氧处理的最适温度是35℃,低于这个温度时,处理效率迅速降低。比较而言,好氧处理对温度要求不高,在冬季时即使不控制水温,仍能达到较好的出水水质。

鉴于以上原因,目前对COD浓度在50 000mg/L以上的高浓度垃圾渗滤液建议采用厌氧方法 (后接好氧处理)进行处理,对COD浓度在5 000mg/L以下的垃圾渗滤液建议采用好氧生物处理法。对于COD在5 000~50 000mg/L之间的垃圾渗滤液,好氧或厌氧方法均可,选择工艺时主要考虑其它因素。

4 结论和建议

通过对上述几种处理方法及处理工艺的分析比较可得以下结论,并提出水质、水量等方面的建议和意见:

(1)垃圾渗滤液具有成分复杂,水质水量变化巨大,有机物和氨氮浓度高,微生物营养元素比例失调等特点,因此在选择垃圾渗滤液生物处理工艺时,必须详细测定垃圾渗滤液的各种成分,分析其特点,以便采取相应的对策。还应通过小试和中试,取得可靠优化的工艺参数,以获得理想的处理效果。

(2)多种方法应用于渗滤液的处理是可行的。在有条件的地方修筑生物塘,同时采用水生植物系统处理渗滤液,不仅投资省,而且运行费用低。土地处理也受到人们的重视,但在渗滤液的处理中选用尚少。生物膜法和活性污泥法有成熟的运行管理经验,近年来结合采用厌氧好氧工艺生物处理渗滤液较多。但修建专用的渗滤液处理厂投资大,运行管理费用高,而且随着填埋场的关闭,最终使水处理设施报废,故应慎重选用。

(3)我国目前真正能满足卫生填埋标准的填埋场并不多,许多填埋场因为投资所限无法按设计要求建造能达到环境保护要求的渗滤液收集系统。因此,宜发展投资省,效果好的渗滤液处理技术。垃圾填埋场渗滤液向填埋场回灌,利用土地吸附,土壤生物降解及垃圾填埋层的厌氧滤床作用使渗滤液降解,具有投资省、效果好,无需专门处理设施投资等特点。而且渗滤液的回灌可使垃圾保持湿润,加速填埋场的稳定。回灌法目前采用较少,可作深入研究,以明确回灌法的使用条件,处理效率及回灌处理的工程设计参数。

篇(4)

【关键词】 两级A/O生物处理技术 垃圾渗滤液 应用

1 垃圾渗滤液的来源和特点

1.1 垃圾渗滤液的来源

垃圾渗滤液是城市生活垃圾在填埋场堆放过程中,由于受到雨水的淋洗以及地下水和地表水的长期浸泡将会产生垃圾渗滤液,这是垃圾自身产生的水分经过枯枝落叶层和土壤将会形成的高浓度的有机废水[1]。垃圾渗滤液的主要来源包括以下几种方式:

(1)降雨的渗入:其中包括雨雪,这是产生渗滤液的主要来源,这种方式具有时间短、浓度高和可重复性,这也是工程设计中需要重点考虑的依据;

(2)外部地表水流入:包括地表径流和地面灌溉两种方式;

(3)地下潜水的反渗:在垃圾填埋场渗滤液水位比场外的水位要低的情况下,如果没有采取渗流控制措施,地下水将会渗透垃圾填埋场当中。垃圾渗滤液的产生量也会受到地下水的影响;

(4)垃圾自身的水分:这包括垃圾本身携带的水分和从空气中吸附的水分;

(5)垃圾降解过程的水分:垃圾中的有机组分在垃圾填埋场内分解时将会产生水分,其生产的量和垃圾的成分、pH值、温度和压力存在很大的关系[2]。

1.2 垃圾填埋场渗滤液的水质特点

垃圾渗滤液中含有大量的有机物、氨氮、寄生虫和有毒有害的重金属成分,其中的成分非常复杂,水质和水量的变化也很大,如表1所示。

目前,我国已经建立成千上万个大型的和小型的垃圾填埋场,并且还在不断的建设中。这样就会产生大量的垃圾卫生填埋场渗滤液,如果不能够得到适当的处理,这肯定会对地下水造成了严重的影响,这样将会威胁到人们的公共卫生[3]。垃圾渗滤液污染控制的重要内容就是需要分析渗滤液的特点,从而合理地选择垃圾渗滤液处理工艺。

2 垃圾渗滤液的处理研究现状

目前,国内外处理垃圾渗滤液的方法可分为场外处理和场内处理。在国外,垃圾渗滤液的产生量较小时,可以考虑与城市污水联合处理,即场外处理。有研究表明,城市污水总量比垃圾渗滤液的量大于200,渗滤液增加的负荷小于10%时,场外处理方法可行,且效果较好。若控制不好比例,则会对城市生活污水处理厂造成冲击负荷,渗滤液中的有毒有害物质也会对污水的生物处理产生副作用,严重时可破坏整个污水处理厂的正常运行[4]。而场内处理,通常指在垃圾填埋场内的循环喷洒处理,又或者靠近垃圾场单独建立渗滤液污水处理厂。目前,国内大部分城市都选择独立的场内处理工艺,寻求高效的处理方法也在不断的研究尝试当中。最常采用的有生物处理法、物化处理法和土地处理等方法。

3 两级A / O生物处理技术

A/O是Anoxic/Oxic的缩写,两级A/O是硝化反硝化的处理工艺,分别用A1、O1、A2、O2来表示。在传统的二级生物处理的基础上,废水的生物脱氮通过硝化细菌及反硝化细菌的作用,将氨氮转化为亚硝态氮和硝态氮并最终转化为氮气,从而达到脱氮的目的。除此之外,该处理工艺不需要额外添加碳源,因为废水中的有机污染物可作为反硝化反应的碳源,可见反硝化反应是最为经济的节能型降解过程。

3.1 工艺的可行性分析

渗滤液中有高浓度的有机污染物,它们中的大多数都是很难完全生物降解的腐殖类、灰黄霉酸物质,而垃圾渗滤液处理的核心内容,是力求出水指标中的CODcr、BOD5、NH3-N和TN去除率满足出水水质标准。在诸多处理方法当中,生物处理方法的成本是最低的,由于其消耗的化学物质是最低的,同时还能够除去大多数的NH3-N。为了能取得良好且稳定的处理效果,以生物处理方法为主,辅以适当的后续处理方法,成为近年来国内外常用的综合处理工艺。

3.2 处理工艺流程

垃圾渗滤液由污水泵提升到调节池,接着泵入进水过滤器,在这里大颗粒杂质得以去除,下一步进入两级A/O生物处理系统,进行两级硝化和反硝化作用,在厌氧段厌氧菌将污水中的纤维、淀粉、碳水化合物等可溶性有机物和悬浮污染物水解为有机酸,使大分子有机物分解为小分子有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性。为了实现泥水分离,提高微生物的浓度,接下来通过外置式的膜系统,进一步提高反应的去除率。同时剩余污泥排入污泥储池,最终制成泥饼填埋。渗滤液污水后续处理流程为纳滤和反渗透。当纳滤出水达到排放标准以后,合格的出水将会排放到产水池;如果水质不合格时,超滤膜系统将会自动控制进入到反渗透系统,使有机污染物和氨氮去除达标,出水将会排到池中。拟以日处理100吨原料水为处理对象,其过程如图1所示。

4 结语

在进行垃圾渗滤液处理时,整个过程的实施效率成为关键所在,为了使其出水能够达到相关排放标准,对传统A/O工艺进行优化,采用两级A/O生物处理技术及后续膜处理技术,其在垃圾渗滤液处理的过程中具有很好的应用效果,能耗也很低,其还具有运行稳定和管理简单的优势。

参考文献:

[1]代晋国,宋乾武,张h,秦琦.新标准下我国垃圾渗滤液处理技术的发展方向[J].环境工程技术学报,2011,03:270-274.

[2]Bacterial community composition and abundance in leachate of semi-aerobic and anaerobic landfills[J].Journal of Environmental Sciences,2011,11:1770-1777.

篇(5)

【关键词】 卫生填埋 垃圾渗滤液 处理处置技术

前言

目前,我国大部分城市以卫生填埋作为垃圾处理的基本方式,在今后一段时期,卫生填埋处理仍将是国内城市生活垃圾处理的基本方式。卫生填埋作为目前最常见的垃圾处理方法,也存在着诸多污染问题,特别是填埋过程中产生的大量垃圾渗滤液,如不妥善处理,会对周围的水体和土壤造成严重污染。

1 垃圾渗滤液及其污染特性

垃圾渗滤液是垃圾在堆放和填埋过程中由于发酵、雨水冲刷和地表水、地下水浸泡而渗滤出来的污水。来源主要有四个方面[1]:垃圾自身含水、垃圾生化反应产生的水、地下潜水的反渗和大气降水,其中大气降水具有集中性、短时性和反复性,占渗滤液总量的大部分。

渗滤液是一种成分复杂的高浓度有机废水,其性质取决于垃圾成分、垃圾的粒径、压实程度、现场的气候、水文条件和填埋时间等因素,一般来说有以下特点:

1.1 水质复杂,危害性大。有研究表明[2],运用GC-MS联用技术对垃圾渗滤液中有机污染物成分进行分析,共检测出垃圾渗滤液中主要有机污染物63种,可信度在60%以上的有34种。其中,烷烯烃6种,羧酸类19种,酯类5种,醇、酚类10种,醛、酮类10种,酰胺类7种,芳烃类1种,其他5种。其中已被确认为致癌物1种,促癌物、辅致癌物4种,致突变物1种,被列入我国环境优先污染物“黑名单”的有6种。

1.2 CODcr和BOD5浓度高。渗滤液中CODcr和BOD5最高分别可达90000 mg/L、38000mg/L甚至更高[3]

1.3 氨氮含量高,并且随填埋时间的延长而升高,最高可达1700mg/L。渗滤液中的氮多以氨氮形式存在,约占TNK40%-50%。

1.4 水质变化大。根据填埋场的年龄,垃圾渗滤液分为两类:一类是填埋时间在5年以下的年轻渗滤液,其特点是CODcr、BOD5浓度高,可生化性强;另一类是填埋时间在5年以上的年老渗滤液,由于新鲜垃圾逐渐变为陈腐垃圾,其pH值接近中性,CODcr和BOD5浓度有所降低,BOD5/CODcr比值减小,氨氮浓度增加。

1.5 金属含量较高。垃圾渗滤液中含有十多种金属离子,其中铁和锌在酸性发酵阶段较高,铁的浓度可达2000mg/L左右;锌的浓度可达130mg/L左右,铅的浓度可达12.3mg/L,钙的浓度甚至达到4300mg/L[4]

1.6 渗滤液中的微生物营养元素比例失调,主要是C、N、P的比例失调。一般的垃圾渗滤液中的BOD5:P大都大于300。

2 垃圾渗滤液对环境的影响

通过对某填埋场的渗滤液处理情况进行调查发现,填埋场运行至今,大约处理了约80万吨的渗滤液,同时约有32万吨的渗滤液从污水库中溢出直接进入纳污水域,并且目前还有9.6万吨渗滤液存储于污水库内。经过化学分析,在污水库出口处的渗滤液CODcr平均值为2800mg/l,BOD5平均值为1750mg/l,氨氮708mg/l,总氮平均浓度达700mg/l,平均色度达251度,金属含量不高,以色质联机对有机物定性分析,发现渗滤液中有机物最高含碳数可达12,主要为环烷烃、酯类、羧酸类、苯酚和硫磺等。经过处理后排入纳污水域的水质CODcr值为283mg/l,仍超标1.83倍,BOD5值为108mg/l,超标2.6倍,NH3-N值为190mg/l,超标11.67倍,总氮679mg/l,色度133度,并且含有大量有机物,说明了该场污水处理过程还未能满足污水达标排放,受此影响,该填埋场的一级纳污水体的水质已经明显恶化。这一情况已经引起当地部门的高度重视。

3 渗滤液的处理工艺改进

针对该垃圾填埋场存在的问题,对该场污水处理设施提出以下改进建议:(l)改革处理工艺,增加“FEO”前处理工段,(2)完善厌氧反应器的配套设施,(3)对奥贝尔氧化沟进行改造,(4)加强对氧化塘的运行管理。希望通过此次改进能是处理后的废水达标排放,有效控制渗滤液对周边环境造成的污染。

4发展趋势

垃圾填埋场渗滤液的控制和处理是保证垃圾的长期、安全处置的关键。因此,对渗滤液处理的研究至关重要。通过分析和总结目前渗滤液处理现状,今后渗滤液处理研究应把重点放在以下几个方面。

首先,现有的渗滤液处理方法多种多样,各具特色,因此,运用时不能生搬硬套,而要因地制宜。不同地域的地理位置、地理结构、气象条件以及垃圾成分等因素的差别都会导致渗滤液质和量的差异。如针对北方降雨量少而蒸发量大的特点,渗滤液回灌法就比较经济有效;而南方温暖湿润的气候就有利于应用土壤-植物法处理渗滤液的开发和应用。

其次,垃圾填埋的稳定化研究也是必要的。促进填埋垃圾的稳定化,不仅可以缩短填埋垃圾的稳定化时间,提高产气速率,而且可以缩短垃圾渗滤液产生的周期,在一定程度和范围内改善渗滤液的处理难度。

第三,渗滤液的主要两大特点和难点就是其氨氮浓度高以及可生化性差。对于其产生机理,目前只是基于一定的定性认识,还缺乏对于其动力学特征等深层次机理的研究。而这些问题的研究,将有助于对渗滤液处理方法的研究和开发,找出更为经济有效的处理渗滤液的新方法。

参考文献

[1]喻晓,张甲耀,刘楚良.垃圾渗滤液污染特性及其处理技术研究和应用趋势[J].环境科学与技术,2002,25(5):43-45

[2] 刘军等.运用GC-MS联用技术对垃圾渗滤液中有机污染物成分的分析.环境污染治理技术与设备,2003,8(4):

[3]杨军等.垃圾填埋场渗滤液处理方法及其分析.四川环境,2005,24(1):

[4]陈玉成等.城市生活垃圾渗沥水的污染及其全过程控制.环境科学动态,1995,(4):

[5]沈耀良,王宝贞.城市垃圾填埋场渗滤液处理方案及其分析[J].给水排水,1999,25(8):18-22

篇(6)

关键词:垃圾渗滤液 两级DTRO 工艺特征 垃圾填埋场

中图分类号: X703 文献标识码:A 文章编号:1674-098X(2014)03(b)-0049-01

随着城镇生活垃圾的增多,垃圾渗滤液处理设备逐步向着城镇方向深入,污染物的排放标准趋于严格。本文结合工程实例,着重探讨两级DTRO在规模较小的垃圾渗滤液项目中的处理方法及应用优势。

1 小规模垃圾渗滤液的水质特点

(1)色度。垃圾渗滤液的色度较大,通常在200-4000倍间及其以上,并具有高毒性,通常呈暗褐色、茶色或深褐色,味具浓烈的腐化臭味。

(2)渗滤液前、后期水质变化大。渗滤液的水质变化幅度很大,它不仅体现在同一年内各个季节水质差别很大,浓度变幅可高达几倍,并且随着填埋年限的增加,水质特征也在不断发生变化。

(3)重金属。因垃圾分类收集及填埋场的分捡不力,导致众多重金属废物残留于此,增加了渗滤液内部的重金属量。

(4)生物降解特性。垃圾填埋场初始阶段BOD/COD的值维持在0.4-0.5之间,此时的生物降解性能较佳;中、后期阶段,因BOD及COD浓度的降速各异,BOD/COD的值逐步下降到0.05-0.2。并存在未被生物降解的富里酸及腐殖酸,使生物降解特性每况愈下。

(5)氨氮浓度。由于大部分填埋场为厌氧填埋,堆体内的厌氧环境造成渗滤中氨氮浓度极高,并且随着填埋年限的增加而不断升高,有时可高达1000~3000mg/l。当采用生物处理系统时,需采用很长的停留时间,以避免氨氮或其氧化衍生物对微生物的毒害作用。

(6)电导率。渗滤液的电导率持续偏高,一般在30000~60000μs/cm间。

2 工艺设计案例

(1)预处理系统

渗滤液的pH值随环境、场龄等各类条件的变化而改变,其成分异常复杂,包含各类硅、钙、镁、钡等难溶解盐,这些难溶的无机盐透过反渗系统之后,便被高倍浓缩,当其自身浓度高于该状况下的溶解度时,就会在膜外表产生结垢。而调节原水的pH值可抵抗碳酸盐无机盐的结垢,因此,在透过反渗系统之前,要调节原水的pH值。调节池原水通过提升泵进入反渗系统的原水罐内,在原水罐内调节pH值,并掺入酸性物,在原水泵压力增大的状态下,原水罐的出水进入到石英砂过滤器中,其过滤精度为50 μm。砂滤出水之后进入到芯式过滤器中,针对渗滤液级系统而言,因原水内钙、钡及镁等结垢离子及硅酸盐量较高,通过DT膜高倍浓缩之后,这一系列硅酸盐极易在浓缩液一端呈现过饱和态,因此,依照水质状况,在芯式过滤器前掺入固定量的阻垢剂,避免硅酸盐结垢,掺入量需根据原水的水质状况加以明确。

(2)两级DTRO系统

①一级反渗透。经由芯式过滤器的渗滤液直接入至高压柱塞泵内,DT膜系统的每台柱塞泵后端均设有一减震设备,主要用途在于抵消高压泵所产生的压力脉冲,并为反渗透膜柱提供稳压力。经高压泵后端的出水进至膜柱或在线泵,因高压泵的有限流量无法为膜柱提供水源,因此,经在线泵把膜柱出口的一批浓缩液回流到在线泵的入口处,借以确保膜外表拥有充分的流动速度及流量,有效地杜绝膜污染。

②二级反渗透。二级DT膜系统实质上是对一级DT膜系统的继续处理,通过一级DT膜系统处理之后的渗滤液不必掺入任何药剂即可被送至二级DT膜系统的高压泵内。二级高压泵设有频率变化控制设备,其输出的具体流量及运行频率可依照一级渗滤液流量传感仪器的反馈值自行配合完成,二级高压泵的入口管理处配备浓缩液自补偿装备,避免一级系统所生成的水量影响到二级系统的常态运行。二级浓缩液一侧配有一台伺服电机调控阀门,其作用是严控膜组内压及回收率,当透过液进至脱气塔时,以吹脱的方式可去除CO2等诸气体,使PH的值稳定在6~9间,实现达标排放。

③系统的清洗及冲洗。膜系统的清洗包含化学清洗及一般冲洗,目的在于维持膜片的高效,有效杜绝污染物质在膜片外表残余。化学清洗一般由电子计算机系统自行控制,能在计算机界面上设置清洗的具体参数,清洗时长通常控制在1~2 h,清洗中的残留液体要排放到调节池内。清洗的周期通常取决于进水污染物质的实际浓度,当进入条件恒定不变时,若膜系统的透过液量下降10%~15%,则要开展清洗,清洗的时长根据清洗方式的不同而各异。在系统常态运行的过程中,如若停机,可选用冲洗后再停机的模式;如若发生系统出现故障而停机,则需执行具体的冲洗流程。

3 工艺特征

(1)组件养护较容易,运行相对灵活 DTRO组件通常采用标准化设计工艺,方便拆卸养护,组件一经开启即可查看膜片及其余配件,维修较简易,当零配件数目不足时,组件可安装少量的导流盘及膜片而对其使用不构成妨碍,这也是其余样式的膜组件所不可比拟的优势。DTRO系统的开启速度快,运行较灵敏,可持续或间歇性地运行,也可尽快完成系统串并联方式的调整,并同另外的工艺搭配使用,以达到水质水量的规范要求。

(2)防污性能高。DTRO系统可对SDI指数达15~20倍的进水开展有序处理,且膜的防污抗结垢的性能依然维持在较佳的状态。

(3)系统出水稳定,受外界因素制约较小。DTRO系统不受渗滤液的碳氨比及可生化性等诸要素的制约,可更好地适应各填埋时期的渗滤液水质,对于处理北方严寒地区及老垃圾场的渗滤液具有显著的优势,系统出水的水质较平稳。

(4)占地面积较小。DTRO系统属一类集成系统,其结构相对紧凑,附属设施均为型号较小的构筑物体,占地面积较小。

4 结语

DTRO系统开启时长较短暂,可满足我国北方严寒区域的需求及特征。实践表明,规模较小的垃圾渗滤液处理采用该工艺模式,均能合乎国家排放要求,并为工程创造可观的经济效益和市场发展前景。

参考文献

[1] 李亚选,韩谷,李政,等.UASB―MBR―DTRO工艺在垃圾渗滤液处理中的应用[J].给水排水,2009(10).

篇(7)

关键词:城市垃圾渗滤液;处理

Abstract: City of landfill leach ate is a complex composition of high concentration organic wastewater, it has become the most serious groundwater pollution sources, if to discharge untreated without treatment; it can cause serious environmental pollution. This paper analyzed the leachate treatment process to introduce a variety of leachate treatment methods, and treatment methods were comparedKey words: urban landfill leachate; processing

中图分类号:R124.3 文献标识码: A 文章编号:2095-2104(2012)03-00

1概 述

近年来,随着我国城市化进程迅速发展,城市垃圾填埋场数量剧增,产生的生活垃圾迅速增长.垃圾渗滤液的高浓度氨氮废水,排放量大,成分复杂,毒性强,对环境危害大,处理难度又很大,使得氨氮废水的污染及其治理一直受到全世界环保领域的高度重视.因此城市垃圾填埋场渗滤液的处理一直是填埋场设计、运行和管理中非常棘手的问题。渗滤液是液体在填埋场重力流动的产物,主要来源于降水和垃圾本身的内含水。在垃圾填埋过程中产生的污染性极强的垃圾渗滤液极易下渗污染地下水,若处理不当会对生态环境和人体健康带来巨大危害,因此垃圾渗滤液的有效处理十分迫切已成为目前国内外环境工程领域的难点之一。以保护环境为目的,对渗滤液进行处理是必不可少的。

2渗滤液处理工艺

现有的垃圾渗滤液处理技术主要分为生物法、物化法和土地法三大类。生物处理法中厌氧处理有上流式厌氧污泥床UASB、厌氧折流板反应器ABR、厌氧塘、EGSB、IC 等;好氧处理有好氧曝气塘、活性污泥法、生物转盘和滴滤池等,无氧/好氧(A/O)混合处理。物化法主要有化学混凝沉淀、活性炭吸附、化学氧化、催化氧化、膜处理、膜渗析、气提及湿式氧化法等多种方法等。土地处理如人工湿地等主要通过土壤颗粒的过滤,离子交换吸附和沉淀等.

3渗滤液处理方法介绍

目前的渗滤液的处理方法大致可分为回灌法、物化法、生物法、土地法等.

3.1 滤液回灌法 将垃圾填埋场产生的未经处理的渗滤液或者处理不充分的滤液部分或全部喷灌至填埋场的表面,利用土壤的物化吸附作用及土壤层和填埋层中微生物的代谢净化作用,使渗滤液得到净化。但是回灌存在许多问题,滤液进水过高或者微生物过量繁殖容易造成土壤堵塞,垃圾填埋层中因厌氧消化而出现的有机酸积累水质酸化严重,同时回灌技术对氨氮的去除效果不够理想。一些地区雨季降水量大,容易随水地表径流产生二次污染,回灌时表面喷灌会散发臭味对环境造成不良影响。

3.2 物化法 物化法包括混凝、吹脱、活性炭吸附、蒸发法、化学沉淀、电解催化氧化、离子交换、膜分离等多种方法。物化法相对稳定,一般不受垃圾渗滤液水质、水量变化的影响。物化法出水水质稳定,尤其对可生化性较低的垃圾渗滤液有较好的处理效果。但由于物化法处理费用高,通常只用于渗滤液的预处理或深度处理。

3.3 生物法 在众多方法中生物法由于其投资运营费用低为各污水厂首选。生物法一般可分为好氧生物处理和厌氧生物处理两大类,好氧处理工艺有活性污泥法、曝气氧化塘、稳定塘、生物转盘、滴滤池等。厌氧处理工艺有厌氧生物滤池、厌氧接触法、上流式厌氧污泥床、厌氧混合床等。生物法是垃圾渗滤液处理中最常用的一类方法,因其运行费用低、处理效率高、不会出现化学污泥等特点而被世界各国广泛采用。当渗滤液的BOD5/CODCr 值大于0.3 时,表明渗滤液的可生化性较好,可采用生化法处理。生化处理具有处理效果好、成本低等优点,它是目前应用最广泛的处理方法。 3.3. 1 好氧处理

用活性污泥法、氧化沟、好氧稳定塘,生物转盘等好氧法处理渗滤液都有成功的经验,好氧处理颗幼小的降低BOD5、COD和氨氮,还可以去除另一些污染物质如铁、锰等金属。在好氧法中又以延时曝气法用的最多,还有曝气稳定塘和生物转盘(主要用以去除氮)。下面将对目前主要工艺予以介绍

1. 传统活性污泥法 渗滤液可用生物法、化学絮凝、炭吸附、膜过滤、脂吸附、气提等方法单独或联合处理,其中活性污泥因其费用低、效率高而得到最广泛的应用。美国和德国的几个活性污泥法污水处理厂的运行结果表明,通过提高污泥浓度来降低污泥有机负荷,活性污泥法可以获得令人满意的垃圾渗滤液处理效果。

2.曝气稳定塘与活性污泥法相比,曝气稳定塘体积大,有机负荷低,尽管降解进度较慢,但由于其工程简单,在土地不贵的地区,是最省钱的垃圾渗滤液好氧生物处理方法.美国、加拿大、英国、澳大利亚和德国的小试、中试及生产规模的研究都表明,采用曝气稳定塘能获得较好的垃圾渗滤液处理效果。

3. 生物膜法 与活性污泥法相比,生物膜法具有抗水量、水质冲击负荷的优点,而且生物膜上能生长世代时间较长的微生物,如消化菌之类。加拿大British Columbia 大学的C.Peddie 和J.Atwater用直径0.9m的生物转盘处理CODCr

3.3.2厌氧生物处理

厌氧生物处理的有目的运用已有近百年的历史.但直到近20年来,随着微生物学、生物化学等学科发展和工程实践的积累,不断开发出新的厌氧处理工艺,克服了传统工艺的水力停留时间长,有机负荷低等特点,使它在理论和实践上有了很大进步,在处理高浓度(BOD5≥2000mg/L)有机废水方面取得了良好效果。

厌氧生物处理有许多优点,最主要的是能耗少,操作简单,因此投资及运行费用低廉,而且由于产生的剩余污泥量少,所需的营养物质也少,如其BOD5/P只需为4000:1,虽然渗滤液中P的含量通常少于1mg/L,但仍能满足微生物对P的要求,用普通的厌氧硝化,35℃、负荷为1kgCOD/(m3.d),停留时间10d,渗滤液中COD去除率可达90%。

近年来,开发的厌氧生物处理方法有:厌氧生物滤池、厌氧接触池、上流式厌氧污泥床反应器及分段厌氧硝化等。

3.3.3 厌氧与好氧的结合方式

虽然实践已经证明厌氧生物法对高浓度有机废水处理的有效性,但单独采用厌氧法处理渗滤液也很少见.对高浓度的垃圾渗滤液采用厌氧-氧处理工艺即经济合理,处理效率又高.COD和BOD的去除率分别达86.8%和97.2%。

3.3.4 处理工艺的分析比较

与好氧方法相比,厌氧生物处理具有以下优点:⑴好氧方法需消耗能量(空气压缩机、转刷等),而厌氧处理却可产生能量(产生甲烷气)。COD浓度越高,好氧方法耗能越多;厌氧方法产能越多,两者的差异就越明显。⑵厌氧处理时有机物转化成污泥的比例(0.1kgMISS/kgCODCr)远小于好氧处理的比例(0.5kgMISS/kgCODCr),因此污泥处理和处置的费用大为降低。⑶厌氧处理时污泥的生长量小,对无机营养元素的要求远低于好氧处理,因此适于处理磷含量比较低的垃圾渗滤液。⑷根据报道,许多在好氧条件下难于处理的卤素有机物在厌氧时可以被生物降解。⑸厌氧处理的有机负荷高,占地面积比较小。

鉴于以上原因,目前对COD浓度在50000mg/L以上的高浓度垃圾渗滤液建议采用厌氧方法(后接好氧处理)进行处理,对COD浓度在5000mg/L以下的垃圾渗滤液建议次啊用好氧生物处理法。对于COD在5000-50000mg/L之间的垃圾渗滤液,好氧或厌氧方法均可,选择工艺时主要考虑其它因素。

3.4土地法

土地处理法包括慢速渗滤法、快速渗滤法、表面漫流、人工湿地和回灌等,其中人工湿地和回灌应用得较多。

4 结论和建议

通过对上述几种处理方法及处理工艺的分析比较可得以下结论,并提出水质、水量等方面的建议和意见:

⑴垃圾渗滤液具有成分复杂,水质水量变化巨大,有机物和氨氮浓度高,微生物营养元素比例失调等特点,因此在选择垃圾渗滤液生物处理工艺时,必须详细测定垃圾渗滤液的各种成分,分析其特点,以便采取相应的对策。还应通过小试和中试,取得可靠优化的工艺参数,以获得理想的处理效果。

⑵多种方法应用于渗滤液的处理是可行的。在有条件的地方修筑生物塘,同时采用水生植物系统处理渗滤液,不仅投资省,而且运行费用低。

⑶我国目前真正能满足卫生填埋标准的填埋场并不多,许多填埋场因为投资所限无法按设计要求建造能达到环境保护要求的渗滤液收集系统。因此,宜发展投资省、效果好的渗滤液处理技术。垃圾填埋场渗滤液向填埋场回灌,利用土地吸附,土壤生物降解及垃圾填埋层的厌氧滤床作用使渗滤液降解,具有投资省、效果好,无需专门处理设施投资等特点。