期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 重金属污染的特征

重金属污染的特征精品(七篇)

时间:2023-12-18 11:35:05

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇重金属污染的特征范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

重金属污染的特征

篇(1)

(台州学院 生命科学学院,浙江 台州 318000)

摘 要:本文以浙江省台州市路桥区峰江地区电子废物拆解回收场地为对象,主要考察了电子废物拆解地土壤中重金属污染的分布特征.结果表明,在考察的5种(Cu、Zn、Pb、Cr、Cd)重金属中,除了Cr和Zn外均在一定程度上超过《国家土壤环境质量标准》二类土壤环境质量标准,污染最严重的是Cu、Cd,其次为Pb.以国家土壤环境质量二级标准计算该典型区Cu、Zn、Pb、Cr、Cd的综合污染指数为4.3,已达严重污染程度.表明该电子废物回收迹地土壤存在严重的重金属复合污染问题,已不适合农业耕作.

关键词 :电子废物;重金属污染;土壤;分布特征

中图分类号:X705 文献标识码:A 文章编号:1673-260X(2015)01-0140-03

1 前言

电子废物,又称电子垃圾,是指各类报废的电子产品,包括各种废旧电脑、通信设备、电视机、电冰箱以及被淘汰的精密电子仪器仪表等[1,2].20世纪以来,随着电子信息等高科技产业迅猛发展,电子技术的更新不断加快,全球越来越多的废旧电子和电器设备被淘汰.在许多发达国家,电子废物已成为增长最快的垃圾流[2,7,9,10].世界上约80%的电子废物被转运到亚洲,其中有90%以“回收”等名义输入到中国[11].

电子废物中含有大量的铜、镍、铅、镉等重金属,电子废物的拆解回收可以带来廉价的原材料和丰厚的利润[3,4].但是电子废物不合适的处理方式,同时也导致有害重金属进入环境,对人类的身体健康和生存环境造成严重的危害[5-8].浙江台州地区是中国最大的电子废物拆解回收处理中心之一.当地居民采用电线电缆的露天焚烧、电路板的烤制熔化酸洗等原始粗放的方式进行电子废物的拆解,严重污染了当地生态环境[4,5].

在电子废物回收活动对环境和人类造成的巨大环境危害引起国际关注的情况下,国内环保部门严令禁止电子垃圾的公开焚烧和随意倾倒,但在暴利的驱使下,收效甚微[5,6,12].虽然路桥地区环保部门对当地电子废物拆解回收进行了集中的整治与规划,将所有电子废物拆解回收作坊集中在同一条街道进行,但是由于拆解方式相对比较落后,拆解活动所带来的环境污染问题还在继续.因此,本研究选择浙江省台州路桥地区典型电子废物不当处置地区峰江开展研究工作,通过对该地区电子废物回收迹地土壤中重金属的含量水平、分布特征的研究,对该地区电子废物回收活动带来的重金属污染进行了初步的评价.

1 材料与方法

1.1 土壤样采集

选取峰江地区某一拆解时间为20多年的电子废物拆解地.其拆卸的电子废物主要成分为家用电器的外壳、电板以及废旧的电线等.采样时,以电子废物拆解地为中心,在离电子废物拆解点边缘0m、100m、200m、300m处分别采集3个平行样.梅花状采样,分别取约1kg土壤(取距离地表2cm以下的混合土样),将所取土壤均匀混合,土壤样品经自然风干后,用玛瑙棒研压,通过200目尼龙筛,混匀后备用.

1.2 样品的处理

称取备用的土壤样品0.5000±0.0005g,置于大玻璃管中,采用硝酸-高氯酸-氢氟酸全量消解法处理土壤样品[13].采用ICP-OES测定土壤处理液中Cu、Cd、Zn、Pb、Cr的含量.实验所用试剂均为分析纯,所用水均为去离子水.并采用国家标准物质土壤标准参考样GSS24、GSS25参比进行分析质量控制,分析误差均在允许范围内,并设置空白样品同步分析.

2 结果与分析

2.1 电子垃圾拆解点土壤性质

本文对路桥电子产品拆解地周边土壤的pH、总有机碳TOC(mg/g)、总氮(mg/g)、总磷(μg/g)及铵态氮(μg/g)含量做了测试分析,结果如表1所示.该地区土壤pH、总有机碳、总氮、铵态氮及总磷无显著差异,表明各个采样点土壤基本物理化学性质无显著差异.与全国第二次土壤普查中该地区水稻土养分含量平均值(有机碳:24.5g/kg;总氮:2.45g/kg;总磷:0.41g/kg)相比,土壤养分含量均有所增加,而该地区土壤的pH则略低于该区全国土壤第二次普查结果(pH为6.0).可见,研究区电子废物拆解活动并未降低其周边农田土壤的肥力质量,却降低了土壤的pH值,使得该地区土壤有一定的酸化.这可能与周边电子废物拆解的重金属回收工艺流程有关.该工艺是将含贵金属的废旧电子产品以浓酸处理,取得贵金属的剥离沉淀物,再分别将其还原成金、银、钯等金属产品.而在该典型区,多半企业采用传统的手工作坊式生产,很少集中处理剩余的大量残留酸液,而是直接排于周边沟渠、农田等场地,大量酸性废水的灌溉破坏了土壤的缓冲能力从而造成土壤的酸化[10].而土壤酸化一方面会破坏土壤结构,使得土壤板结,抗逆能力下降,另一方面更为重要的是土壤酸化有利于土壤中重金属向水溶态、交换态的转化[7-9],增加重金属在生物环境介质的移动性及其污染风险,从而降低土壤的环境功能,因此,该地区农田土壤环境问题应该引起我们高度重视[10].

2.2 电子废物拆解地周边重金属的分布特征

表2为该电子废物回收迹地土壤中重金属的含量.该地区表层土壤Cu、Cd、Pb、Zn、Cr的全量均明显高于浙江省该地区土壤背景值(Cu:19.77mg kg-1,Cd:0.20mg kg-1,Pb:24.49mg kg-1,Zn:84.84mg kg-1,Cr:58.51mg kg-1)[13,14].由表1可见,该地区土壤中Cu和Cd的污染最为严重,Cu的最大浓度为519.3mg/kg,最小浓度为249.0mg/kg,最大浓度为《土壤环境质量标准》(GB 15618-2008)中农业用地二级标准50mg/kg的10.4倍,最低浓度为《土壤环境质量标准》(GB 15618-2008)中农业土地二级标准的5.0倍.其次,该地区土壤中Cd最大浓度和最小浓度分别为4.5mg/kg和0.8mg/kg,为《土壤环境质量标准》(GB 15618-2008)中农用土地二级标准0.3mg/kg的9.0倍和2.7倍.调查还发现Pb的最大浓度达到56.9mg/kg,这个值已经超过《土壤环境质量标准》(GB 15618-2008)中水田、旱地、菜地的二级标准,表明不适合耕种,尚可作为果园用地.Cr和Zn的含量较低,没有超过《土壤环境质量标准》(GB 15618-2008)中农业用地标准,主要是该拆解场地中几乎不含或含有少量含Cr、Zn较多的电子垃圾, 如磁带、录像带等.

由表1,各采样点处Cu和Cd的含量均超出《土壤环境质量标准》(GB 15618-2008)中的二级标准,而Pb则是在回收迹地中心超出《土壤环境质量标准》(GB 15618-2008)中水田、旱地、菜地的二级标准,这说明电子产品回收活动队对周围土壤污染比较严重.在电子产品回收基地周围300m范围的土壤中,Cd、Cr、Cu、Pb、Zn含量随距离增加快速降低.以国家土壤环境质量二级标准计算该典型区Cu、Zn、Pb、Cr、Cd的综合污染指数为4.3,已达严重污染程度,表明该电子废物回收迹地土壤存在严重的重金属复合污染问题,已不适合农业耕作.

徐莉等[10]调查了浙江东部废旧电子产品拆解场地周边农田土壤重金属污染特,发现检测土壤中存在Cu、Cd总量超过土壤环境质量二级标准,Cu和Pd的浓度范围与本研究相当,而Cd的浓度则是本研究的2~3倍,而相应地区土壤酸化很明显(3.8~4.4),可能是导致Cd浓度较高的原因.潘红梅等[11]于2006年考查了同一地区重金属污染的状况,发现Cu含量为435.67mg/kg,与本研究的结果比较接近.罗勇等[13]考察了广东省龙塘镇和石角镇的电子废物堆场附近农田土壤重金属含量,发现Cu的超标率为63.7%,Pd的超标率为48.5%,Cd的超标率为78.8%,这与研究的结果也比较相近,可能是这两地与本研究地所回收的电子废物的种类和回收工艺比较接近.郑茂坤等[12]考察了同一地区废旧电子产品拆解区农田土壤重金属污染特征及空间分布规律,发现Cu、Zn、Pb、Cd含量分别为Cu 118 mg kg-1、Pb 47.9 mg kg-1、Zn 169.0 mg kg-1、Cd 1.21 mg kg-1,其中Cu的含量为本调查结果的1/2~1/5,明显较小,Cd的含量也较本研究低,可能是由于Cu、Cd的富集速度比较快,经过近两年电子废物的拆解回收,Cu、Cd的含量明显增加了.

3 结论和讨论

电子废物回收活动,由于回收方式的粗放化,导致重金属在周围环境中不断积累.电子产品回收迹地土壤中Cd、Cr、Cu、Pb、Zn中,除了Cr和Zn外均超过《国家土壤环境质量标准》二类土壤环境质量标准,污染最严重的是Cu、Cd,其次为Pb.以国家土壤环境质量二级标准计算该典型区Cu、Zn、Pb、Cr、Cd的综合污染指数为4.3,已达严重污染程度.表明该电子废物回收迹地土壤存在严重的重金属复合污染问题,已不适合农业耕作.

——————————

参考文献:

〔1〕Ha N N, Agusa T, Ramu K, et al. Contamination by trace elements at e-waste recycling sites in Bangalore, India[J]. Chemosphere,2009,76:9-15.

〔2〕UNEP. 2005. E-waste, the hidden side of IT equipment’s manufacturing and use: Early warning on emerging environmental threats no. 5, United Nations Environment Programme,2005.

〔3〕王家嘉.废旧电子产品拆解对农田土壤复合污染特征及其调控修复研究[D].贵阳:贵州大学, 2008.

〔4〕吴南翔,杨寅娟,俞苏霞,等.旧电器拆解业对职业人群及普通居民的健康影响[J].环境与健康杂志,2001,18(2):97-99.

〔5〕Xing G H, Wu S C, Wong M H. Dietary exposure to PCBs based on food consumption survey and food basket analysis at Taizhou, China–The World’s major site for recycling transformers. Chemosphere, 2010,81:1239-1244.

〔6〕鲁如坤.土壤农业化学分析法[M].北京:农业科技出版社,1999.235-285.

〔7〕杜彩艳,祖艳群,李元.pH和有机质对土壤中镉和锌生物有效性影响研究[J].云南农业大学学报,2005,20(4):539-543.

〔8〕Harter R D. Effect of soil pH on adsorp tion of lead, copper, zinc and nickel. Soil science Society of America Journal,1983,47:47-51.

〔9〕Clemente R, WalkerD J, Roig A, et al. Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine sp illage atAznalcóllar(Spain).Biodegradation,2003,14(3):199-205.

〔10〕徐莉,骆永明,滕应,卜元卿,张雪莲,王家嘉,李振高,刘五星.长江三角洲地区土壤环境质量与修复研究Ⅳ.废旧电子产品拆解场地周边农田土壤酸化和重金属污染特征[J].土壤学报,2009,46(5):833-839.

〔11〕潘虹梅,李凤全,叶玮,王俊荆.电子废弃物拆解业对周边土壤环境的影响——以台州路桥下谷岙村为例[J].浙江师范大学学报(自然科学版),2007,30(1):103-108.

篇(2)

关键词:城市土壤;重金属污染;植物修复技术;大生物量非超富集植物;综合评估筛选法

中图分类号:X53 文献标识码:A DOI编码:10.3969/j.issn.1006-6500.2014.03.011

城市土壤因受人类活动强烈影响而区别于自然土壤,主要指厚度大于50 cm的非农用土壤,通常出现在城市和城郊区域[1-3]。城市化过程中的工业发展、城建工程的实施和居民日常生活等人类活动排放的污染物,以各种形式直接或间接地进入城市土壤,改变了城市土壤的理化属性,造成了城市土壤的重金属污染[4]。城市土壤重金属既可通过直接接触密集的城市人群而危害人体健康,又可通过对大气、水体的影响而影响城市生态环境,进而影响生命安全[5-6]。城市土壤既可以为城市绿色植物的生长提供养分,是其必不可少的生长介质,又可以为土壤微生物提供栖息地,是其能量的重要来源之一,所以城市土壤是城市生态系统尤为重要的组成部分,与城市生态环境息息相关[5]。因此,城市土壤重金属污染修复技术成为国内外学者研究的热点领域。

1 城市土壤重金属污染现状

原成土母质和人为活动是城市土壤重金属的来源,其中工业生产、机动车辆尾气排放、生活垃圾堆弃等人为活动是造成城市土壤重金属污染的主要因素。一方面,人为活动产生的重金属以气溶胶的形式进入大气,经过干湿沉降间接进入土壤;另一方面,附着于废弃物中,直接排入城市土壤,造成重金属污染,甚至污染地下水。并且城市土壤重金属污染具有一定的空间分布特征,总体表现为城区内部土壤重金属含量明显高于郊区,并且交通干线两侧、人类活动密集区、老工业区重金属污染较为严重,而受人为活动影响较小的风景区、公园等功能区土壤重金属污染则属于中低度污染和轻微生态风险。

城市土壤Pb、Zn、Cu、Cd等重金属多介质复合污染给人体健康带来了极大的风险。食物链传递研究表明,重金属已经不同程度地污染了我国的城市郊区菜地土壤[7-9],重金属含量已超标的蔬菜大量向城市供应。除此之外,以扬尘为载体进入大气的城市土壤重金属,最终可通过人体的新陈代谢作用而进入体内并逐渐积累,从而直接威胁到人体健康。研究表明,北方沙尘暴天气发生时,大气环境中土壤重金属元素浓度迅速增加,Pb、Zn、Cu、Cd的浓度比平常高出3~12倍[10-11]。据相关研究部门统计,上海市大约有1/3的大气颗粒物来自于土壤扬尘[7]。此外,城市土壤重金属元素的积累对植物、动物、微生物的生理生态等方面也产生一定的毒害,导致城市土壤的退化。

2 土壤重金属污染修复研究现状

近年来,科研工作者不断探索重金属污染土壤的修复技术,使物理、化学和生物等修复技术得到了较快的发展。由表1可知,尽管这些物理、化学修复手段对治理重金属污染土壤具有非常重要的实践意义,但仍具有投资大、修复效率低、对周围环境干扰性大、易导致次生污染等诸多缺点。相比较而言,尽管植物修复技术有着种质资源较少、修复效果待改善和植物生长条件等局限性,但其仍具有技术和经济上的双重优势,不仅能够利用绿色植物的新陈代谢活动来修复土壤环境中的重金属污染,而且具有一定的观赏价值,有助于园林城市的建设。

广义的植物修复技术是在多学科交叉点上发展起来的新技术,建立在植物对某种或某些化学元素的耐性和积累性基础之上,利用植物及其根际共存微生物体系的吸收、挥发、降解和转化作用来清除环境中的污染物的一门环境污染治理技术[12]。通常所说的植物修复技术是指选择具有吸收富集土壤中污染元素能力的植物,并将该植物种植于特定重金属污染的土壤上,随着该植物收获和植物组织器官的妥善处理,便可移除土体中的该种污染重金属,最终达到污染治理与生态修复污染土壤的目的[13]。这种技术因为其在土壤污染治理方面的巨大应用潜力,吸引了各国相关领域的科学家进行相关研究,并取得了一定的进展。

2.1 超富集植物修复技术

现今已经发现的超富集植物约500多种,主要分布在气候温和的欧洲、美国、新西兰及澳大利亚的污染区,但利用植物修复污染土壤则是近几十年的工作。目前,关于超富集植物对重金属耐性和积累性机理、修复性能改进及应用技术等方面的研究已经在全世界范围内展开,并且也取得了一定的进展。此外,植物修复技术商业化因其工程性的试验研究以及实地应用效果,在未来具有巨大的商业前景。

2.2 超富集植物修复的局限性

超富集植物在修复土壤重金属污染方面表现出显著的生态效益、社会效益和经济效益。尽管利用植物修复技术修复重金属污染土壤具有廉价、有效、使土壤免受扰动等优点,但是在实际应用中,超富集植物由于其固有的特点,大大限制了在植物修复技术中的应用。第一,大部分超富集植物生物量低下,严重制约了修复效率,且植株矮小,不便于机械化作业;第二,超富集植物引种易受到地域性限制,因其多为野生植物种质资源,区域性分布较强,难以适应新的生物气候条件;第三,超富集植物往往只适用于某种特定的重金属元素,具有较强的专一性,对土壤中其他含量较高的重金属则表现出中毒症状,从而在重金属复合污染土壤修复中的应用受到了限制;最后,超富集植物根、叶、果实等器官机械折断、凋谢或腐烂等途径使重金属重返土壤,易造成二次污染,间接降低了修复效率。

2.3 大生物量非超富集植物与超富集植物修复技术

Ebbs等[16]认为超富集植物以外的其他大生物量非超富集植物也具有修复重金属污染土壤的可能性,并提出农作物地上部可观的生物量能够补偿地上部较低的重金属含量的观点。周振民等[17]指出了大生物量非超富集植物修复技术是一项非常有发展潜力的植物修复技术。因此植物修复技术走向工程实践的主要任务是筛选与开发大生物量、富集重金属能力强且具有观赏性的复合型修复植物。

3 土壤重金属污染大生物量植物修复技术研究进展

现有超富集植物种质资源贫乏,并且其具有自身的局限性,修复效果也有待于进一步加强,故植物修复技术还不成熟。另外,评价植物修复重金属污染的标准是重金属迁移总量,然而已经发现的超富集植物因其生物量小、生长缓慢而使重金属迁移总量相对较低,自然种群中存在着对重金属具有一定耐性的大生物量植物,虽然其单位质量的重金属含量尚不满足超富集植物的定义,但此时其所积累的重金属绝对量反而比超积累植物的绝对量大。因此大生物量非超富集植物对城市土壤重金属的修复作用更大。

3.1 大生物量修复植物的优势

以大生物量植物种质资源作为筛选修复植物对象是有依据的,一方面,大生物量修复植物具备普通植物的功能特点;另一方面,大生物量修复植物还有普通植物不具备的诸多优点。主要表现为:

(1)高生物量植物种质资源丰富,有着巨大的潜力,可为筛选提供坚实的基础;

(2)在进行城市土壤修复、调控大气环境的同时,能够美化环境,一举两得;

(3)具备观赏性的大生物量修复植物,不会进行食物链的传递积累,减少了对人体的危害;

(4)大生物量植物对人类健康也有着一定的作用,如油松、核桃、桑树等对杆菌和球菌的杀菌力均极强,花卉芳香油可抗菌,提高人体免疫力,可作为保健食品或调控大气环境;

(5)在长期的生产实践中,品种选育、植物栽培以及病虫害防治等经验日益丰富。因此,筛选大生物量植物修复城市土壤重金属污染是可行的。

3.2 大生物量植物的耐性与积累性研究

4 大生物量修复植物的判断标准与筛选

由周振民等[17]对重金属污染土壤大生物量修复植物进行的综合研究可知,其筛选对象主要为部分农作物、杂草、树木和花卉。修复城市土壤的大生物量植物应具有一定的生态功能和观赏价值,按观赏部位可分为观花的、观叶的、观芽的、观茎的、观果的五类;从低等到高等植物,从水生到陆生;有草本也有木本,有灌木、乔木和藤木,种类繁多。因此筛选既具有观赏性又具有生态修复功能的大生物量修复植物就尤为重要了。

为了便于采取定性与定量相结合的综合评估分析法筛选出具备此能力的大生物量修复植物,这就要求植物符合一定的判定标准。耐性特征、积累特征、观赏性和生态调控功能是主要的评定指标,其中耐性特征和积累特征是最基本的判断标准。耐性植物应该能够在较高重金属污染浓度的土壤上完成生命周期,并且污染处理的植物地上部生物量与对照植物的地上部生物量相比没有明显的下降,这才说明该植物对重金属污染的土壤具有一定的耐性。积累特征以转移系数和富集系数综合表示,李庚飞等[25]研究表明,在利用大生物量非超富集植物进行重金属污染修复时,若植物对某重金属元素的转移系数和地上部分富集系数均大于0.1,说明植物对该金属元素具有富集的潜力。此外,植物观赏性和固碳释氧、吸收有毒有害气体等生态调控功能等指标的纳入,对采用综合评估筛选法进行复合型修复植物的筛选更有意义。

大生物量植物种类繁多,盲目地筛选是不科学的。因此首先应该搜集资料,调查各种植物的特点及其本身生长习性,从中初选出最有可能成为修复植物的种质资源进行研究,之后再进一步确认。例如,可从受污染严重的区域采集仍然能够正常生长的物种进行试验,或从生长不易受环境影响的物种着手。初选大生物量修复植物在一定程度上可由植物的根、茎、叶初步判断[26]。生物量与株高成正比,而生物量越大,修复效率也相应增大,因此株高是修复植物的重要选择依据。为使筛选出的修复植物具有更好的实践性,也应尽量地人为模拟与特定重金属污染城市土壤条件相一致的环境条件,利用盆栽试验筛选出大生物量复合型修复植物。

5 结 语

我国对植物修复重金属污染土壤的研究起步较晚,筛选工作做得不多,大量有潜力的修复植物还有待发现,尤其是以大生物量修复植物为筛选对象将成为一个突破口。总的来说,用大生物量修复植物修复污染土壤的潜力巨大。在城市污染土壤修复中,大面积地应用与其他手段相结合的大生物量修复植物,既可以美化环境,又能带来巨大的经济效益。因此进一步提高大生物量修复植物的修复效率,应从生态位的理论出发,开展植物品种的筛选与培育、复合修复技术应用、修复效果验证试验等方面的研究,以适应城市需要,并将植物修复、观赏植物苗木生产、园林景观建设与生物质能利用有机结合,形成环境污染修复产业,走循环利用绿色发展之路。

参考文献:

[1] 张磊,宋凤斌,王晓波.中国城市土壤重金属污染研究现状及对策[J].生态环境,2004,13(2):258-260.

[2] 张甘霖,朱永官,傅伯杰.城市土壤质量演变及其生态环境效应[J].生态学报,2003,23(3):539-546.

[3] 黄勇,郭庆荣,任海,等.城市土壤重金属污染研究综述[J].热带地理,2005,25(1):14-18.

[4] Chen J.Rapid urbanization in China: A real challenge to soft protection and food security[J].Catena,2007,69(1):1-15.

[5] De Kimpe C R, Morel J L.Urban soil management: A growing concern [J].Soil Science,2000,165:31-40.

[6] 李敏,林玉锁.城市环境铅污染及其对人体健康的影响[J].环境监测管理与技术,2006,18(5):6-10.

[7] 黄益宗,郝晓伟,雷鸣,等.重金属污染土壤修复技术及其修复实践[J].农业环境科学学报,2013,32(3):409-417.

[8] 张勇.沈阳郊区土壤及农产品重金属污染的现状评价[J].土壤通报,2001,32(4):182-186.

[9] 王庆海,却晓娥.治理环境污染的绿色植物修复技术[J].中国农业生态学报,2013,21(2):261-266.

[10] 王玮,岳欣,刘红杰,等.北京市春季沙尘暴天气大气气溶胶污染特征研究[J].环境科学学报,2002,22(4):494-498.

[11] 庄国顺,郭敬华,袁蕙,等.2000年我国沙尘暴的组成、来源、粒径分布及其对全球环境的影响[J].科学通报,2001,46(3):191-197.

[12] 盛连喜,冯江,王娓,等.环境生态学导论[M].北京:高等教育出版社,2002:76-79.

[13] 吴志强,顾尚义,李海英,等.重金属污染土壤的植物修复及超积累植物的研究进展[J].环境科学与管理,2007,32(3):67-72.

[14] Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants [J].Journal of Geochemical Exploration,1977(7):49-57.

[15] Chaney R L. Plant uptake of inorganic waste constituents [C]//PARR J F. Land Treatment of Hazardous Wastes. Noyes Data Corporation, New Jersey:Park Ridge,1983:50-76.

[16] 韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1 196-1 203.

[17] 周振民,朱彦云.土壤重金属污染大生物量植物修复技术研究进展[C]//第三届全国农业环境科学学术研讨会论文集.天津:[出版社不详],2009.

[18] 刘维涛,张银龙,陈喆敏,等.矿区绿化树木对镉和锌的吸收与分布[J].应用生态学报,2011,19(4):725-756.

[19] 黄会一,蒋德明,张春兴,等.木本植物对土壤中镉的吸收、积累和耐性[J].中国环境科学,1989,9(5):323-330.

[20] 余国营,吴燕玉,王新.杨树落叶前后重金属内外迁移循环规律研究[J].应用生态学报,2009,7(2):201-208.

[21] 王广林,张金池,庄家尧,等.31种园林植物对重金属的富集研究[J].皖西学院学报,2011,27(5):83-87.

[22] 许妍,周启星.天津城市交通道路扬尘排放特征及空间分布研究[J].中国环境科学,2012,6(12):34-39.

[23] 刘家女,周启星,孙挺.Cd-Pb复合污染条件下3种花卉植物的生长反应及超积累特性研究[J].环境科学学报,2006,26(12):2 039-2 044.

[24] 陈辉蓉,吴振斌,贺锋,等.植物抗逆性研究进展[J].环境污染治理技术与设备,2001,2(3):7-13.

篇(3)

关键词 重金属污染;蔬菜;现状

中图分类号 X820.4 文献标识码 A 文章编号 1007-5739(2013)22-0208-03

Research Progress of Heavy Metal Pollution in Vegetables

YAO Li-xia RU Qiao-mei HE Liang-xing

(Yuhang District Agro-product Monitoring Center in Hangzhou City of Zhejiang Province,Hangzhou Zhejiang 311119)

Abstract With the ever serious environmental pollution,vegetables have been subjected to varying degrees of pollution. Heavy metal is one of the important factors,which affect vegetable growth and human health. The paper studied aspects of hazards of heavy metal pollution,evaluation of heavy metal contamination in vegetables,and status quo of vegetables polluted by heavy metals in China. It also discussed vegetables polluted by heavy metals in the future and prospects,which would provide reference and experience for the research on vegetables polluted by heavy metals.

Key words heavy metal pollution;vegetables;present situation

重金属是指密度在5×103 kg/m3以上的金属,如金(Au)、银(Ag)、镉(Cd)、汞(Hg)、铬(Cr)、铜(Cu)、铅(Pb)等。部分重金属通过食物进入人体,对人体正常生理功能造成干扰,危害人体健康,被称为有毒重金属,如锌、汞、铅、铬、砷、锡、镉等。

随着农业生产中化肥、农药等的大量使用,土壤、水体的重金属污染逐渐加重,不仅影响植物生长发育,而且在植物叶、茎、根、籽实中大量积累。蔬菜作为人们日常摄入量最大的食物之一,含有丰富的膳食纤维、维生素、必需矿质元素等,但食入重金属超标的蔬菜会对人体健康造成极大危害,其危害具有一定的隐蔽性,一般不会发生急性中毒,只是在人体中不断积累,逐渐危害人体健康。近年来,监测、防治重金属污染已成为各国普遍关注的热点问题。蔬菜作为人类日常生活摄入量较大的食品之一,分析、评价其受重金属污染状况,对保障人们的饮食安全、促进蔬菜生产具有重要意义。

1 重金属污染的危害

铬、锌、汞、铅、砷、锡、镉等有毒重金属中,对人体危害最大的是铅,毒害人体各系统,尤其常使造血系统、神经系统、血管等发生病变。人体摄入过量的铅不仅会抑制血红素的合成,降低红细胞中血红蛋白量,导致人体出现贫血,损伤中枢神经系统及其周围神经,轻度中毒时,出现失眠、头痛、记忆减退、头晕等症状。特别是对于大脑处于发育期的儿童来讲,更容易受铅的危害,严重影响儿童的智力发育和行为。

有毒重金属中危害人类健康的其次是砷、汞。砷大都以烷基砷、无机砷的形态存在,2种类型的砷差别较大。无机砷毒性较大,有机砷毒性较小,其中砷糖甚至被认为无毒。长期接触砷,会引起细胞中毒,诱发恶性肿瘤,其还能透过胎盘损害胎儿。无机砷是致癌物质,常诱发肺癌、皮肤癌。汞容易被植物吸收,通过食物进入人体,也可以蒸汽形式进入人体,危害人体健康。汞毒性因形态不同存在较大差异,其中甲基汞毒性最大,容易被人体吸收,在肾、骨髓、心、脑、肝、肺等部位蓄积,使肾、神经系统、肝脏等产生不可逆的损害。另外,金属汞、无机汞通过水中厌氧微生物甲基化可转化为甲基汞危害。

相对铅来说,镉容易被植物吸收,但其不容易造成植物毒性,反对人体容易造成毒害,具有致畸、致癌、致突变等作用。镉进入体内可损害血管导致组织缺血,损伤多系统,干扰钴、铜、锌等代谢,阻碍肠道吸收铁,抑制血红蛋白的合成,抑制肺泡巨噬细胞的氧化磷酰化的代谢过程,对肾、肺、肝造成损害。

铬的急性中毒会对皮肤造成刺激和腐蚀,使皮肤糜烂或变态反应发生皮肤炎。亚急性或慢性中毒会引起咽炎、鼻炎、支气管炎等。另外,铬还有致畸变、致癌变、致突变作用。六价铬和三价络均有致癌作用,且六价铬的毒性比三价铬大100倍,某些铬化合物的致癌性是目前世界公认的,被称为“铬癌”。

可见,重金属对人体健康的危害具有富集性、隐蔽性、不可逆性,且其污染一旦出现就难以逆转,治理非常困难,成本高。

2 蔬菜重金属污染评价

内梅罗综合污染指数是土壤或沉积物重金属污染评价中较为常用的方法。目前,该方法已在蔬菜重金属污染评价方面得到应用[1]。

(1)单因子污染指数:

Pi=■

Pi、Ci、Si分别为计算出的重金属单项污染指数、重金属的实测值、各项评价标准值。

当Pi≤1时,表示蔬菜未受污染;Pi>1时,表示蔬菜受到污染,Pi数值越大,说明受到的重金属污染越严重。

(2)尼梅罗综合污染指数:

P综=■

Pave为蔬菜各单因子污染指数的Pi 平均值,Pmax为蔬菜各单项污染指数中最大值。

通常,设定综合污染指数P综合≤0.7为安全等级,P综合≤1.0为警戒限,P综合≤2.0为轻污染,P综合≤3.0为中污染,P综合>3.0为重污染。

3 我国蔬菜重金属的污染现状

3.1 华东地区(包括山东、江苏、安徽、浙江、福建、上海市)

王淑娥等[2]调查发现济南市8种蔬菜中重金属含量均未超出无公害蔬菜限量标准。马桂云等[3]也报道盐城市区少数蔬菜受到Cd的污染。而蚌埠市市售蔬菜中,叶菜类蔬菜中主要是Pb、Cd超标,这可能与含铅的汽车尾气污染大气有关[4]。孙美侠等[5]对徐州市市场上15种蔬菜、水果进行抽样检查,测定240个样品中重金属Cu、Pb、Cd、Cr、Zn的含量状况,结果表明所测样品中仅重金属Cd、Zn有部分超标,其中Cd的污染需引起有关部门的重视。然而,厦门市售蔬菜仅部分品种如菠菜、甘蓝、花菜、萝卜的Pb超标,有潜在污染风险;大部分蔬菜中As、Hg、Cr3种重金属的含量都较低,潜在的污染风险不大[6]。许 静等[7]对福建省4个区域的4类19种蔬菜品种进行分析和评价,结果显示福建省蔬菜重金属污染主要为Cd和Pb,品种涵盖小白菜、芥菜、空心菜。林梅[8]采用原子吸收分光光度法对福州市油菜番茄茄子3种上市蔬菜中重金属Pb、Cu、Cr、Cd和微量元素Zn的含量进行了检测,并运用单因子污染评价指数进行了蔬菜重金属污染的评价,结果表明:自由集市中个别蔬菜存在Cr轻度污染,部分蔬菜存在Pb轻中度污染;从大型超市和自由集市购买的所有蔬菜样品均存在Cd含量超标现象,其中自由集市蔬菜的Cd甚至达到中度污染级;所有样品中Cu含量均低于全国代表值,Zn含量则与全国代表值相当。

3.2 华南地区(包括广东、广西、海南)

广东省蔬菜重金属调查已有不少研究报道。马 瑾等[9]报道东莞市蔬菜重金属污染以Pb的污染情况最普遍,20.9%的叶菜类蔬菜Pb含量超标。其次是Cd和Hg,分别有11.6%和2.3%的叶菜类蔬菜超标。但张 冲等[10]对东莞市主要蔬菜产区的112个蔬菜样品进行重金属污染现状调查,发现这些蔬菜受到不同程度的重金属污染,但大多数只是轻度污染,并未达到危险级别。佛山市禅城区居民食用蔬菜样品中有46.6%的蔬菜重金属含量超标,Pb和Cr超标率分别为32.9%和19.2%[11]。李传红等[12]调查表明,惠州市蔬菜重金属含量整体质量尚好,但蔬菜Cd污染较为严重,超标率为15.8%。珠海市蔬菜中Cd、Cr、Ni、Pb、Hg元素有超标情况,其中Cd元素超标率最高,需要引起有关重视[13]。秦文淑[14-15]通过对广州城区各居民菜场主要蔬菜进行采样,发现主要重金属污染为Cr、Pb、Cd,其超标率分别为38.9% 、22.2%、13.9%。利用单因子污染指数法进行了评价,发现广州市蔬菜的污染比例在50%以上,其中28.9% 为轻度污染。然而,赵 凯等发现As、Pb是广州市郊地区蔬菜中的主要污染元素,而且各类蔬菜的综合污染指数均小于1,表明绝大部分蔬菜可以放心食用。杨国义等评价结果表明,在广东省典型区域所采集的171个蔬菜样品中,有13.45%的样品受到不同程度的重金属污染,以Cd和Pb污染为主,Ni、Hg、As和Cr污染相对轻一些。

南宁市相当部分蔬菜的重金属含量超过国家规定的无公害蔬菜标准,其中污染最严重的是Hg和Pb,超标率分别达41.9%和40.4%。秦波和白厚义研究发现南宁市郊蔬菜已受Pb和Cd的污染,其中Pb的污染最重,其次为Cd污染,但未受Cr的污染。

3.3 华中地区(包括湖北、湖南、河南、江西)

刘尧兰等[16]报道环鄱阳湖区叶菜类蔬菜有2/3样品的重金属含量超标,超标率在50%以上,其中白菜Pb超标最为严重,超标率高达85.2%;单因子污染指数评价表明,环鄱阳湖区叶菜类蔬菜的安全和优良级别所占比例为66.9%,已受到一定程度的重金属污染,其中以芹菜受污染的程度最大,污染主要来源于Cr和Pb。黄石市售蔬菜重金属污染主要表现为As、Pb污染。叶菜类重金属含量最高,其次是瓜豆类,茄果类含量最低。调查的6种蔬菜中,莴笋叶和小白菜遭受到严重污染,黄瓜受到轻度污染,四季豆处于警戒水平,仅番茄和茄子是安全的[17]。

成玉梅和康业斌[18]用单因子和综合因子污染指数评价,洛阳市郊区叶菜类蔬菜重金属污染大部分已处于警戒级到轻度污染,加强蔬菜重金属污染的预防与治理十分必要。新乡市蔬菜Cd、Pb的污染明显,其中Pb污染较严重[19]。商丘市售蔬菜中存在超标的元素为Pb、Cd,Cu、Hg、Cr 含量较低[20]。沈 彤等[21]研究表明,长沙地区蔬菜中,Cr、As、Hg的含量未超标,尚未构成污染,但Pb、Cd污染严重,超标率分别为60%和51%。南昌市售蔬菜中均含有重金属Cu、Zn、Pb 和Cd,其中Cu、Zn含量较低,远低于食品卫生标准,仅部分样品存在Pb、Cd超标现象[22]。

3.4 华北地区(包括北京、天津、河北、山西、内蒙古)

中国科学院地理研究所调查认为,北京市生产的蔬菜重金属超标的占30%[23]。薄博[24]对大同县主要蔬菜产地调查研究,结果发现调查的5种蔬菜污染程度为茄子>西红柿>黄瓜>青椒=西葫芦,但均未超标,属于安全等级。对天津市郊的36种蔬菜样品进行检测,发现重金属检出率为100%,其中Cd达到警戒线水平,单项污染指数最高值达19.22,总超标率为30.41%。

3.5 西北地区(包括宁夏、新疆、青海、陕西、甘肃)

1996—1997年彭玉魁等对陕西省咸阳、西安、宝鸡等6个城市郊区的14种蔬菜进行调查研究,分析其As、Hg、Cr、Cd、Pb等污染情况,结果表明Cr、Pb在某些蔬菜中超标严重。陕西省主要蔬菜产区蔬菜重金属污染也以Pb污染为主。李桂丽等[25]调查发现西安市10种蔬菜总体合格率为83%,Pb是蔬菜中的主要污染元素,总体超标率为77.5%;Hg和Cr只在芹菜和茼蒿上出现污染,总体超标率分别为10%和2.5%。然而,马文哲等[26]调查了杨凌示范区4类9种蔬菜重金属的污染现状,发现Cr对蔬菜的污染程度最为严重,其次Pb、Cd也有一定程度的污染。

乌鲁木齐市安宁渠区蔬菜中Cd、Pb的超标率最高[27]。殷 飞等[28]报道新疆喀什市三大批发市场蔬菜的Pb、Cd、Cr、Cu 4种主要重金属含量,平均值均低于相应的食品卫生标准,只有个别蔬菜样品存在重金属 Pb、Cd 含量超标现象,超标率均不高。因此,从重金属污染这个角度来说,喀什市市售的蔬菜基本上是安全的,消费者可以放心消费。

3.6 西南地区(包括四川、云南、贵州、、重庆)

李江燕等[29]通过现场调查及室内分析,对云南省个旧市大屯镇的蔬菜重金属污染现状进行评价。当地蔬菜综合污染指数从大到小的重金属为Cd、Pb、Zn、Cu,Cd、Pb污染较严重。重庆市主城区市售蔬菜有39.2%受到重金属污染,其15.7%蔬菜处于重度污染状态[30],Cd、Pb和 Hg是主要污染元素。罗晓梅研究发现,成都地区蔬菜Cd和Pb污染严重,在检测的蔬菜样品中,Pb、Cd超标率分别为22.0%、29.4%,最高超标分别为5.60倍和2.86倍,Hg和As则无超标现象出现。

3.7 东北地区(包括辽宁、吉林、黑龙江)

周炎对沈阳市近郊受重金属污染农田上生产的大白菜进行取样分析,Cd、Pb超标率分别为58.3%、100.0%。辽宁省农业环保监测站调查发现,各种蔬菜已受重金属不同程度的污染,蔬菜综合超标率为 36.1%。

4 研究方向与展望

(1)从蔬菜重金属污染的来源及危害途径可以看出,重金属主要是通过土壤污染造成蔬菜重金属残留超标的,且由于土壤重金属污染具有不可逆、隐蔽性、滞后性、积累性和。因此,应开展菜地土壤重金属污染的调查研究及风险评估,了解土壤重金属污染的基本情况和态势,分析其空间变异与分布规律,开展土壤环境质量标准的研究和制定工作,加强无公害粮食蔬菜生产基地建设[31-34]。

(2)开展蔬菜中重金属含量与土壤中重金属及其向食物链传递关系的定量研究,同时加强蔬菜对重金属吸收积累的基因型差异研究,利用丰富的植物物种资源,研究其对重金属的吸收转运机制,以降低土壤中重金属的污染,同时筛选和培育低吸收低富集重金属的蔬菜品种,减少重金属进入食物链[35-38]。

(3)为检查蔬菜质量,我国出台相应标准,其中将重金属列入标准中优先控制的污染物之一,为蔬菜质量控制发挥了巨大作用,但仅以污染物含量作为蔬菜质量评价标准难以衡量污染物对人体健康危害的大小,因此应用健康风险评价方法评估污染物对人体健康的危害已成为趋势[39-40]。

5 参考文献

[1] 崔旭,葛元英,张小红.晋中市部分蔬菜中重金属含量及其健康风险[J].中国农学通报,2009,25(21):335-338.

[2] 王淑娥,冷家峰,刘仙娜.济南市蔬菜中硝酸盐及重金属污染[J].环境与健康杂志,2004,21(5):312-313.

[3] 马桂云,周秋华,王京平,等.盐城市区蔬菜中重金属污染调查研究[J].化工时刊,2005,19(10):13-15.

[4] 朱兰保,高升平,盛蒂,等.蚌埠市蔬菜重金属污染研究[J].安徽农业科学,2006,34(12):2772-2773,2846.

[5] 孙美侠,黄从国,郝红艳.江苏省徐州市售蔬菜和水果重金属污染调查与评价研究[J].安徽农业科学,2009,37(29):14343-14345.

[6] 汤惠华,陈细香,杨涛,等.厦门市售蔬菜重金属、硝酸盐和亚硝酸盐污染研究及评价[J].食品科学,2007,28(8):237-332.

[7] 许静,陈永快,邹晖. 福建省不同区域土壤、蔬菜重金属污染现状分析[J].福建农业学报,2011(4):646-651.

[8] 林梅.福州市上市蔬菜中重金属污染评价及防治措施[J].江西农业学报,2011,23(6):129-131.

[9] 马瑾,万洪富,杨国义,等.东莞市蔬菜重金属污染状况研究[J].生态环境2006,15(2):319-322.

[10] 张冲,王富华,赵小虎,等.东莞蔬菜产区蔬菜重金属污染调查评价[J].热带作物学报,2008,29(2):250-254.

[11] 邵昭明,欧阳静茹,张珊珊,等.佛山市禅城区蔬菜重金属污染现状及对人体健康风险分析[J].华南预防医学,2012,38(3):14-21.

[12] 李传红,朱文转,谭镇.广东省惠州市蔬菜重金属污染状况研究[J].安徽农业科学,2007,35(5):1448-1449.

[13] 胡小玲,张瑰,陈剑刚,等.珠海市蔬菜重金属污染的调查研究[J].中国卫生检验杂志,2006,16(8):980-981.

[14] 秦文淑,邹晓锦,仇荣亮.广州市蔬菜重金属污染现状及对人体健康风险分析[J].农业环境科学学报,2008,27(4):1638-1642.

[15] 秦文淑.广州城区居民食用蔬菜重金属含量现状分析[J].广东轻工职业技术学院学报,2010,9(4):17-21.

[16] 刘尧兰,陈焕晟,蒋建华,等.环鄱阳湖区部分叶菜类蔬菜重金属污染评价与来源分析[J].安徽农业科学,2011,39(20):12310-12312, 12314.

[17] 严素定,万晓琼,杨.黄石市几种市售蔬菜的重金属污染分析[J].湖北师范学院学报:自然科学版,2008,28(4):48-51.

[18] 成玉梅,康业斌.洛阳市郊区叶菜中重金属含量抽样分析及评价[J].广东微量元素科学,2007,14(11):60-63.

[19] 王学锋,冯颖俊,林海,等.新乡市部分市售蔬菜中重金属污染状况与质量评价[J].河南师范大学学报:自然科学版,2006,34(3):120-123.

[20] 娄淑芳,张新环,谢春,等.商丘市蔬菜重金属污染状况与质量评价[J].中国食物与营养,2010(12):18-20.

[21] ,刘明月,贾来,等.长沙地区蔬菜重金属污染初探[J].湖南农业大学学报:自然科学版,2005,31(1):87-90.

[22] 丁园,宗良纲,何欢,等.蔬菜中重金属含量及其评价[J].安徽农业科学,2007,35(33):10672-10674.

[23] 周东美,郝秀珍,薛艳,等.污染土壤的修复技术研究进展[J].生态环境,2004,13(2):234-242.

[24] 薄博.大同县蔬菜中重金属污染状况与质量评价研究[J].安徽农业科学,2009,37(14):6793-6794.

[25] 李桂丽,苏红霞,段敏,等.西安市蔬菜中重金属污染分析评价[J].西北植物学报,2008,28(9):1904-1909.

[26] 马文哲,王文光,吴春霞,等.杨凌示范区蔬菜中重金属污染分析与评价[J].北方园艺,2012(17):46-48.

[27] 胡慧玲,玉素甫·艾力,阿布力米提·阿布都卡德尔.乌鲁木齐市安宁渠区蔬菜中重金属的分布特征研究[J].新疆大学学报:自然科学版,2003,20(3):260-263.

[28] 殷飞,王晶.喀什市上市蔬菜重金属污染现状分析及评价[J].安徽农业科学,2010,38(23):12671-12672,12675.

[29] 李江燕,杨永珠,李志林,等.云南个旧大屯镇蔬菜重金属污染现状及健康风险评价[J].安全与环境学报,2013,13(2):91-96.

[30] 张宇燕,陈宏.重庆市市售蔬菜中锌、砷、汞的污染现状评价[J].三峡环境与生态,2012,34(1):47-51.

[31] 丁玉娟,林昌虎,何腾兵,等.蔬菜重金属污染现状及研究进展[J].贵州科学,2012(5):78-83.

[32] 梁称福,陈正法,刘明月.蔬菜重金属污染研究进展[J].湖南农业科学,2002(4):45-48.

[33] 王旭.广东省蔬菜重金属风险评估研究[D].华中农业大学,2012.

[34] 任艳军,马建军,杜彬,等.秦皇岛市根菜类蔬菜中重金属含量及健康风险分析[J].河北科技师范学院学报,2013(2):1-6.

[35] 杨国义,罗薇,高家俊,等.广东省典型区域蔬菜重金属含量特征与污染评价[J].土壤通报,2008(1):133-136.

[36] 汪琳琳,方凤满,蒋炳言.中国菜地土壤和蔬菜重金属污染研究进展[J].吉林农业科学,2009(2):61-64.

[37] 杨胜香,易浪波,刘佳,等.湘西花垣矿区蔬菜重金属污染现状及健康风险评价[J].农业环境科学学报,2012(1):17-23.

[38] 谢华,刘晓海,陈同斌,等.大型古老锡矿影响区土壤和蔬菜重金属含量及其健康风险[J].环境科学,2008(12):3503-3507.

篇(4)

1.实验方法

1.1采样点的位置河流水样的采集首先需要在河段上选择监测断面,然后在监测断面上布设监测垂线,最后在检测垂线上确定采样点。

1.2水样采集本次采样时间为2014年4月11日,地点为武河人工湿地,利用采样器在每个采样点采集水样500ml,装入玻璃瓶中,并做好标记,带回实验室备用。

1.3实验原理电感耦合等离子体焰炬温度可达6000-8000k,当将样品由进样器引入雾化器并被氩载器带入焰炬时,样品中的组分被原子化、电离、激发,以光的形式发射出能量。不同元素的原子在激发或电离时,发射不同波长的特征光,根据特征光的波长可进行定性分析。元素的含量不同时,发射特征光的强度也不同,据此可以进行定量分析[15]。

1.4实验仪器和试剂

1.4.1实验仪器(1)烧杯;(2)0.45μm孔径滤膜;(3)10ml针管;(4)100ml容量瓶;(5)移液管1支;(6)电感耦合等离子体原子发射光谱仪(ICP-AES);

1.4.2实验试剂(1)优级纯浓硝酸

1.5实验过程与步骤(1)水样处理:样品采集后立即通过0.45微米滤膜过滤,弃去初始的50~100ml溶液,收集所需体积的滤液并用(1+1)硝酸把溶液调节至pH<2。废水试样加入硝酸至含量达到1%。(2)空白样品:测定每批样品时,应取与样品相同体积的水按以上处理方法相同的步骤获取空白样品。(3)测定:调节好仪器工作参数,先测定试剂空白溶液、水样的值,将消解好的样品放入电感耦合等离子体原子发射光谱仪(ICP-AES)中进行测定,扣除空白值后的元素测定值即为水样中该重金属元素的浓度。

1.6实验结果根据仪器的性能,对每个元素选定2~3个谱线进行测定。然后,综合分析观察每条谱线的谱图强度及干扰情况,选择测定各元素的最佳波长。

2.结果与分析

经上述运算得到所测重金属单项质量等级Pi及综合质量等级七参数7G、五参数5G(不含Cd与Hg),评价结果如表4。上述数据表明:各重金属的单项质量等级Gi随重金属的不同而有较大差别。总体上看重金属元素、Cr、Cu、Pb等级较低,在1左右且都没有超过2,这说明、Cr、Cu、Pb这几种金属元素在武河湿地中污染较轻,水质为Ⅰ类。由图1可知,的质量等级在3号点略有下降,这是由于此处陷泥河河水汇入起到了稀释作用。此后质量等级迅速升高在6号点达到最大0.84,这是由于两侧的河水再次汇聚,重金属在此富集,但是水质仍然为Ⅰ类。由图2可知,Cr的质量等级在1、2、3、7、8号点为0,在4、5、6号点的质量等级超过1但是不到2。质量等级在1、2、3、7、8号点为0在4、5、6号点升高说明武河湿地中的Cr元素是由陷泥河和南涑河带来的,但是质量等级低,污染并不严重,水质属Ⅱ类。由图6可知,在1、2、4、7、8号点Cu的质量等级为0,即重金属Cu的浓度为0,并未检测出重金属Cu污染。3、5、6质量等级升高这是由于陷泥河和南涑河汇入带来的。由图7可知,Cr的质量等级在1、2号点为0.9左右,3、4号点为0.4左右呈下降趋势,这是由于陷泥河河水汇入起到了一定的稀释作用。7号点到6号点质量等级上升则是由于南涑河汇入带来的Cr元素,则南涑河是武河湿地Cr污染源之一。

由图3可知,重金属元素Cd的质量等级在各采样点中均超过1,但是最大等级仍未达到3,说明总体水质较好污染并不严重。由图5可知,重金属元素Zn的质量等级在各采样点中波动较大最小可为0最大则超过3,水质在不同河段变化较大。在5号点达到最大值,是由于此处河流较宽水流流速慢重金属Zn在此大量富集。由图4可知,重金属元素Hg的质量等级数值较大普遍在4以上,最大可达7.24,水质为劣Ⅴ类,Hg含量严重超标污染严重。综合质量等级评价,选用了、Cr、Cu、Pb、Cd、Zn、Hg七个参数和、Cr、Cu、Pb、Zn五个参数的评价。由图8七参数综合质量等级变化可知,全河段综合质量等级均在4以上,水质为Ⅴ类和劣Ⅴ类,污染严重。图9五参数综合质量等级变化表明,河段质量等级在1左右,水质为Ⅰ类和Ⅱ类,水质好污染较轻。五参数和七参数评价结果出现较大差距主要是由于七参数中Hg元素在全河段中浓度较大污染十分严重,其权重大拉高了该河段的综合质量等级,表明了该河段的主要重金属污染是Hg元素。图4Hg的质量等级变化和图8七参数综合质量等级变化无论是数值还是变化趋势都十分相似,也表明了Hg元素是该河段的主要重金属污染物。

由表4和图10可知:1号点的重金属污染物污染情况是Hg>Cd>Zn>Pb,无、Cr、Cu污染;2号点的重金属污染物污染情况是Hg>Cd>Zn>Pb>,无Cr、Cu污染;3号点的重金属污染物污染情况是Hg>Cu>Cd>Pb>>Zn,无Cr污染;4号点的重金属污染物污染情况是Hg>Cd>Zn>Cr>>Pb,无Cu污染;5号点的重金属污染物污染情况是Hg>Zn>Cd>Cr>Cu>>Pb;6号点的重金属污染物污染情况是Hg>Cd>Zn>Cr>>Cu>Pb;7号点的重金属污染物污染情况是Hg>Cd>>Pb,无Cr、Cu、Zn污染;8号点的重金属污染物污染情况是Hg>Cd>Zn>>Pb,无Cr、Cu污染。

3.结论

篇(5)

关键词:重金属;污染;防治;对策

一个地区长期进行矿山开采、加工以及利用重金属作为原料的工业发展,如不重视对重金属污染物有效防治,重金属污染物将在土壤、大气、水中逐渐累积,从而形成重金属污染。本文以南京市重金属污染的产生、排放为例,对重金属污染产生的原因进行分析,并提出治理污染的对策。

1.南京市重金属污染物产生和排放现状

南京市的重金属污染主要来源于工业;南京市13个区县中涉及重金属污染物产排的企业数为82家;重金属污染物排放主要通过废水和废气排放。

涉重废水排放总量为1075.24万吨/年,废水中各重金属污染物排放量分别为汞(Hg)0.27kg/a、镉(Cd)25.86kg/a、总铬(Cr)449.24kg/a、六价铬(Cr6+)361.14 kg/a、铅(Pb)174.67kg/a、砷(As)2.81 kg/a、铜(Cu)698.03 kg/a、镍(Ni)96.23kg/a;涉重废气排放总量为74591.10×104m3/a,废气中各重金属污染物排放量分别为汞(Hg)0.032kg/a、镉(Cd)52.66kg/a、铬(Cr)28.85kg/a、铅(Pb)150.68kg/a、砷(As)39.43kg/a。

含重金属危险废物产生量为4956.33t/a,其中综合利用量为3123.67t/a,处置量为1706.06t/a,贮存量为126.6t/a,排放量为零。

2.南京市重金属污染的主要原因

通过对南京市涉及重金属污染的企业的调查分析,南京市重金属污染的主要原因有以下几个方面:

(1)企业规模以中小型为主,分布散乱

南京市涉重企业规模普遍偏小,分布散乱,遍布区县各处,污染物未能全部稳定达标排放,废水、废气治理措施较传统、简单,很多企业大部分企业未能进入工业园区进行统一管理,为环境监管带来了很大的不便,也为加快区域内资源共享、信息公开化建设设置了障碍。

(2)产业结构不尽合理,发展方式粗放

近年来,南京市一直致力于产业结构的调整,目前正处于产业结构的转型期,仍有一部分高投入、高耗能、高污染的企业未被淘汰,特别是一些涉重的中小型企业,工艺落后,经济基础薄弱,从经济、技术等各方面开展重金属污染治理的难度又都比较大,即使企业关闭,重金属累积的特性也会给企业所在区域带来隐患。

(3)法规制度建设滞后,环境标准不健全

目前我国还没有重金属污染治理和土壤污染治理的专门法规,南京市主要按照现行的《环境空气质量标准》和《地表水环境质量标准》中对重金属的控制要求对涉重企业进行管理;现行标准主要针对污染源达标排放提出,不涉及重金属的累积效应,关于人体健康的重金属环境标准不健全。

(4)基础工作薄弱,相关技术欠缺

由于长期对重金属污染忽视,重金属的监测、防治技术研究等基础工作较为薄弱,南京市重金属污染物整体排放情况和环境受污染程度尚未完全摸清,对重点防控企业、区域及污染隐患的危害程度掌握不够。同时重金属污染的科学研究、技术政策等还远远滞后于污染防治的迫切需求。

(5)污染隐蔽性强,治理周期长

重金属元素化学性质稳定,通过水、气、固废等多种途径可以在环境中长期积累,并通过食物链逐级富集,最终进入人体累积,使得留在人体的重金属含量成倍放大,传统的环境达标观念由于重金属的富集特性失去效用,待累积到一定程度发生污染事件时大多已经造成了极为严重的后果。一旦环境受到污染,需要比常规污染物治理更长的治理周期、更多的治理成本和更高的治理难度。

(6)环境监管能力不足,监管难度大

长期以来,南京市对重金属污染重视力度不够,各级环保管理仍主要针对常规污染物的管理,重金属污染监管措施不完善,特别是企业废气中重金属污染的管理几乎为空白;各级环保监测系统建设均主要注重常规性污染物指标监测,重金属监测能力不足,缺乏高精确度重金属检测仪器。

3、重金属污染防治对策

消除重金属污染除了对污染进行治理、对环境进行修复外,更需要对可能出现的重金属污染进行预防,从根本上解决重金属污染的问题。

(1)大力推行清洁生产审核,提升企业清洁生产水平

通过清洁生产审核,对企业的生产、产品或提供服务全过程的定性和定量分析,找出高物耗、高能耗、高污染的原因,有的放矢的提出对策、制定方案,从源头减少和防止重金属污染物的产生。对国内外现有的先进技术、工艺进行科研攻关,研究和开发具有自主知识产权、符合国内重金属行业发展要求的清洁生产核心技术和装备。

(2)严格控制企业、区域内部重金属污染物排放

严格控制区域内企业的重金属废气排放,重金属废气需进行处理,排放口达标率为100%;强化无组织废气收集、治理技术,在运输、生产的过程中减少无组织废气对环境的危害。区域严格执行《中华人民共和国固体废弃物污染环境防治法》等有关法规,实现固废的全面无害化处理。

(3)开展重金属排放企业专项整治。

要结合环保专项行动,对涉及排放重金属的企业进行全面排查和整治,彻底解决工艺落后、污染严重的铅酸蓄电池、铅冶炼等企业的环境安全隐患,严厉惩治涉及重金属的环境违法违规问题。对位于饮用水源保护区的企业一律停产关闭;对污染治理设施不正常运行、长期超标及超量排放的企业一律停产治理;对发现重大环境安全隐患的企业一律停产整改,整改不到位的坚决予以关闭。

(4)加快区域内资源共享、信息公开化建设

通过信息交换中心的企业环境行为公开披露的功能,把建设项目审批程序、重金属污染物排污费缴纳标准、资源型企业可持续发展准备金制度、达不到环保要求的重金属企业名单和来信来访处理等信息全部向社会亮相公开,主动接受广大公众和社会各界监督,督促企业保护环境。。

(5)加强政府行政干预、监督管理

加强政府行政干预,建立健全环境执法机构,加强和充实环境执法力量,制定赔偿和生态补偿等管理政策和其他约束性政策。实施环境保护目标责任制,明确环境保护目标的分管部门和分管领导,奖惩制度,并定期检查与考核目标落实情况;落实环境行政执法责任制,规范环境执法行为,加强环境执法硬件水平;建立和落实岗位责任制及其考核要求。

(6)建设区域环境风险预防和应急体系

区域必须建立统一的风险防范组织管理机构,根据《国家突发环境事件应急预案》,制定区域重金属环境事件应急预案,建立环境风险应急监测和管理系统,制定园区安全、健康与环境风险防范政策,初步建立区域安全与健康、风险防范体系。开展社会风险防范宣传教

育,提高人们的风险防范意思,要求区域内企业对紧急事故能够做出快速反应,及时采取补救措施,减少环境危害和企业的经济损失。

(7)加速已污染区域修复治理工作

对已造成重金属排放的重点区域,要重点抓好土壤污染本底调查,布设更密集的监测位点,采样分析重金属污染现状,针对各区域的污染程度和污染特征,制定详细的区域重金属污染修复治理计划,并作为重金属污染修复试点,选择成熟的修复方案,进行可行性研究,改善质量,防范风险。

(8)开展重金属污染健康危害监测与诊疗

建立和完善覆盖全市的重金属污染健康监测网络,建立重点防控区健康监测和报告制度、敏感人群定期体检制度,完善重金属污染健康危害评价、人群健康体检及诊疗和处置等工作规范。开展重金属环境与健康危害的调查研究。定期对重点防控区域内潜在风险人群有计划地进行健康检查,对可能发生的健康危害进行预警,对需要治疗的人群积极诊疗。

(9)对发生事故的区域实行限批

重点防控区内如发生涉重污染事故,需对肇事企业立即停产治理,情节严重则由地方政府责令关闭,对外环境造成的影响应进行评估,采取相应措施,减轻或消除对外环境和人群造成的影响,在事故处理结束前对区域内所有涉重项目实行区域限批。

4.总结

重金属污染是一个长期累积而形成的,必须在重金属污染产生之前进行预防,对重金属污染必须进行源头治理,从根本上解决重金属污染问题。

参考文献

[1]徐林通 土壤重金属污染防治方法综述 知识经济 2011年第21期 86;

篇(6)

关键词:沸石;重金属;土壤修复;应用

中图分类号:X53 文献标识码:A 文章编号:1674-0432(2011)-03-0200-1

0 引言

随着我国工业化进程的加快,重金属污染已成为我国土壤环境面临的主要问题之一。土壤重金属已经严重影响植物的生长及作物的生产,并随着食物链进入人体,近年来不断暴露的砷、铅和镉等重金属中毒事件表明,重金属已对部分地区人群健康构成严重的危害。目前,重金属污染已经成为一个全球性的重大环境问题,并由此针对污染的土壤进行修复已经成为各国研究的重点之一。

1 沸石在土壤改良中应用前景良好

天然沸石是一种含水的碱金属和碱土金属的架状铝硅酸盐矿物,具有较强的选择吸附性能、离子交换性能和较大的吸附容量,在改良土壤方面有独特的作用。我国天然沸石储量达40亿t,位列世界前茅,年生产能力800万t。沸石具有许多独特的特征:晶体架状结构的沸石,中间形成很多的空腔和孔道,就使其能吸附并储存大量分子,具有很强的吸附作用;沸石晶体骨架中阳离子与骨架联系较弱,当其与某种金属盐的水溶液相接触时,两种容易发生阳离子交换;沸石的内部比表面积很大,每克沸石的比表面积可达355-1000m2,其结晶骨架上和平衡离子上的电荷局部密度较高,并在骨架上出现酸性位置,使其具有固体酸性质,是有效的固体催化剂和载体。

除此之外,沸石还具有良好的热稳定性和耐酸性。由于沸石作为吸附剂和催化剂,在使用和再生时,往往要遭受高温和强酸的作为,所以沸石的耐高温和耐强酸的性能较好。

2 沸石在重金属污染中的应用现状

据报道,世界各国矿业开发所产生的尾矿每年就达50亿t以上。而自20世纪50年代以来,我国大量开采各种矿产资源,在矿产资源挖掘、选矿和冶炼过程中对周边的土壤环境产生了不同程度的污染,尤其在广西、云南、湖南等矿业大省更为严重,目前这种局面并没得到很好改变。近几年来,政府和相关部门通过各种措施,但由于技术不成熟和资金缺乏等问题,土壤环境的根本性改善需要几十年,甚至更长的时间。

目前,针对土壤污染而展开的修复工作层出不穷,一般集中在微生物修复、植物修复、化学修复和农业措施等这四个方面进行修复。

沸石在改善土壤养分状况、盐碱地改良、土壤物理性状改善和污染土壤修复等方面的应用受到广泛关注,国内外许多学者也开始对沸石处理重金属污染方面也进行了相关研究。比如,江伟武等利用沸石分子筛处理含汞废水时发现,沸石分子筛对二价汞有较强的去除作用,并有较大的吸附容量,按汞与分子筛质量比为32mg/g进行处理,汞的去除率达99%以上。刘伯元等发现,沸石还可以与化肥混合或者作为复合肥施用,可以减少有效营养元素的流失(达20%以上),并能改良土壤性能,显著降低农业种植成本。有研究表明,沸石配以骨炭施入土壤中可有效降低土壤有效态重金属含量,使轻度污染土壤上的蔬菜达到卫生安全标准。沸石对土壤重金属铅具有一定的钝化效果,可有效抑制土壤铅的迁移及生态有效性。可见,合理施用天然沸石可钝化土壤中重金属,降低重金属的活性,从而降低农作物的重金属含量,在低污染土壤中应用广泛。

沸石还可人工合成。Xavier Querol等施用粉煤灰合成沸石达到污染土壤中的重金属固定的目的,降低其在环境中的迁移性和生物可利用性。经过试验,当每公顷土壤中使用25000kg的沸石时,大多数金属(Cd, Co, Cu, Ni, Zn)的浸出能力就下降约95-99%,土壤中重金属被钝化了,对作物的毒害也就相应减弱了。王焰新等也认为合成的沸石在处理水中重金属时,对水中重金属的吸附容量比粉煤灰的高。Wei yu Shi等则综述了天然沸石修复有害重金属污染的相关方面的理论后认为应该侧重于对天然沸石的单/联合整治。但是,也有研究认为,利用天然沸石能降低土壤中活性锌的含量,但对酸溶性铅和镉的含量不产生影响。

3 沸石在土壤重金属污染修复技术研究的展望

沸石的利用是一项新兴的高效修复技术,其来源广泛,成本低。我国煤矿资源丰富,钢铁水泥等工业比较发达,如果能利用粉煤灰合成沸石对污染土壤进行固化,不仅成本降低了,而且还实现了在钢铁水泥工业中粉煤灰的回收利用,大大减少空气中可吸入颗粒物含量,从而达到空气与土壤的a双重处理的效果。所以利用沸石来处理重金属污染土壤的技术,具有良好的经济效益,社会效益和环境效益,因此具有广阔的应用前景。

参考文献

[1] 陈同斌.重金属对土壤的污染[J].金属世界,1999,(3):

10-11.

[2] 韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状[J].地球科学进展,2002,(6):833-839.

篇(7)

1指示生物的含义及其优点

指示生物又叫生物指示物(BiologicalIndicator,Bioindicator),是指在一定地区范围内,能通过特性、数量、种类或群落等变化,指示环境或某一环境因子特征的生物[1]。使用生物体来对环境状况进行监测的历史由来已久。早在古希腊时期,亚里士多德就把淡水鱼放到盐水中,观察其行为。在工业革命时期,金丝雀被放到地下煤矿中,工人通过观察金丝雀的特殊反应,及时离开煤矿避险;20世纪初期,欧美生物学家为了应对河流湖泊污染,开始研究利用水生生物监测水环境污染。中国开展指示生物监测河流污染研究是从20世纪80年代开始的,到目前还没有完善的监测指标体系,尚需进一步发展研究。使用指示生物监测方法,监测水体重金属污染状况,有着传统理化监测不可比拟的优点,主要表现在[2]:(1)反映生物学效应。常规分析技术只说明污染程度偏离正常值,常常忽视生物个体以及种群对外源性污染物的效应;(2)灵敏性。重金属在一般水体中,浓度很低,Cu、As、Cd、Hg在水体中的浓度通常在1×10-2~10μg/L之间,甚至在检测限以下。生物监测利用生物对重金属的灵敏性、富集、放大作用,准确快速监测出水体中重金属的污染状况;(3)长期性。指示生物可以持续监测水体,可以反映出剂量小,长期作用的慢性毒性效应;(4)综合性。重金属在生物体内可以表现为协同效应或拮抗效应等复合污染效应,指示生物可以反映出重金属对其的综合效应;(5)范围广。(6)成本低。

2指示生物的分类

生物监测是使用活着的生物获得定量的环境变化信息,而这些环境变化往往来自于人为活动。指示生物是生物监测的重要组成部分,根据物种不同,指示生物可以分为动物、植物、微生物。根据不同的环境介质,指示生物又可分为土壤、大气、水体生物。根据生态学层次不同,可以分为个体以及系统水平上的指示生物;种群、群落、生态系统水平上的指示生物[3]。由于重金属在不同的生态学层次中有不同的表达特征,掌握这些特征,对准确监测重金属污染有重要作用。

2.1个体、系统水平上的指示生物研究

2.1.1水生植物监测重金属研究水生植物是指能正常生长在水中的植物。按照水生植物的形态结构和生活习性,水生植物可以分为三类:水生维管植物、水生藓类、高等藻类。底栖植物长期暴露在水环境中,能直接吸收水体和沉积物中的污染物,而积累的重金属元素在其体内不表现出生物响应[4]。然而,环境重金属的压力会导致部分水生植物出现生理变化和生理功能减弱[5],对指示生物的监测,就是监测其生理变化和生理功能改变,以反映水体重金属的污染状况。水生维管植物通过发达的根系和叶子吸收水体中重金属,结合其定栖的习性,使其适用于监测水环境状况的变化[6]。Fawzy等[7]研究6种水生维管植物富集重金属能力,发现维管植物提供一种具有成本效益的方式来监测水体重金属污染。Magdalena等研究波兰南部沿海地区多种水生植物对汞的累积性时,发现开花维管植物体内汞浓度随着河流中汞浓度上升而增加。苔藓植物自1971年Goodman等人发明藓袋法监测重金属开始,藓袋法在世界范围得到了广泛应用。有研究表明,藓袋法对于河流重金属的慢性污染有良好的监测效果。藻类植物种类繁多,主要有硅藻、绿藻、蓝藻等。藻类吸收重金属后,将影响藻类蛋白质合成以及酶活性,引起藻类生长代谢与生理功能紊乱、抑制光合作用、减少细胞色素、导致细胞畸变、组织坏死、甚至使机体死亡。同种重金属由于价态、化合态和结合态的不同,藻类吸收后引起的毒性也不同,藻类监测重金属就是利用这种特异性。LalitK等利用硅藻监测恒河重金属Cu和Zn,发现细胞膜发生畸变,表明硅藻细胞膜形态异常可以用来监测水体重金属污染。Chakraborty使用海底藻类监测海洋重金属污染,发现绿藻和褐藻能高度富集重金属,可以作为潜在生物指示物用于指示重金属污染。

2.1.2水生动物监测重金属研究水生动物是生态系统重要组成部分,最常见的是鱼类,此外还有腔肠动物,如海葵、海蜇、珊瑚虫;软体动物,如乌贼、章鱼;甲壳动物,如虾、蟹;其他动物,如海豚、鲸(哺乳动物)、龟(爬行动物)等其他生物。水生动物往往能够积累某些重金属,对重金属毒性作出相应的行为反应或表现出某种遗传特征,因此,这一类水生动物能成为监测重金属污染的生物指示物。在突发性重金属污染胁迫下,水生动物常常能作出生物学行为反应。水生动物行为反应能直观、快速地反映水质变化,常见的指标有呼吸、生长、心率、求偶行为和游动行为等。Gendusa发现黑鳟暴露在Cr6+环境中时,快速的胸鳍运动能作为外部生物标识监测Cr。Svecevicius等研究虹鳟鱼在Cr6+胁迫下的行为变化,发现虹鳟鱼的游动行为随着Cr6+浓度增加而增加。黄东龙对斑马鱼行为反应进行研究发现在Zn2+和Cr6+的突发性胁迫下,其行为反应快速而且敏感,表明斑马鱼的行为变化能对突发性重金属污染进行监测,提供早期预警。

2.2种群、群落、生态系统水平上指示生物研究重金属对生物的有害性研究往往侧重个体或细胞水平,然而不同水平上的生物有害效应具有非线性的层次性,即高一级的生物水平上的效应可能具有不能从次一级水平上得到的预测的新特征。如生物标志物的研究集中在细胞水平上,通常不能直接扩展到个体甚至种群水平上,因为细胞水平的毒性效应可能被组织的补偿机制所掩盖。同样,个体的重金属浓度、行为特征等参数并不能直接推移到种群水平上,要监测水体重金属的生物效应,更需要关注种群、群落甚至生态系统上的生物监测研究。生物在重金属胁迫作用下,群落内不同生物具有不同的响应,尤其是长时间低剂量暴露的情况下,群落种数发生变化,同时群落结构也发生变化,敏感种减少,耐受性种成为优势种。常用的利用微生物群落监测水体重金属的方法是国标PFU法(GB/T12990-91)。PFU(polyure-thanefoamunit,聚氨酯泡沫塑料块)法就是将PFU浸没在水中,利用PFU的小孔径(约150μm),采集微型生物群落,并评价水质。研究表明,高浓度重金属影响底栖生物和浮游生物的多样性。

3对指示生物进行环境风险评价的应用研究

通过指示生物监测获得的环境状况,往往是生物体内重金属浓度的数值,还需要使用适合的评价方法反映当前环境的污染程度,以及后期可能带来的环境风险,提出合理的控制对策。当前水体重金属评价往往局限于对当前浓度的评价达标与否,忽视了长期低剂量暴露下造成的生态风险和对人体的健康风险。对指示生物的风险评价有利于量化这一不确定性的风险。风险评价可分为生态风险评价与健康风险评价。生态风险评价是一个预测环境污染物对生态系统或其中某些部分产生有害影响可能性的过程。环境健康风险评价是以风险度作为评价指标,把人体健康和环境污染相联系,通过定量描述在污染环境中人暴露所受危害的风险。

3.1指示生物在生态风险评价中的应用目前,这些水生生物重金属评价方法均能反映区域水质生态风险水平,实际应用中,为了更全面评估各种风险水平,常常同时使用多种评价方法。其次,还有基于种群、群落的生物评价方法,如对于水体物种种群丰度、敏感种的生态风险评价,常采用生物评价指数。生物评价指数有很多,如基于敏感种和耐污种的出现与否构建的指数BMWP(Bi-ologicalMonitoringWorkingParty)、基于物种的耐污值及其在群落中的重要性构建的FBI(FamilyBioticIndex)指数、基于物种丰度和耐污值构建的BI(Biot-icIndex)指数等。这些评价指数对各种环境问题的灵敏性不一,有研究发现,FBI指数可以有效指示酸污染与氨氮污染,BI指数可以评估流域土地利用和重金属污染对河流生态的影响。

3.2指示生物在健康风险评价中的应用健康风险评价将人体健康和环境污染联系在一起,定量估算有害物质对人体健康的危害程度,并提出减小环境健康风险的对策。指示生物能用于评估重金属对人体健康风险水平,为食用水生生物、消费水产品人群提出早期预警以及安全指导。健康风险评价的程序分为:危害鉴定、剂量反应评估、接触评估、风险评定等四个阶段。目前,健康风险评价方法已被法国、荷兰、日本、中国等许多国家和一些国际组织如经济发展与合作组织(OECD)、欧洲经济共同体(EEC)等所采用。计算生物体内重金属的潜在非致癌风险值,通常使用目标风险系数(THQ),而致癌风险的计算,则使用致癌系数(CR)表示。在重金属防治对策制定的过程中,必须考虑重金属对人体的危害程度,指示生物的环境健康风险评价能科学地评估其风险值,从而指导决策的制定。

4结语