期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 电力电子现状

电力电子现状精品(七篇)

时间:2023-11-18 10:17:11

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇电力电子现状范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

电力电子现状

篇(1)

【关键词】电力电子;系统;集成;标准芯片

电力电子技术被广泛应用在各行各业,尤其是建筑工业中,电力电子技术设备使用率较高。电力电子技术的应用不仅提高了这些应用行业的技术性、安全性以及工程成本管理质量,还极大的增加了人们对电力电子技术的信任。电力电子技术的应用不仅能够降低工程对人力的使用,在降低人员雇佣成本的同时降低了事故发生的概率,尤其是一些危险性较高的行业如煤矿开采。电力电子技术的应用是时展、人们需求日益提高、企业发展的要求,因此,对电力电子集成技术畸形研究和探索是极其有必要的。

1、标准芯片的集成分析

电力电子集成技术的运用极大的促进了电力电子模板的设计和建成。电力电子模板设计不同于其他模板设计,其设计工作难度更大、对技术性要求更高,当然其成品模板的技术性优势也更高,具有较高的通用性且无论是接口还是系统都具有标准化水平,能够实现对电压、功率以及数据的良好传输。此外,电力电子模板的接口较为标准,能够将整个电力电子系统间的各个设备有效的连接,从而实现整个电力电子系统的集成化效果,便于整个电力电子系统满足用户的需求,提高系统的工作效率。

2、对变流器拓扑选择的相关标准分析

变流器是电源产品的核心,在大多数的通信和移动设备中使用的都是直流电,照明设备大多采用的是交流电,然而,现在在电灯等照明的器件中会放入很多强度比较大的气体,在变流器应用的环节中,由于LED 技术的高速发展,照明电源中的直流电会被分流。

为此,要分析在通信和移动技术中所使用的直流电,分析这些设备中使用的变流器的特点,然后制定拓扑的相关指标,对传统的变流器拓扑和现代化的变流器拓扑进行比较和评估,分析出变流器拓扑选择的标准主要有以下几个:

2.1 输入电压的差异

如果输入的电压过高,就可以采用零电压的形式,如果输入的电压过低,就必须使用同步整流,将电压提高到标准的范围内,现在,如果电压低于12V 时就必须进行同步整流。

2.2 功率等级的差别

如果功率的等级大,在拓扑的时候就需要运用大量的开关,如果功率的等级小,只需要几个开关就可以进行拓扑,在一般情况下,如果功率大于1 千瓦时,就要用4 个以上的开关,如果功率小于1 千瓦,运用两个开关即可。电源数量与拓扑指标的关系分析见下表。

3、中功率变流器拓扑的选择

全桥的拓扑方法在中功率的条件下应用比较多,能够提供标准化的模块,在对全桥拓扑形式进行选择的时候,处除了进行初步的选择之外,还要进行拓扑适应特征的实验,对转化的效率进行分析,分析拓扑过程中产生的耗损,分析器件的应力是否合适,分析拓扑在串联和并联的效果是否是好的,从而判断集成性效果。从开关的方式来分析,全桥开关能够使用传统的OWM 开关和移向全桥开关,从拓扑的原理来分析,能够将其设置成谐振型的拓扑和OMW 型的拓扑。为了使拓扑的效果更好,应该将电压设置成400V,然后输入,在拓扑指标的基础上,对全桥拓扑的效果进行对比分析,从而得出结论。

4、变流器的对抗特点分析

电力电子集成系统的设计能够实现电力电子系统模板设计的快速化、高效化以及其质量保证。电力电子模板的设计关乎用户对电力电子系统性能是否满意、系统稳定性是否合格,而且,电力电子模板设计工作中会出现诸多问题,例如电力电子模板兼容性以及串并联的使用等。尤其要注意对合并模板过程中开关波纹大小的调整,保证其数值稳定在安全范围内。此外,由于模板中设计的过滤装置会使得整个电力电子系统电压错乱,极易出现设备烧毁事故,而究其原因,主要是因为过滤装置安装后导致整个电力电子系统的大小信号不稳定,从而导致设备对电压的失控。鉴于电力电子系统大小信号稳定性的重要作用,必须在设备运行期间加强对信号稳定性的关注度,否则将导致电力电子集成系统的整体和局部故障,甚至造成整个系统的毁坏。

5、输入阻抗的改进措施

变流器是整个电力电子集成系统中的重要设备,它保证来了电力电子系统对电流的变压处理,但是,该设备的应用也极大的降低了电力电子系统的稳定性和安全性,例如系统电压失控、电流变压处理故障等等。面对这些问题,此时最好的解决措施就是对电压环的环路线路进行调整,对环路中的相位裕度调整至90度左右,此时会出现电流量以及电流阻抗量数值变化的情况,这是要对电流环的穿越频率进行提高并对过滤装置的波纹进行设置,此时就能缓解电流环周边组抗力降低的问题了。

另外,变流器因为电压变化以及连铸机设备的运转影响也会出现阻抗力降低的问题,此问题最突出表现在电压环穿越频率和阻抗力的降低。面对这一问题,为了避免阻抗力的下降常见的解决措施为提高电压穿环附近的带宽数值,并将其相位裕度数值限定在60度左右。此外,极大影响阻抗力数值变化的设备运转环境还有运用峰值的模式对变流器进行拓扑,这将导致阻抗力数值的骤然下降。阻抗数值是不能随意变化的,否则将造成系统的损坏。面对这类问题,普遍采取的措施为采取合适的拓扑方式并限定相位裕度的数值,调整电力电子系统运转的荷载条件,降低系统输出和输入的功率数值差异。电压环中阻抗力的骤降对整个电力电子系统的稳定性将造成极大的影响,因此,必须重视这一问题的解决,不断总结和记录,对新出现影响阻抗力数值问题的原因进行探究和分析。

6、阻抗的输出措施

阻抗力数值大小和稳定性关系到整个电力电子系统的安全性和运转的有效性,因此,必须重视对整个电力电子系统阻抗力数值的调整,尤其是其输入和输出数值,更需要注意调整。在对阻抗力输出数值进行调整时,要降低其数值,避免数值过大,而相应的阻抗力输入数值要调整到一定数值,利用一或者二阶段系统的输出条件,对阻抗力进行调整,这样能够避免阻抗力数值的骤然下降。此外,还要控制好阻抗和谐振的频率,无论是一阶还是二阶输出系统,都要重视对频率的调整和把握。

7、结语

总而言之,电力电子技术在建筑工业等行业中的应用已取得显著的成效,极大的提高了其工作效率、质量以及安全性,电力电子技术在诸多行业和工程中被广泛的肯定。而随着计算机网络技术的发展,其技术应用率更是被提高到更高的阶段。因此,必须重视对电力电子集成技术的研究,从这方面来提高电力电子技术和系统的质量水平。电力电子集成技术发展的根本就是不断的利用计算机网络等新兴技术来对工程施工的科技含量进行提高,这些技术是实现电力电子技术系统被更广泛的使用的根本。

参考文献:

[1] 钱照明, 张军明, 谢小高, 顾亦磊, 吕征宇, 吴晓波. 电力电子系统集成研究进展与现状[J]. 电工技术学报,2012,03:1-14.

篇(2)

【关键词】电力电子电路;电力电子;电子元件

电力电子技术诞生近半个世纪以来,使电气工程、电子技术、自动化技术等领域发生了深刻的变化,同时也给人们的生活带来了巨大的影响。目前,电力电子技术仍以迅猛的速度发展着,新的电力电子器件层出不穷,新的技术不断涌现,其应用范围也不断扩展。不论在全世界还是在我国,电力电子慢慢的被人所熟知,下面我们就电力电子电路和其应用、结构等进行简单阐述。

1.电力电子电路

1.1 电子电路的概念

电子电路时利用电力电子器件对工业电能进行变换和控制的大功率电子电路。因为电路中无旋转元、部件,故又称静止式变流电路,以区别于传统的旋转式变流电路(由电动机和发电机组成的变流电路)。电力电子电路始见于20世纪30年代,包括由气体闸流管和汞弧整流管组成的低频变流电路和由高频电子管组成的变流电路。它们构成了第一代电力电子电路。60年代由晶闸管组成了第二代电路,泛称半导体电力电子电路(又称半导体变流电路)。80年代,由于可关断晶闸管(GTO)和双极型功率晶体管(GTR)等新型器件的实用化,又逐渐在不同领域中取代了普通晶闸管并形成第三代电路。由于它们具有控制极关断和工作频带较宽的优点,使电力电子电路具有更佳的技术和经济性能,获得了更为广泛的应用。

1.2 电力电子电路的特征

电力电子器件一般都工作在开关状态导通时(通态)阻抗很小,接近于短路,电压降接近于零,而电流由外电路决定阻断时(断态)阻抗很大,接近于断路,电流几乎为零,而管子两端电压由外电路决定电力电子器件的动态特性(也就是开关特性)和参数,也是电力电子器件特性很重要的方面,有些时候甚至上升为第一位的重要问题。作电路分析时,为简单起见往往用理想开关来代替

1.3 典型电力电子电路的系统结构

电力电子电路的系统包括以下三种:

(1)电力电子器件:如功率二极管、晶闸管、功率MOSFET、IGBT、MCT等,分为不控型、半控型、全控型三种类型。

(2)电力电子电路:包括整流(AC/DC变换)、逆变(DC/AC变换)、直流变换(DC/DC变换)、交流变换(AC/AC变换)四大基本类型的变换电路。

(3)电力电子电路的辅助电路:包括控制电路、驱动电路、缓冲电路、保护电路等几大类电路。

1.4 电力电子电路的分类

按实现电能变换时电路功能分类,可分为4种。

①整流电路(AC/DC变换电路):具有整流功能的电路。凡将交流电能转换为直流电能的过程泛称为整流。

②逆变电路(DC/AC变换电路):具有逆变功能的电路。凡将直流电能转换为交流电能的过程称为逆变。

③交流变换电路(AC/AC变换电路):能将交流电能的大小和频率加以改变的电路。前者称交流调压电路;后者称变频电路。

④直流变换电路(DC/DC变换电路):能将直流电能的大小和方向加以改变的电路。由于采用斩波控制方式,故又称直流斩波电路。

2.电力电子技术的应用

自20世纪80年代,柔流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。已有不少文献介绍和总结了相关设备的基本原理和应用现状。以下按照电力系统的发电、输电和配电以及节电环节,列举电力电子技术的应用研究和现状。

2.1 在输电环节中的应用

电力电子器件应用于高压输电系统被称为“硅片引起的第”,大幅度改善了电力网的稳定运行特性。配电系统迫切需要解决的问题是如何加强供电可靠性和提高电能质量。电能质量控制既要满足对电压、频率、谐波和不对称度的要求,还要抑制各种瞬态的波动和干扰。电力电子技术和现代控制技术在配电系统中的应用,即用户电力(Custom Power)技术或称DFACTS技术,是在FACTS各项成熟技术的基础上发展起来的电能质量控制新技术。可以将DFACTS设备理解为FACTS设备的缩小版,其原理、结构均相同,功能也相似。由于潜在需求巨大,市场介入相对容易,开发投入和生产成本相对较低,随着电力电子器件价格的不断降低,可以预期DFACTS设备产品将进入快速发展期。

2.2 在节能环节的运用

在电气设备中,变压器和交流异步电动机等都属于感性负载,这些设备在运行时不仅消耗有功功率,而且还消耗无功功率。因此,无功电源与有功电源一样,是保证电能质量不可缺少的部分。在电力系统中应保持无功平衡,否则,将会使系统电压降低,设备破坏,功率因数下降,严惩时会引起电压崩溃,系统解裂,造成大面积停电事故。所以,当电力网或电气设备无功容量不足时,应增装无功补偿设备,提高设备功率因数。

2.3 优化电能的使用

通过电力电子技术对电能的处理,使电能的使用达到合理、高效和节约,实现了电能使用最佳化。例如,在节电方面,针对风机水泵、电力牵引、轧机冶炼、轻工造纸、工业窑炉、感应加热、电焊、化工、电解等14个方面的调查,潜在节电总量相当于1990年全国发电量的16%,所以推广应用电力电子技术是节能的一项战略措施,一般节能效果可达10%-40%。

3.电力电子技术目前在我国存在的主要问题

虽然我国电力电子的开发研究已有50年历史,过去已经取得了长足的进步,但是与超大规模集成电路的发展一样,该领域科技发展速度太快,加之我国财力和原有基础薄弱等因素的限制,特别是当前面临国外高科技冲击等原因,我国电力电子有种被“边缘化”的趋势:即各行各业都迫切需要它,但是,各应用领域均没将其作为研究重点,国内解决不了的就依靠进口!

当前存在的主要问题是:目前我国生产的大多数电力电子产品和装置还主要基于晶闸管;虽然也能制造一些高技术的电力电子产品和装置,但是它们均是采用国外生产的电力电子器件和组件多以组装集成的方式制造的;特别是先进的全控型电力电子器件则全部依赖进口,而许多关系到国民经济命脉和国家安全的若干关键领域中的核心技术、软、硬件和关键设备,国外均是对我国进行控制和封锁的。特别是关系到国民经济命脉和国家安全的若干关键领域中的核心技术与国外先进水平的差距更大,迅速改变这一现状是我们面临的挑战和义不容辞的任务。

参考文献

[1]陈章潮,唐德光.城市电网规划与改造[M].北京:中国电力出版社,1985.

篇(3)

关键词:电力工程 电力电子 电力传动系统

从学术的角度来看,电力电子技术的主要任务是研究电力电子器件(功率半导体)设备,转换器拓扑结构,控制和电力电子应用,实现电力和磁场的能量转换、控制、传输和存储,以便实现合理和有效使用的各种形式的能源,高品质的人力的电力和磁场的能量。

1.电力电子的研究方向

就目前情况而言,我国电力电子的研究范围与研究内容主要包括:

1)电力电子元器件及功率集成电路;

2)电力电子变换器技术的研究主要包括新的或电力能源的节约和新能源电力电子,军事和空间应用等作为特殊的电力电子转换器技术的智能电力电子变换器技术,控制电力电子系统和计算机仿真建模;

3)电力电子技术的应用,其研究内容包括超高功率转换器,在能源效率,可再生能源发电,钢铁,冶金,电力,电力牵引,船舶推进应用,电力电子系统的信息化和网络;电力电子系统的故障分析和可靠性;复杂的电力电子系统的稳定性和适应性;

4)电力电子系统集成,其研究内容包括标准化电力电子模块;单芯片和多芯片系统设计,集成电力电子系统的稳定性和可靠性。

2.我国电力电子发展中存在的问题

当前的主要问题是:中国的电力电子产品和设备目前生产的大部分是也主要是晶闸管,虽然它可以创造一些高科技电子产品和电气设备,但他们都使用电力电子外国生产设备和多组分组装集成的制造方法,尤其是先进的全控型电力电子器件全部依赖进口,而许多关系到国民经济和国家安全,在一些关键领域的核心技术,软件,硬件和关键设备,我国的外资控制和封锁。特别是在关系国民经济和国家安全,更多先进水平的核心技术差距的关键领域,这种情况正在迅速变化的挑战和我们的道德律令。

在过去,虽然我国国民经济的各个部门,先后引进了国外先进技术,已开始注意到国内突出的问题,从表面上看,虽然对引进技术的绝大多数可以在几年后达到国产化率70%的要求,但只要仔细分析,不难发现,并最终拒绝外国公司转让技术和关键部件,都涉及到高科技的电力电子技术和动力传动产品在核心技术。

目前国外和问题的主要区别是:电力电子器件的全面控制,不能制造国内制造的高功率转换器,低技术,设备可靠性差,电力电子数字控制技术水平仍处于初级阶段;应用程序的控制技术和系统控制软件的水平较低;缺乏经验的重大项目等。高性能高功率转换器设备几乎全部从国外进口。

3.电力传动系统的发展现状分析

目前我国电力传动系统的研究主要围绕交流转动系统展开,随着交流电动机调速理论的突破和调速装置(主要是变频器)性能的完善,电动机的调速从直流发电机-电动机组调速、晶闸管可控整流器,直流调压调速逐步发展到交流电动机变频调速。交流传动系统之所以发展得如此迅速,和一些关键性技术的突破性进展有关。它们是功率半导体器件(包括半控型和全控型)的制造技术、基于电力电子电路的电力变换技术、交流电动机控制技术以及微型计算机和大规模集成电路为基础的全数字化控制技术。为了进一步提高交流传动系统的性能,国内有关研究工作正围绕以下几个方面展开:

1)输入电流为正弦和四象限运行开辟了新的途径

高性能交流驱动系统电压型PWM逆变器中的应用日益广泛,PWM技术的研究更深入。PWM功率半导体器件采用高频开启和关闭,成为一个在一定宽度的电压脉冲序列法律的变化,为了实现频率,变压器,有效地控制和消除谐波的直流电压。PWM技术可分为三类:正弦PWM,优化PWM及随机PWM。正弦PWM的电压,电流和磁通正弦PWM计划的目标包括。正弦PWM普遍提高功率器件的开关频率将是一个非常出色的表现,在中小功率交流驱动系统等被广泛使用。但为大容量的电源转换设备,高开关频率将导致大的开关损失,以及高功率设备,如GTO的开关频率仍不做的非常高的在这种情况下,在最佳的PWM技术只是满足的需求该设备。

2)应用矢量控制技术、直接转矩控制技术及现代控制理论

交流电机交流驱动系统是一个多变量、非线性、强耦合、时变控制对象,变频调速控制,电机控制的稳定状态方程的研究动态控制非常令人满意的结果的特点。70年代初提出研究交流电机的控制过程的动态,不仅要控制每个变量的振幅,而控制的阶段,为了实现交流电机磁通和转矩的解耦矢量变换方法,促使高性能交流驱动系统逐渐向实际使用。高动态性能的电流矢量控制变频器已成功应用于轧机主传动,电力牵引系统和数控机床。此外,为了解决系统的复杂性和控制精度之间的矛盾,但也提出一个新的控制方法,如直接转矩控制,方向控制电压,特别是与微处理器控制技术,现代控制理论在各种控制方法也得到了应用,如二次型性能指标最优控制和双位模拟调节器控制,可以提高系统的动态性能,滑(滑模)变结构控制可以提高系统的鲁棒性,状态观测器和卡尔曼滤波器可以得到状态信息不能测量,自适应控制能够全面提高系统的性能。此外,智能控制技术,如模糊控制,神经网络控制,也开始在交流变频调速驱动系统用于提高控制精度和鲁棒性。

3)广泛应用微电子技术

随着微电子技术的发展,数字式控制处理芯片的运算能力和可靠性得到很大提高,这使得全数字化控制系统取代以前的模拟器件控制系统成为可能。目前适于交流传动系统的微处理器有单片机、数字信号处理器(DigitalSignal Processor——DSP)、专用集成电路(Application SpecificIntegrated Circuit——ASIC)等。其中,高性能的计算机结构形式采用超高速缓冲储存器、多总线结构、流水线结构和多处理器结构等。核心控制算法的实时完成、功率器件驱动信号的产生以及系统的监控、保护功能都可以通过微处理器实现,为交流传动系统的控制提供很大的灵活性,且控制器的硬件电路标准化程度高,成本低,使得微处理器组成的全数字化控制系统达到了较高的性能价格比。

4.结论

虽然我国电力电子与电力系统传动系统技术得到了长足的发展,但与发达国家相比仍然存在较大差距,许多关键技术有待突破,关键部件还长期依赖进口的局面还没有打破。

参考文献:

篇(4)

【关键词】电力系统;电力电子技术;重要性;应用

对现代电工技术而言,电力电子技术是一项新技术,是在功率半导体器件、计算机技术、电路技术、现代控制技术等支撑下形成的一个技术平台,充分体现出电子技术与电力的充分融合,它在电力系统中的应用成为一项重要课题。

1电力系统中电力电子技术的特点及应用重要性

1.1电力电子技术的现代化特点

如今,新型电力电子器件的优势越来越明显,它使电力电子技术不断取得突变,逐渐拥有一系列现代化特点:一是全控化,它由普通的半控型晶闸管逐渐发展成为各种各样的自关断器件,这是电力电子技术的一项重大突破。自关断电力电子器件全控化的实现大大简化了电路,传统复杂的换相电路被取代。二是集成化,它的分立方式与一般电力电子器件完全不同,任何全控型器件都由多个单元器件并联而成,并在一个基片上集成。三是高频化,它指的是由于电力电子器件实现了集成化,所以其工作速度得到了显著的提升。四是高效率化,它主要体现在两个方面,包括变换技术与器件,即电力电子器件不断减少导通压降,损耗得到降低;变换技术能加快器件开关的上升与下降过程,所以开关损耗也得到降低;器件运行状态合理,运行效率有所提高,且软开关技术在变换器中的应用进一步提高了运行效率。

1.2电力系统中应用电力电子技术的重要性

在继承传统技术优势的基础上,现代电力电子技术做出了一系列适应经济社会发展需求的改变、调整,促使整个电力系统中电力电子技术扮演的角色越来越重要。一是优化使用电能,即电力电子技术不仅能保证电力系统运行正常,还能合理利用、配置电能及其他系统资源,促进电能实现10%~40%的优化,将其应用于电力系统是值得重视的。二是基于改造传统的产业而进一步推动机电产业实现一体化发展,即随着不断研发新型产业、发展高端科学技术,更多产业需在投入使用之前全面实施电力电子技术的处理、加工,以确保电力系统稳定安全运行。三是为发展变频化、高频化提供方向,即为使机电设备、仪器等能在缩小体积的基础上调整并提高其响应电力系统的速度,就需突破传统工频运作模式的限制,分析、研究电力系统的变频化技术、高频化技术,以支撑电力系统运行。四是电力电子技术正在朝着智能化的方向发展,它需要在信息、功率和谐发展的环节坚持促进电力电子技术与微电子技术的一体化进程,以推动整个电力系统尽早实现二次改革。

2电力系统中电力电子技术的具体应用

2.1应用于发电系统

在电力系统的发电系统中应用电力电子技术的主要目的在于使多种设备能改善运行特性,包括发电机组等,主要有大型发电机静止励磁控制、发电厂风机水泵变频调速、风力或水力发电机变速恒频励磁、太阳能发电控制系统等。具体而言,在发电环节应用电力电子技术主要是通过发电机组的变频调速、励磁控制来体现。对各大型电厂的发电机组来说,静止励磁系统的应用是最广泛、最普遍的,而大力发展电力电子技术使其将励磁机环节取代,促使静止励磁系统真正实现低成本、高性能的运作以及简化的控制构造。同时,电子技术对励磁机环节的取代使得静止励磁能有效地、迅速地对自身进行调节,以促进整个电力系统大大提高运作效率。

2.2应用于输电系统

电力电子技术在输电系统的具体应用主要包括三个方面:一是直流输电技术的应用,即出现第一项晶闸管换流器的阶段就标志着电力电子技术在直流输电中的应用,使电力系统具备稳定性良好、输电容量大、控制调节便捷等优势,这是电力电子技术应用于电力系统的一大亮点,为进一步建设电网提供条件。二是柔流输电技术的应用,即该项电力电子技术能对交流输电的阻抗、电压进行快速调节,为控制交流输电的功率提供保障,使电力系统控制的稳定性得到有效的改善。同时,柔流输电技术在电力系统中得到广泛应用的另一个原因在于它操作方便、价格低廉,其设备较其他设备而言不仅使用方便且便宜实惠,是大多数电力企业都会选择的电力电子设备。三是静止无功补偿器(SVC)的应用,它早在20世纪70年代就在电力系统中得到了广泛的应用,尤其是电力系统的输电线路补偿、负荷补偿。对大功率输电系统来说,应用静止无功补偿器能有效控制电压,同时提高电力系统的阻尼与稳定性。在设计静止无功补偿器时并没有包括旋转部件的内容,不会使用容量大的电容器,所需无功功率的获得主要是通过电感器来实现,通过迅速调控电抗器来实现将无功功率的发出平滑转变成吸收的目的。

2.3应用于配电系统

在配电系统中,电力电子技术的应用主要是指用户电力技术的应用,目的在于提高供电质量、增强供电可靠性。当下,配电系统的任务在于保证正常供电,使正常供电的连续性不受到妨碍,同时想方设法提高电能质量。如今,用户电力技术依旧是控制电能质量的最新电力电子技术,不仅能满足电压、频率、谐波以及不对称度等要求,还能对各种瞬态的干扰、波动等进行有效的抑制。用户电力技术的功能、结构等类似于柔流输电技术,将它应用于配电系统是未来电力电子技术应用于电力系统的重点研究领域。随着电子设备价格不断下降,未来的需求量将越来越大,使电力电子技术的发展也获得良好基础。

3结语

随着科学技术的高速发展,电力电子技术成为发展多项高新技术的基础,它将朝着促进经济发展、减少电磁干扰等方向继续改进和优化,在国民生活质量的提高方面发挥关键性作用,为电力系统的可持续发展提供保障,而这也是电力电子技术未来的发展趋势。

参考文献

[1]程鹏飞.电力电子技术的应用及发展前景探析[J].科学之友,2013(04):158+160.

[2]管炳文.电力电子技术应用系统发展热点综述[J].电子技术与软件工程,2014(16):151.

篇(5)

随着社会经济的快速发展,互联网技术已经与配电网电力电子装备联系的越来越紧密,对配电网电力电子装备的发展产生了重要影响。本文结合了当前配电网电力电子装备的发展实际,对配电网电力电子装备的互联与网络技术进行了探讨,分析了互联与网络技术在配电网电力电子装备中的应用,希望能够为今后有关方面的研究提供积极的借鉴意义。

【关键词】配电网 电力电子装备 互联与网络技术

现阶段,通信技术与电力电子技术的相互结合已经成为了配电网络发展的主流趋势,并且电力电子设备的广泛应用,对于配电网系统的变革将起到巨大的推动作用。在如今通信技术与电力电子技术相互融合的过程中,有必要探析配电网电力电子装备中的互联与网络技术。

1 配电网电力电子装备技术现状分析

电力电子装备技术其实就是电力电子装备实现电能的变化,在实现电力电子装备技术在配电网应用的过程中,有三种技术是不可或缺的,分别是变换器、半导体开关器件以及系统三个方面的技术。下面,笔者将进行具体的阐述。

1.1 变换器

变换器是电功率处理器的一种,变换器的作用主要是可以将某种幅度、频率转化成其他种类的幅度和频率的电能,这样一种转化的结果可以使得配电网的配电以及用户的用电得到保障。随着科学技术的不断进步,变电器数也在不断发展,经过电力电子技术人员的研究,拓扑机构已经研发出来,这一技术的出现,使得双向或者多向电能流动得到控制。与此同时,在不断发展的过程中,变换器的效率明显提高,甚至已经高达99%。尤其是在大功率系统当中,变换器技术对于电压和电流的处理可以轻松应对。

1.2 半导体开关器件

半导体开关器件作为电力电子装备技术的基础,主要包括了SCR、IGCT以及IGBT等器件。现阶段,电力电子装备技术应当将重心放在提升现有半导体开关器件的水平和性能与研发新型半导体开关器件上。半导体开关器件中,无论是材料的选取,还是器件的工艺选择,对于整体电路性能都会产生重要的影响。在对半导体开关器件的绝缘材料和磁性元件进行适当的改造之后,能够在降低能耗的前提下将器件的体积减小到合适的范围。

1.3 电力电子装备系统

电力电子装备系统的构成主要有多个变换器以及电路两部分,主要的应用领域在大型的电力电子装备。通常而言,在电力电子装备系统中,变电器连接的各种方式能够实现能量的处理。但是很多时候系统规模比较大,必须借助多个控制器才能保持系统的平稳运行。配备的控制器分为两种:变化器控制器和系统控制器。变换器控制器负责的是单一变化,而系统控制器负责的是全部变化器的运行数据,并下达相应的指令。

2 电力电子装备的互联和网络化技术

近些年来,电力电子装备技术已经广泛应用于电力系统运行过程中,配电网中也可以经常见到电力电子装备技术,以下就是电力电子装备技术的互联和网络化的主要架构,包括三个方面的内容:

2.1 即插即用的功率接口

即插即用的功率接口可以把各式各样的电气设备、发电等终端接入到配电网中,不同的设备之间,它们的电能输入的形式与电网是有所区别的,但是即插即用的功率接口可以把电能转化为功能,并且可以直接将各种设备电能输入的形式转化成可以和电网相匹配的形式,这样的一个接口就属于一个电力电子装备。与此同时,即插即用的功率接口还应当具有通信接口,能够实现网络连接。当然,通信接口要能够对终端设备进行识别,而且将终端设备运行的信息上传,使得其可以接受到系统的调控指令。

2.2 能量路由器

能量路由器是整个电力电子装备网络化技术过程中的智能管理模块,并且还属于中压低配网、低压区域网的相应接口。能量路由器在正常运行期间能够很好地实现电能的双向流动,既可以提供相应的低压直流母线,也可以提供可再生能源的电力设备。此外,能量路由器还拥有相应通信接口所拥有的功能,可以把终端设备的运行信息上传到各个网络端口,以此接受调控指令。指令值的确定需要由终端设备的具体工作状况决定,能量路由器这其中可以对故障电流起到限制作用,并且对低压的穿越起到保障效果,进而使得低压配电网的电压保持稳定。

2.3 操作系统

互联与网络技术操作系统其本质上就是一个通用的网络协议。要想对所有设备做到网络监督、统一识别,将管理效果提升上去,就必须统一协调全部功率接口和能量路由器,让二者能够同时支持这一网络协议。在操作系统实际运行过程当中,用户可以将这一网络协议安装到自己的电脑或者手机中,起到实时监控自家用电的效果,同时还可以充分了解到网络上的电价信息等,并通过对得到的有关信息进行数据整理和分析,进而采取必要的应对措施,提前预防。现阶段,在配电网电力电子装备的互联与网络化技术当中,最为重要的两个方面要属信息流极与能量流极了。虽然配电网能量层已经初步实现了互联功能,然而通信层面的建设还是需要逐步加强。

3 结语

总而言之,电力电子装备技术的发展对于配电网的性能改造具有十分重要的作用,并且有效推动了直流配电网的进步和发展。作为一个时变性很强的系统,配电网电力电子技术能够借助电力电子装备的有效运行达到电能变化的目的,电力电子装备技术同互联网通信技术的相互结合,是今后电网向前发展的潮流趋势,不仅对于电能与信息集成一体化有重要意义,对于我国的智能化电网建设和管理也起到了巨大的推动作用,

参考文献

[1]何湘宁,宗升,吴建德,等.配电网电力电子装备的互联与网络化技术[J].中国电机工程学报,2014,29(11):5162-5170.

[2]白鹏菲.配电网电力电子装备的互联与网络化技术探讨[J].山东工业技术,2016,13(06):181-181.

[3]任健.配电网电力电子装备的互联与网络化技术研究[J].科技与创新,2016,11(07):111-111.

[4]王惠铎,张挺,宋斌斌.配电网电力电子装备的互联与网络化技术探讨[J].电子技术与软件工程,2015,21(03):23-23.

作者简介

胡望波(1977-),男,湖北省黄冈市人。学士学位。现为湖北咸宁职业技术学院讲师。研究方向为电子技术、制冷与空调技术。

篇(6)

摘 要:文中概述性地介绍电力电子技术在电力系统中的各类应用,重点在发电环节中、输电环节中、在配电环节中的应用和节能环节的运用。

关键词:直流输电;电力电子;发电机

一、前言

电力电子技术是一个以功率半导体器件、电路技术、计算机技术、现代控制技术为支撑的技术平台。经过 5 0 年的发展历程,它在传统产业设备发行、电能质量控制、新能源开发和民用产品等方面得到了越来越广泛的应用。最成功地应用于电力系统的大功率电力电子技术是直流输电(HVDC)。自 20 世纪 80 年代,柔流输电(FACTS)概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。本文介绍了电力电子技术在发电环节中、输电环节中、在配电环节中的应用和节能环节的运用。

二、电力电子技术的应用

自 2 0 世纪 8 0 年代,柔流输电(F A C T S )概念被提出后,电力电子技术在电力系统中的应用研究得到了极大的关注,多种设备相继出现。已有不少文献介绍和总结了相关设备的基本原理和应用现状。以下按照电力系统的发电、输电和配电以及节电环节,列举电力电子技术的应用研究和现状。

( 一 )在发电环境中的应用

电力系统的发电环节涉及发电机组的多种设备,电力电子技术的应用以改善这些设备的运行特性为主要目的。

1 大型发电机的静止励磁控制静止励磁采用晶闸管整流自并励方式,具有结构简单、可靠性高及造价低等优点,被世界各大电力系统广泛采用。由于省去了励磁机这个中间惯性环节,因而具有其特有的快速性调节,给先进的控制规律提供了充分发挥作用并产生良好控制效果的有利条件。

2 水力、风力发电机的变速恒频励磁水力发电的有效功率取决于水头压力和流量,当水头的变化幅度较大时(尤其是抽水蓄能机组),机组的最佳转速便随之发生变化。风力发电的有效功率与风速的三次方成正比,风车捕捉最大风能的转速随风速而变化。为了获得最大有效功率,可使机组变速运行,通过调整转子励磁电流的频率,使其与转子转速叠加后保持定子频率即输出频率恒定。此项应用的技术核心是变频电源。

3 发电厂风机水泵的变频调速

发电厂的厂用电率平均为 8 % ,风机水泵耗电量约占火电设备总耗电量的 6 5 % ,且运行效率低。使用低压或高压变频器,实施风机水泵的变频调速,可以达到节能的目的。低压变频器技术已非常成熟,国内外有众多的生产厂家,并不完整的系列产品,但具备高压大容量变频器设计和生产能力的企业不多,国内有不少院校和企业正抓紧联合开发。

( 二 ) 在输电环境中的应用

电力电子器件应用于高压输电系统被称为“硅片引起的第”,大幅度改善了电力网的稳定运行特性。

1 直流输电(HVDC)和轻型直流输电(HVDC Light)技术直流输电具有输电容量大、稳定性好、控制调节灵活等优点,对于远距离输电、海底电缆输电及不同频率系统的联网,高压直流输电拥有独特的优势。1 9 7 0 年世界上第一项晶闸管换流器,标志着电力电子技术正式应用于直流输电。从此以后世界上新建的直流输电工程均采用晶闸管换流阀。

2 柔流输电(FACTS)技术

FACTS 技术的概念问世于 20 世纪 80年代后期,是一项基于电力电子技术与现代控制技术对交流输电系统的阻抗、电压及相位实施灵活快速调节的输电技术,可实现对交流输电功率潮流的灵活控制,大幅度提高电力系统的稳定水平。20 世纪90 年代以来,国外在研究开发的基础上开始将FACTS 技术用于实际电力系统工程。其输出无功的大小,设备结构简单,控制方便,成本较低,所以较早得到应用。

( 三 )在配电环节中的应用

配电系统迫切需要解决的问题是如何加强供电可靠性和提高电能质量。电能质量控制既要满足对电压、频率、谐波和不对称度的要求,还要抑制各种瞬态的波动和干扰。电力电子技术和现代控制技术在配电系统中的应用,即用户电力(Custom Power)技术或称DFACTS 技术,是在FACTS 各项成熟技术的基础上发展起来的电能质量控制新技术。可以将DFACTS 设备理解为FACTS设备的缩小版,其原理、结构均相同,功能也相似。由于潜在需求巨大,市场介入相θ菀祝开发投入和生产成本相对较低,随着电力电子器件价格的不断降低,可以预期DFACTS 设备产品将进入快速发展期。

( 四 )在节能环节的运用

1 变负荷电动机调速运行电动机本身挖掘节电潜力只是节电的一个方面,通过变负荷电动机的调速技术节电又是另一个方面,只有将二者结合起来,电动机节电方较完善。目前,交流调速在冶金、矿山等部门及社会生活中得到了广泛的应用。首先是风机、泵类等变负荷机械中采用调速控制代替挡风板或节流阀控制风流量和水流量具有显著的效果。国外变负荷的风机、水泵大多采用了交流调速,我国正在推广应用中。

变频调速的优点是调速范围广,精度高,效率高,能实现连续无级调速。在调速过程中转差损耗小,定子、转子的铜耗也不大,节电率一般可达30% 左右。其缺点主要为:成本高,产生高次谐波污染电网。

2 减少无功损耗,提高功率因数在电气设备中,变压器和交流异步电动机等都属于感性负载,这些设备在运行时不仅消耗有功功率,而且还消耗无功功率。因此,无功电源与有功电源一样,是保证电能质量不可缺少的部分。在电力系统中应保持无功平衡,否则,将会使系统电压降低,设备破坏,功率因数下降,严惩时会引起电压崩溃,系统解裂,造成大面积停电事故。所以,当电力网或电气设备无功容量不足时,应增装无功补偿设备,提高设备功率因数。

篇(7)

关键词: 高职院校《电力电子技术》课程教学改革

“电力电子技术”是电力电子变换和控制技术的简称,是一门新兴的电子技术、控制技术和电力技术的交叉学科,被国际电工委员会(IEEE)命名为电力电子学(PowerElectronics)或称为电力电子技术,是电气工程及自动化、工业自动化和其他相关专业的一门重要的专业基础课。通过本课程的学习,学生不仅可掌握电力电子线路的基本理论、基本概念和基本分析方法,为后续专业课程的学习打下良好的基础,而且可应用本课程知识独立分析、解决实际的工程技术问题。

目前,随着教学改革的不断深入和人才培养计划的调整,专业课程的课时大多被压缩。而《电力电子技术》课程的教学内容越来越丰富,教学要求也越来越高,无论是使用的教材,还是实验实践手段,都不能适应电力电子技术的发展。因此,高职院校对《电力电子技术》课程的教学内容、教学方法、教学手段和实验实践等进行全面的改革势在必行。

一、精心优化教学内容,以适应新形式下的教学要求

教学内容和课程体系的改革是教学改革的重点和难点。随着电力电子技术的发展,各种新型的电力电子器件的不断涌现,《电力电子技术》课程的教学内容也在不断丰富和不断更新,教师需要向学生传授的知识量多且面广,故精心优化教学内容显得尤为重要。

首先,教师要注意做好本课程与先修课程和后续课程的衔接,了解先修课程的教学情况,保持整个专业课程体系前后衔接,避免内容的重复和疏漏。例如“自关断器件”一章,电子技术基础中已讲授过小功率晶体管、场效应管的结构、原理、特性和应用。在本门课程中,对功率晶体管、功率场效应管应重点讲述其与小功率管的不同之处。对于晶闸管直流电动机系统部分,重点应在整流、有源逆变两种状态下,电流连续、断续时的电动机机械特性,而直流可逆调速系统的内容则简略讲解,详细的分析需放到后续课程“变频调速技术”中讲解。

其次,针对高职院校的教学是以技能培训为目标这一宗旨,理论教学应遵循必须够用的原则,降低理论难度,对繁杂的公式推导一律简化或省略,力求做到深入浅出,通俗易懂。如在完成课堂教学的过程中,涉及数学分析时,教师首先应削弱纯粹的理论推导和证明的教学部分,以减少分析量;又如在电力电子器件方面教师应压缩和删减半控型器件及控制电路的教学,强化全控型器件及控制电路的教学,重点介绍以IGBT、电力MOS―FET为代表的全控型器件。

最后,以应用为主线。电力电子技术既是一门技术基础课程,又是实用性很强的一门课程。在教学中教师要紧密结合实际应用,介绍电力电子装置,如把调光台灯、变频器、开关电源、软起动器等具体实物带入课堂,并在课堂上演示给学生看,增强学生的求知欲望。另外,教师要及时将本学科领域的最新科技成果引入教学,保证课程内容的基础性和先进性。教师可告诉学生三峡工程的直流输电工程,将直流500kV、3000A的绿色能源输送到距离一千多千米以外的上海。全国九大城市的变频调速和直流斩波地铁、磁悬浮列车,每年产值近200亿元的UPS,每年节电近8亿度的系列变频设备都成为电力电子对国民经济的新贡献。教师让学生了解到电力电子技术的发展现状及其在国民经济中的重大作用,可大大激发学生的学习热情,扩大学生的视野,启发学生的创新思维。

二、改进教学方法和教学手段,培养学生的素质和能力

《电力电子技术》既是一门十分重要的专业基础课,又是一门与工程实际紧密结合的课程。在学习这一门课时,学生常常提出这样的问题:学了这门课有什么用?我们不是泛泛地回答:这是专业知识体系要求的,而是在第一节课带来了许多具体实物,如调光台灯、变频器等,并在课堂上演示给学生看,学生对此很感兴趣,觉得电力电子技术的应用就在身边。当看了这些实物演示后,我们问学生:为什么台灯能调光,为什么电机能调速?实物演示大大增强了学生对这门课的求知欲望。

多年来,《电力电子技术》课程的教学方法是以教师为中心,教师对教材中的每一个章节都讲得很细,力求在课堂上使学生完全弄懂,这样学生总是处于被动接收的地位,极大地妨碍了学生学习的主动性和积极性的发挥,不利于学生的素质和能力的培养;同时,由于课时的相对减少,教师无法在课堂上讲得过多过细。因此,教师在教学中要力求突出内容的重点和难点,但又要保证教学内容的系统性和完整性,对内容相似或易于理解的内容,予以简讲或指出其要点,并精选一部分内容留给学生去自学。另外,教师应注意因材施教、循循善诱,与学生多沟通,根据学生的掌握情况及时调整教学;耐心对待学生,运用多种多样的教学方法,如比喻法、类比法、启发质疑法、边讲边练法、实验演示法,提高学生的学习兴趣,多讲多练,保证例题讲解比重;每章配一次习题课,以学生练习为主,教师评讲为辅,反复强化重要的知识;加强综合训练,培养学生自主学习、增强分析问题和解决问题的能力。

《电力电子技术》教学内容结构图、波形图多,所以充分利用多媒体、网络资源等现代科技进行教学是最有效可行的方法之一。教师运用现代化教学手段可以增加直观程度、增大授课信息量,可以形象地表达一些文字语言难以描述清楚的问题,对学生更好地理解教材内容有事半功倍的效果。教师在教学过程中,也要避免过于依赖多媒体设备而忽略教师对教学的组织和教学内容的讲授,尤其不能只管播放课件,不顾学生的学习态度,不管学生的学习效果,否则使用多媒体课件不但收不到教学效果,反而会影响学生的学习积极性和对知识的掌握,因此,采用板书或课件,有选择、分主辅相结合的方式,更能充分发挥现代教学手段的优点,达到预期的教学效果。由于波形分析比较枯燥和繁琐,学生容易产生抗拒情绪,导致学习效果下降,针对这一难点,教学方法就显得尤为重要。教师在课程初期分析简单电路时应尽可能讲解详细一些,以保证学生能掌握自行分析的方法,从而提高在后期复杂电路的波形分析中的教学效果,也可以尝试采用两组学生各分析一部分波形再进行综合评议的多种教学方法。

三、加强实验实践环节,注重实践能力的培养

电力电子技术有很强的实践性,实验是培养理论联系实际、动手能力、严谨的科学态度和科学研究方法的重要手段。为了开好实验课,我系投入大量实验建设经费,购买了六套浙江天煌公司的“电力电子与自动控制系统”实验平台,同时增加了一些新的器件样品,使学生有更好的硬件条件开展实验。我们将单元电路的实践教学穿插在理论课的中间,使学生在“做中学”,从而更好地掌握电力电子技术的理论知识,并在课程结束后安排课程实训,可将电力电子技术及其他先修课程(电工基础、电子技术、电机学等)中所学到的理论和实践知识全面地结合起来,培养和提高学生自我获取知识的能力。在实验教学过程中,为了避免学生按照实验指导书“依葫芦画瓢”,教师要让学生明确实验教学的目标、任务,以及各阶段做什么、怎么做、达到什么标准,而不需要详尽地介绍到每一个具体细节。学生在实验实训中既动手又动脑,既能发现问题,又能在教师启发指导下分析问题和解决问题,才能从本质上学好这门课程,从而最终实现本课程在高职院校的教学目标。

四、改革考试制度

考题除了深度、广度和难度符合教学大纲要求外,更要着重对分析问题和解决问题的能力进行考核。近年来我们在《电力电子技术》课程的笔试考试中采用半开卷考试,即学生可以带一张写有与考试内容有关的稿纸参加考试,这促使学生在复习中进行自我总结。笔试考试的组织严密、规范,试卷规范,评分客观、公正,并建立了对考试结果进行教学质量分析的制度。课程成绩中,笔试成绩占60%,我们将平时作业与测验、实验、课程设计和答疑情况也记入总成绩,占40%,使成绩考核更全面、客观反映学生实际。

五、结语

通过近几年来的教学探索,我院《电力电子技术》课程的教学改革工作取得了较好的教学效果,得到了广大学生和督导老师的好评。学生的专业技术和创新能力得到了进一步提高,学生在相关后续课程的学习、课程设计、毕业设计中也表现出较好的能力。同时我们也感到要搞好这项改革工作,既需要学院的投入,又需要教师的艰苦努力和无私奉献。我们要积极探索教学内容、教学方法和教学手段的改革,以更好地适应时代和社会对技能型专业人才培养的需要。

参考文献:

[1]浣喜明,姚为正.电力电子技术(第2版)[M].北京:高等教育出版社,2004.11.

[2]王兆安,黄俊.电力电子技术(第4版)[M].北京:机械工业出版社,2002.

[3]陈坚.电力电子学――电力电子变换和控制技术[M].北京:高等教育出版社,2002.