首页 > 精品范文 > 能源动力工程专业方向
时间:2023-10-08 10:28:26
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇能源动力工程专业方向范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
当前各国家关注及面对的首要问题,就是环境和能源动力问题,而且,我国国家经济发展以及人们生活水平的主要物质保障就是能源动力工程,是我国实现四个现代化的前提。加之社会经济的不断深入,电气化机械化自动化的水平逐渐加强,对能源的需求越来越多。总体来说,国家生产总值和能源消耗量是成正比的。能源亦动能产品生产得越多,能源就需要得更多,从而带动社会经济的发展,实现民众生活水平的提高和国家的富裕。并且,在世界上我国属于煤炭生产消费大国,其主要能源动力供给就是煤炭。因此,污染我国大气的主要因素即未能充分燃烧的煤炭,再加上我国不可再生资源的开采程度及年限有限。所以,在能源动力及环境保护双重任务下,我国还面临着能源利用不充分,匮乏优质能源,及开发力度不足等问题。随着我国依赖国际能源的程度不断提高,能源安全迎来了新的挑战,须知,一个国家经济发展的动力命脉是能源。因能源问题导致的国家战争,而带来的领土问题更是数不胜数。因此,能源动力工程关系着国家安全、人们实际生活这两方面。众所周知,我国是人口大国总人口数占世界人口的五分之一,要落实解决民众生活问题,就必须加强农业发展力度,而农业发展就必须生产,其生产过程利用的电气化、机械化、水利化和化学化设备需要更多的能源支撑。那么,农业生产要提量还需投入大量能源,也可以说棉花、粮食的增产皆是能源换来的。并且,能源为日常生活换来了更多用品,如:纤维材质的衣服、建筑材质、调节温度及家用电气和照明设备等,都需要能源来支撑,由此可见,没有能源就什么也做不了。此外,国家国防中的各种武器设备使用也需要能源,比如坦克飞机、战舰潜艇等,一旦匮乏能源,就保障不了国家的安全,其经济建设自然难以平稳发展。所以,能源动力工程直接关系着国民经济和人们日常生活,要发展社会提高人们生活,确保人们生活物质和精神两项文明的双丰收,以及实现我国四个现代化,能源将占据这重要的地位,对提高国民经济及民众生活水平和确保国家安全有着巨大现实意义。
2当前能源动力工程的发展方向
2.1能源动力工程思路方向
基于当前国情,要加大传统能源开发利用程度。众所周知,我国现实国情即能源资源少利用效率不足,因此,还需要专业人士对如何提高传统能源开发利用效率程度加以研究,也是我国今后能源动力工程研究工作的重中之重;同时,要重视新型可再生能源的开发。石油煤炭等不可再生能源,其开采受程度和年限制约,由此可见,未来能源市场主战场将转向可再生能源的开发利用,且不能因匮乏资源而放慢经济发展的脚步,所以专业人士千万不能止步不前,要注重新型可再生能源的开发,从而确保我国工业能长期持久的发展;第三,实践理论要并行。由于不同于其他专业,能源开发利用将直接作用国家经济发展与环境保护,可转化为直观的工业产品和经济成果,所以专业人士在校学习时,就要做到理论实践并行,既要专研书本知识,又要进行科学探究和工业时间,促使得出实际结合理论的科技理论成果,从而促进能源的发展经济的腾飞。
2.2能源动力工程环保方向
环境污染不仅威胁着人类的生活,更制约了经济建设社会发展,若没有良好生活环境及可长期利用的能源,那么社会将止步不前,人类也会失去确保发展生存的基础。为实现我国四个现代化,和中国特色社会主义国家的建设,最首要关注的问题便是环境与能源,遏制为发展而先污染后治理现象;同时,要加强环境管理力度,但凡改建扩建新建、建设经济开发区等,都必须遵循环境评价标准,坚持使用环保建设设备及建筑工程主体共同施工设计投产制度;再次,经济发展方式要积极改进,要淘汰陈旧设备选用先进的机械设备,严格禁止污染严重能源消耗多的产品生产;最后,环保资金的投入力度要大,健全完善环保法制制度,严格按国家规定排放标准执行,确保环境保护是在法制下进行。
2.3煤炭清洁技术的利用
(1)净化处理燃烧前煤炭,其流程为:清洗选取煤炭,将煤炭中的灰分等杂质清除减去,洗选处理效率务必要达95%以上;民用煤炭加工,将粉煤与低品位煤炭用机械设备制成相应形状的煤炭产品。(2)净化处理燃烧后煤炭,以湿式或干式脱硫法,确保使用率达到90%左右;以静电除尘方式处理大型电厂燃烧后煤炭,保证除尘率在90%左右。
3结语
关键词:课程群;能源动力类专业;课程建设;卓越工程师计划
中图分类号:G642.3 ; ; ; ; ;文献标识码:A ; ; ; ; ;文章编号:1007-0079(2014)17-0079-03
近年来,关于高校课程建设与改革的话题受到持续关注,因为“课程”是大学整个教学活动的基础和核心,同时高校的课程建设也是一个相当复杂的系统工程,如课程内容的选择与界定、课程之间的合理组合等,都会直接受到培养目标、教育目的、教育观以及认识论等因素制约。此外,高校课程的结构是否合理、教学内容是否适当,反过来又会影响到高校人才培养质量和水平的高低。“课程群”的概念正是在这样的背景下被提出来的,它既是世界范围内科学和教育的发展之需,也是我国高等教育改革的现实要求。
一、课程群及课程群建设的发展现状
关于“课程群”是什么,教育界有着不同的看法,概括起来主要有四种。第一种认为“课程群”是由在内容上紧密相承、相互渗透、互补性较强的几门同系列课程组合而成的有机整体,各自配有相应的课程大纲,并按照大课程框架组织课程建设,以获得课程体系的整体优化,是具有学科优势的课程。第二种认为“课程群”是某一学科内多门课程的集合,通过学科来划分群与群间的界限。第三种认为“课程群”是指多门彼此互相独立但是又密切联系的课程,课程群建设的目的是为使各门课程能协调发展、齐头并进,追求整体效益,以达到最佳的效果。第四种认为“课程群”是由承担不同的任务,在课程内容上各有不同特点,但为完成同一个教育目标而形成的多个子课程组成的有机系统。
目前,一般高校倾向于第一种观点,因为它首先是将“课程群”看成是相互联系,相互渗透的有机整体,其次认为“课程群”是一个具有整体优化效果并且有一定学科优势的课程群体。总体来说,“课程群”是本学科或与之相近的学科的几门联系紧密的课程间进行有机的整合,以达到预定的教学目标和适应社会发展的需要为标准,建设出的使整体效果最大化的课程群体,是一种与单门课程相对应的课程建设方式。因此,“课程群建设”实际上就是根据高校人才培养目标及培养模式的要求,研究分析课程与课程体系间在逻辑和结构上的相互关系,通过破除课程间的壁垒,优化整个课程体系,进一步融合和更新教学内容、教学方法等的过程。随着高校专业课课程门类与学时数的压缩,“课程群”的建设显得尤为必要,它顺应了网络时代教育和人才培养的发展趋势。
“课程群建设”是近年来高等院校课程建设实践中出现的一项新的课程开发思路,其基本思想是把内容联系紧密、内在逻辑性强、属同―个培养能力范畴的同一类课程作为―个课程群组进行建设,打破课程内容原有的归属性,从学生培养目标与层次把握课程内容的分配、实施、保障和技能的实现。
我国高校以多门课程组合的方式进行课程建设, 至今已有近二十年的历史。北京理工大学1990年开始,在课程建设中应以教学计划的整体优化为目标的方针指导下,首先提出要注重“课群”(课程群的早期称谓)的研究与建设。随后,一批高校相继开展了一系列虽名称相同或相似但差异较大的课程群建设和改革实践。[1-4]
二、课程群相对于“独立课程”的优势比较分析
相对于“独立式”的课程观,“课程群”在教学设计上独具特色和优势。主要体现在以下三个方面:第一,“课程群建设”与学科建设相结合,充分发挥相关学科建设力量强、基础好的优势,将学科建设与课程群建设有机结合。一些高校还把科研能力强、学术水平高的教师集中到教学一线具体参加课程群的建设工作,以“教学团队”的形式进行攻关,锻炼了高校教师教学和科研的整体协作能力。第二,以系统科学为指导,注重整体效果,将内在联系紧密的相关课程纳入“课程群”中统筹考虑,注重相互间的有机结合与互相促进,达到了整体优化的目的,同时提高了课程建设的效率和效益。第三,区别于过去的“独立式课程”,“课程群”把理论教学与相关实践环节通盘考虑,不仅对理论教学开展系统研究,对实践教学环节也进行了相应的改革,实现了全方位、多途径提高教学效果。[5,6]
三、课程群与课程体系的对比分析
国内有关学者高校课程群及课程体系进行了比较,研究指出:高校课程体系的建设主要是针对课程结构、所占比例、模块设置等进行宏观指导,明确课程的教材、大纲以及教学计划等,虽然能够较好地促进教学质量的提高、达到国家的教育目的、高校的人才培养目标, 对于指导课程建设的原则、方法、目标具有重要意义, 但是难以实现不同学校的办学特色、专业建设与特色课程建设。近些年来实施的重点课程建设主要是针对某一门课程的教学内容、体系结构、教学方法、评价方法等来开展的,体现在对某门课程的“点”――教学大纲、教学计划、内容结构等的建设,有力地保障了课程教学目标的实现,但高校的人才培养目标不是由一门课程就能实现的,各门课程在学生的知识传授、能力培养中只占一小部分。此外,由于每一门课程都强调其系统性和完整性,在教学实践过程中容易产生内容多与课时少的矛盾。
“课程群建设”属于中、宏观层面意义上的课程建设,主要针对某一受教育群体,将相关的课程进行整合,删减其中重复和过时内容,增加提高人才培养素质和提高竞争力的新内容,以提高教学效率及教学质量;通过对原课程群的进一步整合,可产生新的课程群,具有更新的人才培养目标,实现课程建设的规模效益,具有很强的可操作性及实用性。
通过对比分析可知,课程体系建设以整个人才培养计划中的课程体系为对象,其主要工作是调整各课程模块的比例。课程群建设则是以课程群为对象,对课程群内的有关课程教学内容进行有机融合,是对课程的重新设计,并将课程群的宏观设计与课程教学实践有效地结合起来,以提高整体教学效果。[7,8]
四、优秀课程群的建设方法及启示
课程群内相关课程的选择与设置,是当前课程群建设中的关注焦点和建设难点,同时也存在诸多争议。从专业教学角度看,目前课程群主要有两种界定方法:一是“以专业方向划分的专业课程模块组成的课程群”,对于该种模式,国内高校已有相关专业达成了共识,并已在学生专业知识、创新能力及综合素质培养等方面发挥了重要作用;另一种是综合考虑多学科的交叉与融合,培养宽口径人才,即“依托学科组建的课程群”,这种模式有助于增强学科实力,提高学科的建设水平。
对于优秀课程群的建设,方法是关键。建设过程中,要充分发挥课程群的特点与优势,一要注重群内课程内容的整合与新知识的更新。在充分融合孤立课程的内容、挖掘相关学科和领域最新知识的基础上,将相关学科的最新研究成果融入教学和科学研究过程,优化教学资源,注重学生的能力与素质培养。二是要分清群内课程建设的主次。从专业人才培养目标出发,根据专业知识在人才素质培养中的不同要求,可紧密依托专业办学特色和创新人才培养目标,在课程群内以专业主干课程为突破,抓住主要矛盾,分主次进行建设,避免因精力的均分而影响课程群的整体建设效果的提高。三是要充分考虑课程群内课程的关联性及在支撑专业人才培养上的协同作用,应在课程群建设实践中注重群内课程要彼此依托、相互促进、共同提高。这样的课程群组织建设,有利于群内教师间的交流沟通、课程与课程间的交叉融合,可及时反馈教学信息与教学效果,建立起有效的专业教学调控与响应机制,同时也可以通过对课程群规范的过程管理和质量评估,进一步促进群内课程教学质量的共同提高。[9]
五、卓越工程师培养背景下“热能与动力工程”专业的课程建设与发展
截止2010年,我国开设工科专业的本科院校有1003所,占本科院校总数的90%,高等工程教育的本科在校生达371万,研究生47万。[10,11]而目前工科专业毕业生还存在诸多问题,主要有:缺乏工程实践能力和工程创新意识、专业面狭窄、动手能力差、综合素质低下、所学知识陈旧等。[11]提高工科专业人才培养质量,对实现国家走新型工业化道路,建设创新型国家和建设人力资源强国三大战略有着十分重要的意义。
“卓越工程师教育培养计划”是高等教育针对《国家中长期教育改革和发展规划纲要(2010-2020年)》实施的重大改革项目,是提高我国高等工程教育质量、促进我国由工程教育大国迈向工程教育强国的战略举措。传统的课程体系、教学内容和教学环节已经不能适应“卓越计划”对工程人才培养的要求,必须通过重新设计课程体系、更新教学内容和重新组织教学活动来实现卓越工程师的培养。教育部日前的教高[2011]1号《教育部关于实施卓越工程师教育培养计划的若干意见》文中明确要求:大力改革课程体系和教学形式。依据本校卓越计划培养标准,遵循工程的集成与创新特征,以强化工程实践能力、工程设计能力与工程创新能力为核心,重构课程体系和教学内容。
能源动力广泛应用于各行各业,是国民经济的基础产业,也是国家科技发展的重要基础方向之一,关系到国家的根本利益和经济社会的健康持续发展。
我国能源动力类的热能与动力工程专业形成于20世纪50年代。由于受当时的历史条件限制,专业分割很细,形成了以工业产品生产引导高等学校能源动力类专业人才培养目标的基本格局,也在一定程度上适应于我国当时的经济社会发展。随着改革开放及经济社会发展,社会对能源动力类专业人才的培养提出了新的要求。为了适应社会的要求,能源动力类专业历经多次教育部的多次调整,已由原来的几十个小专业,逐步合并为一个大专业热能与动力工程专业。2003年,随着能源动力科学技术的飞速发展和能源动力领域新问题的提出,浙江大学率先将“热能与动力工程专业”改造成“能源与环境系统工程专业”,得到广大青年学子和社会各界的认同;2004年,清华大学将“热能与动力工程专业”改造成“能源动力系统及自动化专业”。国内还有一些高校也陆续地根据专业办学特色,进行了热能与动力工程专业名称的调整。在教育部新颁布的《普通高等学校本科专业目录(2012年)》中已将能源动力类专业统一整合为能源与动力工程专业。
经过一系列的专业教育改革,本专业的人才培养口径大大拓宽,体现在学生的基本知识面得到拓展,对市场需求的适应性大大加强,就业市场更为广阔。但是因各高校的专业定位、地域分布、历史继承及国家和社会需求等的不同,形成了开设本专业的高校间课程设置、专业重点及特色、培养模式多样化的态势。
由教育部启动的“卓越工程师培养计划”,旨在为我国各行各业培养优秀工程师的后备军。它要求高校转变办学理念、调整人才培养目标定位以及改革人才培养模式等。国内开设了热能与动力工程专业(现能源与动力工程专业)的相关高校,也相继加入热能与动力工程专业的“卓越工程师培养计划”行列。相关高校结合自身专业重点和办学特色,在专业课程建设及课程群建设方面进行了一些有意的探索和实践,主要体现在:面向学生综合素质的培养,开展了“能源清洁利用技术”课程群建设;[12]针对专业方向的培养特点,构建了“热能与动力工程”大专业多方向课程体系;[13]进行了热能与动力工程专业课程设计教学改革的探索与实践;[14]进行了基于精品课程建设为平台的汽轮机系列课程改革与实践;[15]进行了高职高专热能动力装置专业课程体系的改革与创新[16]等工作。这些课程改革与研究实践,尚未涉及到能源动力类专业卓越工程师培养的课程群建设,相关研究需要开展。
六、结论
第一,作为一种新形式的课程建设模式,当前开展的课程群建设不同于单门课程改革以及课程体系建设,既适应高校教学改革和人才培养的要求,也反映了课程教学改革的新趋势。
第二,热能与动力工程专业按照传统的以产品为导向的课程设置和体系建设,不太适合当前卓越工程师培养目标及要求,特别是存在一些课程的教学大纲和教材内容明显老化,课程内容呈现较多重复,导致培养出来的学生存在知识面狭窄、知识内容陈旧、动手及实践能力不强等弊端,制约了能源动力类专业卓越人才的培养。
第三,在已开展的能源动力类专业的课程建设与改革中,尚未在卓越工程师培养视角下组织实施能源与动力工程新专业的专业核心课程群的建设与改革。需要结合新专业的调整以及专业卓越人才培养要求,修订新专业人才培养计划,改革现有课程体系及结构,研究并构建适合新形势下能源动力类专业卓越人才培养要求的课程群。
参考文献:
[1]李慧仙.论高校课程群建设[J].江苏高教,2006,(6):73-75.
[2]孙存昌.论高校课程群“四级体系”建构[J].大学教育科学,
2008,(5):46-48.
[3]王嘉才, 杨式毅,霍雅玲,等.课群及其质量检查评估指标体系的研究[J].高等工程教育研究,1999,(S1):71-73.
[4]赵朝会.浅谈课程群建设[J].中国科教创新导刊,2008,(14):17-18.
[5]龙春阳.课程群建设:高校课程教学改革的路径选择[J].现代教育科学,2010,(2):139-141.
[6]曹滨,王莹.后现代高校课程群建设思路及原则研究[J].中国校外教育,2009,(2):37.
[7]郭必裕.课程群建设与课程体系建设的对比分析[J].现代教育科学,2005,(4):114-116.
[8]郭必裕.对高校课程群建设中课程内容融合与分解的探讨[J].现代教育科学,2005,(2):66-68.
[9]钱云.关于质量工程背景下优秀课程群建设的思考[J].现代教育科学,2008,(6):144-145.
[10]张兄武.创新视野下的“卓越工程师教育培养计划”[J].苏州科技学院学报(社会科学版),2011,28(4):80-83.
[11]林健.高校工程人才培养的定位研究[A].第二期全国高校工程类创新型人才培养工作专题研讨会[C].2010.
[12]李志敏.面向素质培养的“能源清洁利用技术”课程群建设[J].中国电力教育,2011,196(9):191-192.
[13]宋文武,符杰,李庆刚,等.关于构建“热能与动力工程”大专业多方向课程体系的思考[J].高等教育研究,2011,28(4):44-48,71.
[14]王运民,李录平,明勇.汽轮机系列课程教学改革的研究与实践[J].中国电力教育,2011,(3):174-175.
[15]姚寿广,路诗奎,陆金明,等.热能与动力工程专业课程设计教学改革的探索与实践[J].华东船舶工业学院学报(社会科学版),2003,
关键词:热能;动力机械;能源;环境
中图分类号:F407文献标识码: A
一、热能动力机械专业的高技术性
大型的热能动力设备,系统非常复杂,集机械、电力、电气、电子、液压、计算机等多学科于一体,自动化程度很高。从生产上来看,热力设备的运行基本上实现了自动、远动控制和计算机监视。全计算机控制已基本实现,并是今后的发展方向。火电厂的锅炉、汽轮机及其辅机的运行,早已是自动控制或远动操作,新建的大型火力发电机组应用了计算机控制,如30MW汽轮发电机组,正常运行时锅炉产蒸汽量在100t/h以上,锅炉本体的高度超过som,燃煤达10t/11以上,若用人力来烧这样的锅炉是根本无法实现的,但是采用集散控制系统,实现全计算机控制,一台锅炉有两名操作人员就够了。对于工业锅炉,亦采用机械进煤的方式,运用自动或远动控制其运行。冶金、化工等行业的热力设备,也具有相当高的自动化水平。可见,热力设备的运行,采用了大量的高尖技术。热力设备一般在高温高压的条件下工作,要搞好热力设备的安全运行,必须经常地进行维护和定期的大小修,为了提高热能利用效率,必须利用新技术对设备进行技术改造,利用先进管理手段进行管理,因此,需要既有理论知识又有丰富实践经验的工程技术人员。
二、常用的热能动力机械
动力机械是把能量转化为机械能而做功的机械装置。其中,由热能转化为机械能的机械称为热能动力机械。常用的热能动力机械有三种。一是燃气轮机。燃气轮机的工质是燃气和空气。这种机械的主要特点是运行平稳,机动性好,噪音污染小。所以应用广泛。未来燃气轮机会向提高效率、利用核能发展燃煤技术的方向发展。二是蒸汽机。说到动力机械就不得不说蒸汽机。蒸汽机的工质是蒸汽,它是将内能转化为功的装置。蒸汽机的产生曾引起了世界上重要的“工业革命”。跨入21世纪之后,才渐渐被内燃机和汽轮机取代了领先地位。蒸汽机的使用之所以持续了两个多世纪归功于它对所有燃料都可以由热能转化成机械能。但是蒸汽机的运作依赖于笨重庞大的锅炉,因此最终被轻巧灵活的内燃机所取代。三是内燃机。内燃机是将化学能转化为机械能的装置。因为燃料在机械内部直接燃烧,所以称为内燃机。内燃机是目前运用最广泛的热机,它以汽油或轻柴油作燃料,虽然热效率高,但热料消耗率高,而且内燃机噪声是动力设备噪声的主要来源。因此,未来内燃机的发展将注重于提高机械效率,减少噪声,降低排放量来严格要求燃料的清洁度,实现节能减排的目标。
三、我国的热能动力工程发展现状
我国能源动力类热能与动力工程专业形成于20世纪50年代。当时受苏联教育体制的影响,专业分割很细。在热能与动力工程专业中就先后包括锅炉、电厂热能、内燃机、涡轮机、风机、压缩机、制冷、低温、供热通风与空调工程、冷冻与冷藏、水能动力工程、水电站动力装置、水电站动力设备、水能动力及其自动化、机电排灌工程、水能动力与提水工程以及工程热物理等几十个小专业,形成了以工业产品生产引导高等学校人才培养目标的基本格局,一定程度上与我国当时的发展相互适应。随着改革开放,我国国民经济体制发生很大的变化。社会对人的培养提出了新的要求。为了适应这种要求,1993年7月国家教委颁布的普通高等学校本科专业目录,将几十个小专业压缩为9个专业,即热能工程、热能工程与动力机械、热力发动机、制冷及低温工程、流体机械与流体工程、水利水电动力工程、工程热物理、能源工程和冷冻与冷藏。1998年教育部颁布的新专业目录进一步将以上9个专业合并为1个,即热能与动力工程专业。从原来的几十个专业合并为1个专业,全国现在有120多所高校设有热能与动力工程专业。热动主要研究热能与动力方面,是跨热能与动力工程、机械工程等学科领域的工程应用型专业。热动主要学习机械工程、热能动力工程和工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术。本专业涵盖的产业领域十分广泛。能源动力产业既是国民经济的基础产业,又在各行各业中有特殊的应用,也是国家科技发展基础方向之一。能源动力领域人才教育的成败关系到国家的根本利益。随着我国市场经济的建立,社会需求和经济分配状态的变化、科技发展的趋势、对本专业的生源、就业等形成了挑战,更是热能动力专业教的关键。同时,热动还是现代动力工程师的基本训练,可见热动是现代力工程的基础。
四、动力机械带来的环境污染及解决办法
动力设备引起的环境问题主要有热污染、噪声污染和空气污染。热污染是指工业生产和生活中排放的能量以热能形式传给环境,造成大气和水被污染的现象。尤其是火力发电厂、核电站、造纸厂排放出来的含有大量废热的气体和液体对水生植物和鱼类生存繁衍造成了极大的威胁,各种有害成分还会随着水资源的流动被陆地上的树木,蔬菜吸收,进而被人类食用,引起重大的流行疾病等。要减少工业废物的余热对环境的影响,就要减少排放,并且充分利用余热,或者寻找和开发新能源。使用清洁的水能,风能不仅降低了污染物的排放,还保护了环境。
1、空气污染也叫大气污染
从近年来的全国雾霾天气可以看出,空气质量与人们生活息息相关。空气污染直接影响了人们的出行。大气污染源来自于工业废气、汽车尾气、居民生活供暖设备等。在大城市中,汽车、火车是不可或缺的交通工具,但它们消耗煤或石油产生的直接排放进空气的废气,是雾霾天气的主要“凶手”。而且近几年的许多极端天气也是因大气污染引起的。空气污染的防治要靠全国人民的共同努力,调整能源结构,植树造林等都是目前比较流行的办法。
2、噪声污染
动力机械等设备运行时由于机械振动而形成噪声。噪声污染短期内或许没有太大伤害,但处于这样的环境一段时期后就会使生物的听力受损,严重的还会诱发多种疾病。因此,防治噪声也是刻不容缓的事情。对污染源来说需要降低声源噪音,控制噪音传播。而对于人们来说,可以采用吸音设备来阻挡噪声的传播。
六、热能动力工程的发展方向
1、热能动力及控制工程方向(含能源环境工程方向)
主要掌握热能与动力测试技术、锅炉原理、汽轮机原理、燃烧污染与环境、动力机械设计、热力发电厂、热工自动控制、传热传质数值计算、流体机械等知识。
2、热力发动机及汽车工程方向
掌握内燃机(或透平机)原理、结构,设计,测试,燃料和燃烧,热力发动机排放与环境工程,能源工程概论,内燃机电子控制,热力发动机传热和热负荷,汽车工程概论等方面的知识。
3、制冷低温工程与流体机械方向
掌握制冷、低温原理、人工环境自动化、暖通空调系统、低温技术学、热工过程自动化、流体机械原理、流体机械系统仿真与控制等方面的知识。使学生掌握该方向所涉及的制冷空调系统、低温系统,制冷空调与低温各种设备和装置,各种轴流式、离心式压缩机和各种容积式压缩机的基本理论和知识。
结束语
热能动力工程是社会生产力发展的一个重要组成部分,它推动了人类从人力劳动向机械生产的“进化”。作为国民生产的动力,能源已经成为了每家每户的必需品。其中,热能是能量传递和动力机械领域中使用得最多的一种能源形式之一。而现在随着热能转化装置以及动力机械的广泛应用,已经出现了许多全球化的问题。本文针对热能动力工程的相关设备和环境保护做一些基本介绍,仅供参考。
参考文献
[1]黄益军.浅谈热能动力设计研究[J].城市建设理论研究(电子版),2013(28).
关键词:能源动力类专业;实践教学;创新能力;内容体系
中图分类号:G642.0?????文献标识码:A?????文章编号:1007-0079(2012)19-0086-
诺贝尔奖获得者李振道先生在西北师范大学百年校庆典礼上提出:“培养青年人才,不能仅依靠课堂教学和靠高科技工具,人才的培养要在实践当中去培养,在培养的过程中,使学生变成老师的助手。”[1]由此可见,实践教学作为创新型人才培养中的重要环节,对于提高学生综合素质、培养创新能力,具有不可替代的重要作用。
实践教学环节包括实验操作、生产实习、毕业设计、毕业实习等环节,是对学生实际操作能力培养的重要环节之一,也是教学质量最直观的反映。尤其对高等工科院校而言,要培养高素质应用型人才,更应重视实践教学。只有通过实践操作,才能使学生在实践中检验所学知识,发现新的问题,掌握科学方法,培养创新意识,从而提升综合素质。因此,加强实践教学是提高人才培养质量的关键环节,也是培养理论与实践相结合的创新型人才的有效途径之一。[2]
一、能源动力类专业实践教学改革的必要性
近年来,高等院校对实践性教学环节的重要性的认识逐年提高,实践性环节的教学条件逐年改善,教学效果也有所改善。但是,国内高校特别是一般高校在实践性环节教学中依然存在以下困难与不足:[2]
1.对实践性环节的重要性普遍认识仍不够到位
认为实践教学仅仅是为了巩固理论教学的辅助手段,使实践教学缺乏设计性、创新性。学生实验时往往是简单的“依样画葫芦”,单纯依据指定的操作步骤完成实验内容,提交实验报告,仅仅是掌握了最简单的操作技术,而忽略了对学生创新能力的培养。
2.实践性教学环节所占时间比例偏小,难以达到培养学生综合能力的目标
近几年来,工科专业教学计划中实践性环节所占比例有明显的增加。但总体来看,集中实践环节教学的总周数占总教学周数的比例约为20%左右,仍然偏低;特别是课程教学中,大部分课程实验学时数占该课程总学时数的比例只有10%左右,而在欧美国家,这个比例可占30%~50%,甚至更高。
3.项目设置欠合理,内容陈旧,信息量小,学生反映收获不大
几十年来,大学工科专业实践性环节的教学内容变化很小,套路基本不变。现以某院校热能与动力工程专业的实践性环节为例进行分析。
(1)该专业的金工实习工种设置为车、钳、刨、铣、磨、焊接、热处理,实际操作以钳工为主,车、焊接次之。这种做法坚持了几十年,基本没有变化和创新,现代加工技术以及非金属材料的加工未列入教学内容。
(2)机械零件设计、锅炉原理、汽轮机原理、热力发电厂四门课程安排了课程设计,但设计内容年年相同,每个学生的设计成果基本一样,无法真正培养学生的创新能力、动手能力、独立分析问题和解决问题的能力。
(3)课程实验的设置欠合理,实验内容零碎,综合性差,重复内容较多;实验的档次不高,多为验证性实验,未能充分发挥学生的主观能动性;实验设备的台套数少(有些贵重实验设备只有1~2套),造成有些实验变成了演示性实验。
(4)生产实习和毕业实习虽然在时间、场地方面得到了保证,但由于经费紧张,学生只能整班地安排在较近的某一个企业内实习,人员拥挤;企业因安全生产的需要,不能让学生进行实际操作,从而达不到预期效果。
(5)毕业设计是最为重要、安排时间最长的实践性环节,也是最为重视的实践性环节。目前,毕业设计因师资力量、设计场地和条件等方面的原因,导致部分选题在前沿性、创新性、综合性等方面达不到要求;少数教师在指导毕业设计过程中只注重对具体问题本身的解决,忽视了对学生研究方法的指导和能力的培养。
4.方法和手段落后
实践性教学环节使用的方法和手段有些仍然比较落后,计算机技术、多媒体技术、本领域内的优化设计软件平台等新的设计手段和方法应用得比较少。如,在进行课程设计时,学生的大部分时间花在重复性手算上,变成了计算工具,而不是将主要精力放在设计方案的拟定、分析比较、方案优化上。长期以来,课程设计在培养学生独立分析问题、综合问题能力以及创新能力方面是不令人满意的。又如课程实验教学,从检测方法和手段到实验数据的分析方法和手段都跟不上科学技术的发展,有些实验手段和方法甚至相当“原始”,实验效果也就可想而知了。[3]
能源动力类专业主要培养能源清洁转换与利用和热力环境保护领域既有扎实的理论基础,又有较强实践和创新能力的人才,以满足社会对该学科领域的教学、科研、工程技术、经营管理等各方面的人才需求。本专业具有明显的行业背景特色,拥有良好的实践教学条件,为实践教学改革创造了良好的条件。
二、创新型实践教学内容体系的改革与探索
针对能源动力类专业的特殊行业背景和人才培养目标的需要,以“厚基础、宽口径、强能力、高素质”为总体要求,以强化工程实践能力培养为目的,改革了实践教学模式,构建了“实验+实习+设计+课外实践”四模块的实践教学内容体系。
1.实验模块
【关键词】热能;动力工程;能源
中图分类号:TK22 文献标识码:A 文章编号:1006-0278(2014)03-180-02
近年来,随着工业的快速发展,我国锅炉的种类也逐渐增多,但是在锅炉的制造和应用方面还存在不少的问题,主要是能源利用效率比较低的问题。因此,如果提高能源利用效率成为我国热能与动力工程研究的方向之一。在本文中,笔者结合自身工作实际,从我国现阶段热能与工程发展情况入手,分析了热力动力工程和能源的发展状况。
一、热力动力工程及其未来发展方向
(一)现阶段的热力动力工程研究情况
我国的热力动力工程专业是在上世纪五十年代形成的,而它的兴起则是在前苏联,这个专业下面还包括几十个小专业,主要与偶电厂热能、制冷、锅炉,以及空调空城、低温、内燃机等等。而在我国实行改革开放之后,尤其是进入新世纪之后,这些小专业逐渐压缩成为九个小专业,前不久有被合并成为一个专业。在我国的大多数高校开设了热能与动力工程专业。
热能与动力工程专业的研究内容包括两个方面,一个是热能,一个是动力,它是一门技术性和应用性均非常强的专业,涵盖的知识领域主要包括机械工程、工程热物理、热能动力工程。此外,还包括能量转换和有效利用的理论和技术等,制冷装置、动力工程、动力机械等也属于这一专业的知识领域。该专业的应用领域也比较广泛,可以说是我国科技发展的基础专业所在。随着我国社会主义市场经济体制的逐步晚上,社会需求的不断多样化,以及科学技术的应用发展,均称为其发展的挑战。
(二)热能与动力工程的发展方向
热能与动力工程的发展方向首先表现在动力控制工程的发展方向,其研究发展需要掌握动力测试技术、汽轮机原理、动力机械设计、热工自动控制,以及燃烧污染与环境、锅炉原理、传热传质数值计算等方面的知识;其次,在热力发电机与汽车工程发展方向上,则需要掌握内燃机原理、燃料和燃烧、热力发动机的排放、环境工程理论,以及内燃机电子控制、低温技术学等方面的知识。
此外,在水利水电工程发展方面还需要掌握水轮机原理、水力机组辅助设备、现代控制理论、电机学与发电厂电气设备等方面的知识。
二、工业炉的发展状况
在工业生产领域,工业炉的作用比较大,在推动工业生产方面发挥着独特的作用。工业炉是一种热能转化装置,通过燃烧来产生热量,然后用燃烧产生的热量来加工物料和工件。在工业生产当中,工业炉是比较重要的生产设备,当前,工业炉在工业生产的各个领域均有应用,而且品种比较多,有力推动了工业生产的发展。早在商周时期,我国已经制造出功能强大的锅炉,随着工业生产的发展,锅炉逐渐发展成为当前的工业炉。所以,锅炉可以说是工业炉的一种特殊形式。相关的统计结果显示,在我国的12个行业当中,工业炉装备在12万台以上,其中,机械制造行业的工业炉占到了总数的67%,而工业炉有可以分为燃烧炉和电炉。现阶段,多数行业使用的是工业炉。而这两种工业炉中,燃烧炉的使用范围最广,有力推动了我国工业生产的发展。
三、工业炉燃烧控制技术的应用
若想比较好地控制热能动力工程锅炉内的燃烧,控制炉内的温度,必须控制能量转化幅度。在过去,锅炉燃烧均是使用人力向锅炉内添加燃料,通过这种方式来保证锅炉的连续工作。但现阶段,不少企业已经采用了步进式锅炉自动控制技术来控制燃料的添加。在下文中,笔者介绍两种锅炉燃烧的控制方式。
(一)空比例连续控制系统
空比例林旭控制系统由气体分析装置、燃烧控制器等部件构成,通过检测热电偶来设定燃烧数据;利用计算机技术计算出燃烧的偏差值,保证输出结果的准确性,实现对锅炉燃烧的控制。不过相关的研究表明,通过这种方式控制燃烧,常常会会出现偏差,计算结果的准确性会大幅降低。
(二)双交叉限幅控制系统
双交叉限幅控制系统,主要由热电偶、烧嘴和流量阀等组成。但是从另一个角度来讲,即通过温度传感器,把需测量的温度转换成电信号,之后,在计算所需测量的温度是不是与预先设定的温度相同,从而实现对锅炉内燃料燃烧的有效控制。锅炉采用这种燃烧控制方式,主要有两个方面的好处,一是可以节省能源和部件,二是可以实现对锅炉内温度的精确控制。实践证明,这种控制技术的应用效果非常好,值得在热能动力工程中应用和推广。
除此之外,控制热能动力工程锅炉内的燃烧温度,还应结合工程的需要,合理选用燃料。众所周知,有些燃料的燃烧控制较容易,而有些燃料燃烧较剧烈,控制相比较难,这就要求在锅炉内填充燃料前,合理选择燃料,通过对比燃烧点、燃烧所持续的时间等确定使用哪种燃料。
四、仿真锅炉风机翼型叶片
在锅炉的内部,有着不少的叶片,这些叶片在燃料燃烧的过程中会通过自身的转动形成复杂的流畅,主要的特征便是非定长。因此,通过相关的实验来检测其性能有着比较大的困难。现阶段,也缺乏健全和完善的流体力学理论知识来解释其中发生的各种现场,比如流动分离现象、失速现象和喘振现象等。在这种情况下,就需要通过流动实验和数据模拟来探测机械内部的流动问题。
五、热力动力工程在能源发展方面
(一)能源方面存在的问题
当前,世界各主要经济体的经济复苏迹象逐渐明朗,随着世界经济的复苏和持续发展,能源供应紧张的局面将会加剧,世界各国将会更加重视本国的能源安全问题,在采取行之有效的能源战略同时,加快各种能源利用新技术和新工艺。而能源动力工业作为我国国民经济和国防建设的支柱性产业,在推动国家经济发展方面做出了突出的贡献。所以,必须提高能源利用效率,缓解能源紧张的局面。
而热电厂的风机,是一种可以产生能源的机械装置,通过轴旋转产生的气流,可产生大量的动能,在发电厂、工业生产和锅炉生产过程中具有广泛的应用。对于一些发电机组来说,随着电力需求的增加,电网的运行将会更加的安全和可靠,所以,这对于风机的应用也就提出了更高的要求。
(二)能源方面的发展前景
人类社会赖以发展的重要基础便是能源,能源在确保人类社会的可持续发展方面有着巨大的作用。在世界能源形势不容乐观的形势下,如果更加合理高效的利用能源,成为世界性的研究课题。当前,我国的能源利用主要以煤炭和电能为主,也就是在能源利用结构中,煤炭是核心,我国是以煤炭为主的能源利用结构。这种能源利用结构,一方面会对环境产生比较大的影响,造成生态环境和大气环境的严重破坏,一方面会消耗大量的能源,过度消耗煤炭资源,使我国的能源供应日益紧张。
在这样的形势下,在我国能源供应日益紧张的形势下,我国能源的主要发展方向是“新能源、核能、智能电网、常规能源、节能减排”。而热能与动力工程符合我国能源发展的大体方向,可为我国能源结构的合理优化做贡献。
涉电学科主要本科专业均设在《目录》中工学门类下,涉及能源动力类、电气类、土木类、水利类、核工程类和农业工程类六个专业类。能源动力类下设“能源与动力工程”一种基本专业和“新能源科学与工程”一种特设专业;电气类下设“电气工程及其自动化” 一种基本专业和“智能电网信息工程”及“电气工程与智能控制”两种特设专业;土木类、水利类、核工程类、农业工程类下设的涉电基本专业分别为“建筑电气与智能化”、“水利水电工程”、“核工程与核技术”、“农业电气化”(见下表)。
下面,就将国内高校涉电学科主要本科专业概况依据收集到的有关资料,逐一进行介绍。涉及到相关高校的名单部分一般以学校的自然地理布局依次罗列,排名不分先后。
能源与动力工程
专业解读
在1998年版的《普通高等学校本科专业目录》中,能源动力类下设专业为“热能与动力工程”。《普通高等学校本科专业目录(2012年)》颁布后,各高校在招生专业名称上进行了调整,即将原来“热能与动力工程”专业改为“能源与动力工程”专业。
本专业是国家重点发展领域之一,发展前景广阔。本专业的目标是培养既掌握热能与动力工程专业的基础理论知识、计算技能,又具备从事相关领域工作所需要的经济管理知识和能力,能够从事电力行业相关领域的科学技术应用、研究、开发和管理的高级人才。目前热能与动力工程专业已经从面向传统火力发电,拓展出一些新的专业方向。现本专业的专业方向包括:热能动力、集控运行、燃气轮机及其联合循环、核能发电、风力发电等。
主要课程
本专业的主要课程有:力学、工程热力学、工程流体力学、传热学、汽轮机原理、锅炉原理、热力发电厂、泵与风机、自动控制理论、工程图学、机械设计基础、电工技术基础、电子技术基础以及各专业方向的专业课。
就业方向
本专业学生毕业后就业面广,适应能力强。就业方向:⑴大型现代化电力企业从事生产、经营和管理工作;⑵各级政府部门及事业单位从事能源、动力方面的节能、规划、建设、运营、咨询和监管等工作;⑶科研院所、大专院校从事能源与动力相关领域的研究与开发、教学、管理等工作。主要就业单位有:电力公司、电力设计院、电力规划院、电力科学研究院、电力建设部门、电力工程公司、大中专院校和研究院(所)、咨询与技术服务类公司、火力发电厂、大型核电站、燃气-蒸汽联合循环电厂、风力发电厂等。
开设院校
目前开设“能源与动力工程”专业的高校共有188所,其中“985工程”高校23所,“211工程”高校29所。
“985工程”高校:北京航空航天大学、北京理工大学、东北大学、同济大学、中国农业大学、天津大学、大连理工大学、吉林大学、哈尔滨工业大学、上海交通大学、东南大学、山东大学、湖南大学、华南理工大学、重庆大学、电子科技大学、西北工业大学、中国科学技术大学、华中科技大学、中南大学、中山大学、四川大学、西北农林科技大学。
“211工程”高校:北京交通大学、北京工业大学、北京科技大学、华北电力大学、华北电力大学(保定)、太原理工大学、哈尔滨工程大学、华东理工大学、苏州大学、南京航空航天大学、河海大学、河北工业大学、大连海事大学、南京理工大学、中国矿业大学(徐州)、合肥工业大学、中国石油大学(华东)、武汉理工大学、贵州大学、长安大学、南京师范大学、南昌大学、郑州大学、西南交通大学、大学、青海大学、新疆大学、中国石油大学(北京)、哈尔滨工业大学(威海)。
新能源科学与工程
专业解读
“新能源科学与工程”为2011年教育部批准设置的本科专业,2012年将原有的风能与动力工程和新能源科学与工程合并统一改为“新能源科学与工程”,为能源动力类下的特设专业。本培养在风能、太阳能、地热、生物质能等新能源领域从事相关工程技术领域的开发研究、工程设计、优化运行及生产管理工作的跨学科复合型高级工程技术人才,和具有较强工程实践和创新能力的专门人才,以满足国家战略性新兴产业发展对新能源领域教学、科研、技术开发、工程应用、经营管理等方面的专业人才需求。
主要课程
本专业课程组除了高等数学、大学物理等工程技术基础课群外,还有风能与动力工程、流体力学、传热学、能源系统工程、可再生能源及其利用、风力发电原理等专业平台课群;光伏材料与太阳能电池、风力发电场等专业选修课群等。
就业方向
本专业根据能源类型的不同为划分为不同的方向,主要有生物质能方向(生物质发电与生物燃料等新能源设备及系统的设计、开发、集成、制造以及新工艺的应用技术等),风力发电方向(风力发电机组与风电场的设计、制造、建设、运行、试验研究、项目投资与管理)、太阳能光伏发电方向(面向太阳能电池设计、制造,光伏电站设计、运行与控制)等等。在就业方向上,生物质能方向主要在大型现代化电力及能源企业、新能源发电设备制造企业、能源与环保企业从事设计、生产、经营和管理工作,在各级政府部门及事业单位从事新能源电力、节能等方面的规划、建设、运营、咨询和监管等工作以及在与新能源相关的科研、教学等企事业单位工作;风力发电方向可在电网公司、五大发电公司、能源企业、研究所、设计院、风力发电设备制造企业、风电场等单位从事风电场的规划、设计、施工、运行与维护,风电机组设计、制造与研究,风力发电技术项目开发等风能与动力工程专业的技术咨询与管理工作以及在其他相关领域从事专门技术工作。太阳能光伏发电方向可在研究所、设计院、大型电力企业、太阳能发电设备制造企业及太阳能电站等单位从事太阳能发电系统设计、规划、制造、施工及运行管理,太阳能发电系统集成产业的技术与管理,太阳能发电技术项目开发等相关的技术与管理工作。
开设院校
据不完全统计,目前开设本专业的高校约有30所,其中“985工程”高校3所,“211工程”高校8所。
“985工程”高校:东北大学、浙江大学、西安交通大学。
“211工程”高校:河海大学、华北电力大学、贵州大学、新疆大学、东北农业大学、南京理工大学。
电气工程及其自动化
专业解读
“电气工程及其自动化”专业主要包括电力系统及其自动化、继电保护与自动远动技术、电力电子技术、城市供用电技术、高电压及信息技术、电力市场6个专业方向。主要培养具备电气工程理论基础,掌握电力系统技术知识及应用能力,熟悉电力工业的科学技术与发展,能够从事电气工程及其自动化领域相关的生产制造、工程设计、系统运行、系统分析、技术开发、教育科研、经济管理等方面工作的特色鲜明的复合型高级工程技术人才。
主要课程
本专业的主要课程有:高等数学、工程数学、大学英语、大学物理、计算机语言及应用、信号与系统、电子技术基础、自动控制理论、电路、电机学、电磁场、电力系统分析、电力电子技术、发电厂电气部分、高电压技术、继电保护等。
就业方向
本专业学生毕业后主要在电力公司、电力设计院、电力规划院、电力建设部门、电力科研开发部门、发电厂以及与电力生产密切相关的设备制造企业从事相关的工作。
开设院校
目前开设本专业的高校约有480所,其中“985工程”高校24所,“211工程”高校39所。
“985工程”高校:清华大学、北京理工大学、天津大学、东北大学、北京航空航天大学、中国农业大学、大连理工大学、吉林大学、哈尔滨工业大学、复旦大学、上海交通大学、东南大学、浙江大学、同济大学、厦门大学、山东大学、湖南大学、华中科技大学、中南大学、华南理工大学、重庆大学、电子科技大学、西北工业大学、西安工业大学。
“211工程”高校:北京林业大学、河北工业大学、太原理工大学、辽宁大学、北方工业大学、华北电力大学、华北电力大学(保定)、大连海事大学、东北师范大学、东北林业大学、东华大学、南京理工大学、江南大学、南京师范大学、哈尔滨工程大学、东北农业大学、华东理工大学、上海大学、南京航空航天大学、河海大学、安徽大学、福州大学、南昌大学、合肥工业大学、中国石油大学(华东)、郑州大学、暨南大学、广西大学、西南交通大学、贵州大学、大学、武汉理工大学、海南大学、长安大学、青海大学、西安电子科技大学、新疆大学、石河子大学、中国地质大学(北京)。
智能电网信息工程
专业解读
“智能电网信息工程”是国家发展战略新兴产业和进行国家智能电网建设的急需专业,为电气类下的特设专业。培养具有扎实的专业理论和专业技能,具备较强的综合素质和一定的创新精神,掌握信息采集和处理的基本理论和电力系统通信技术,掌握电力系统生产、运行的规律和特点,并对智能电网体系结构和关键技术有一定认识,可以在信息化、自动化、互动化的电力系统领域从事研究、开发、设计、制造、运行维护与管理等工作的复合型高级工程技术人才。
主要课程
本专业的主要课程有:高等数学、大学物理、计算机语言及应用、信号与系统、电子技术基础、自动控制理论、电路、电机学、电磁场、电力系统分析、电力电子技术、智能电网技术、通信原理、物联网、无线传感网络、传感器与检测、单片机原理、嵌入式系统等。
就业方向
本专业学生毕业后主要在电网公司、发电公司、科研设计、高等院校、相关行业或部门从事设计、开发、生产运行与管理、科学研究、技术支持等工作。
开设院校
目前开设本专业的高校主要有:
华北电力大学、重庆邮电大学、青岛科技大学、南京工程学院、南京邮电大学、南京理工大学、广东技术师范学院、长春工程学院等。
电气工程与智能控制
专业解读
“电气工程与智能控制”专业主要培养能够在工业企业运动控制、过程控制、供电技术、检测与自动化仪表、信息处理等领域从事系统分析、系统设计、系统运行维护、科技开发等方面工作的具有创新精神和良好的英语沟通能力的复合型工程技术人才。
主要课程
本专业的主要课程有:电路与电子技术、机械设计基础、微机原理及接口、电机与拖动基础、自动控制理论、传感器与检测技术、设备信息管理系统、智能化控制系统、液压与气动等。
就业方向
本专业学生毕业后,主要从事现代企业特别是外企的生产和管理的自动控制、电气设备的系统控制和运行维护等方面的工作,也可从事科研工作。
开设院校
目前开设本专业的高校主要有:
上海海事大学、辽宁工程技术大学、中北大学等。
建筑电气与智能化
专业解读
“建筑电气与智能化”属于工学大类,土建类。随着信息化技术的发展,国民经济对数字化城市、绿色与智能建筑的要求越来越高,各行各业用信息技术来改造传统产业是大势所趋,而建筑智能化是与信息技术紧密结合的朝阳产业,社会对“建筑电气与智能化”专业人才的需求量会越来越大。
本专业主要学习电工技术、控制理论等基础理论,学习计算机网络与综合布线、楼宇自动化及建筑电气的理论和技术,学生受到现代电气自动化工程师的基本训练,具有进行楼宇自动化系统和建筑电气系统的设计、运行、实验研究的基本能力。
主要课程
主要课程有:电气控制与可编程、建筑制图与识图、电工基础、电子技术基础、应用电机技术、电气CAD、制冷与空调技术、楼宇给排水、楼宇综合自动化、电梯技术等。实践课程内容包括:认识实习、电工实习、生产实习、毕业实习、课程设计、毕业设计等。
就业方向
本专业学生毕业后主要在各类企事业单位、科研、设计、施工等部门从事建筑电气与智能化领域的研究、设计、生产和开发、运行、管理、维修等工作。如:⑴建筑电气专业强弱电设计、施工、监理;⑵智能建筑系统的开发、安装、调试和维护;⑶建筑设备的研发、安装、调试、维护;⑷电子设备的研究、开发与维护;⑸计算机控制系统与工业控制系统的软硬件研发。
开设院校
目前开设本专业的高校有28所:
北京建筑工程学院、沈阳建筑大学、南京工业大学、盐城工学院、杭州电子科技大学、青岛理工大学、郑州轻工业学院、湖南文理学院、西安建筑科技大学、安徽建筑工业学院、浙江科技学院、扬州大学、南京工程学院、长春工程学院、重庆大学城市科技学院、吉林建筑工程学院城建学院、广西大学行健文理学院、南京师范大学泰州学院、河北建筑工程学院、吉林建筑工程学院、南通大学、苏州科技学院、华东交通大学、山东建筑大学、湘潭大学、广东技术师范学院、天津城市建设学院、金陵科技学院、华北科技学院、三江学院、北京联合大学、河南城建学院、广东技术师范学院天河学院、安徽建筑工业学院城市建设学院、成都理工大学工程技术学院、扬州大学广陵学院。
水利水电工程
专业解读
水电是我国的主要能源之一,随着国民经济的高速发展,水利水电事业也在突飞猛进,具有广阔的前景。水利水电工程专业主要培养既掌握水利水电工程建设所必需的基本理论和基本知识、又具备水利水电工程的专业知识和能力,培养能够从事水利水电领域的规划、设计、施工、科研、管理、教育等工作的高级人才。
主要课程
本专业的主要课程有:工程力学、结构力学、水力学、土力学、计算机应用、工程地质、工程测量学、工程水文及水利计算、水利工程经济学、建筑材料、钢筋混凝土结构、钢结构、水工建筑物、水利水电工程施工、水电站建筑物、建设项目评估和管理等。
就业方向
本专业学生毕业后在水利、水电领域的规划院、勘测设计院、工程局、水电开发公司、工程单位及相关企业从事水利水电规划、设计、施工、监理等工作;在有关部委、省、市的水利水电管理部门、电力集团公司、流域机构、水电站、水库等从事水利水电管理工作;在高等学校、科研院所从事水利水电方面的科研、教学等工作;也可在土木建筑及其他行业从事相关工作。
开设院校
目前开设本专业的高校共78所,其中“985工程”高校8所,“211工程”高校17所。
“985工程”高校:清华大学、大连理工大学、山东大学、武汉大学、天津大学、华中科技大学、华南理工大学、西北农林科技大学。
“211工程”高校:华北电力大学、太原理工大学、福州大学、中国农业大学、东北农业大学、河海大学、合肥工业大学、南昌大学、郑州大学、广西大学、西南交通大学、四川农业大学、贵州大学、大学、宁夏大学、石河子大学、青海大学。
核工程与核技术
专业解读
“核工程与核技术”专业是根据我国核电事业广阔发展前景和对人才的巨大需求而设置的新专业。其目标是培养核电设计、制造、运行、维护和管理等方面的高级技术人才。
主要课程
本专业的主要专业课程有:热工基础、计算机应用、工程力学、机械设计基础、电工学、检测技术、热工过程自动化、计算机控制、可靠性工程、汽轮机原理及运行、核反应堆物理分析、核反应堆热工分析、核反应堆控制和仪表、核电厂辐射测量与防护、核反应堆安全分析、核电厂系统与运行等。
就业方向
本专业学生毕业后能胜任核电厂的运行、维护和管理工作,也能胜任核电工程项目的设计、科研和管理工作及其它能源动力领域的专门技术工作。主要有:⑴核电厂的运行、维护和管理及技术支持工作;⑵核电设备制造企业的技术开发工作;⑶核工程设计院和研究院的设计和科研工作;⑷核电工程公司的技术咨询与管理工作。主要就业单位有:五大电力集团公司、中国广东核电集团公司、中国核工业集团公司、核电工程建设公司、核电设备制造企业、核工程设计院、核工程与核技术研究院所等。
开设院校
目前开设本专业的高校共28所,其中“985工程”高校11所,“211”院校2所。
“985工程”高校:清华大学、上海交通大学、中国科学技术大学、武汉大学、华南理工大学、重庆大学、东南大学、华中科技大学、中山大学、四川大学、西安交通大学。
“211工程”高校:华北电力大学、哈尔滨工程大学。
农业电气化
专业解读
“农业电气化”专业学生主要具备电力、电子与控制工程方面的基本理论,电子计算机应用技术和企业经营管理方面的基本知识,农村(地方)电力系统及农用电气工程和自动化技术有关的工程设计、科研开发及实验调试方面的基本能力。
主要课程
本专业的主要课程有:电路学、电机学、自动控制理论、电子学、计算机技术、电力工程、供电技术、用电技术、电网规划、配电网自动化、高电压技术、电力电子技术、电气控制技术、计算机网络与控制技术、电力经营管理等。
就业方向
本专业学生毕业后主要在地方电力系统和大型企业供电系统从事有关的科研、设计、建设、运行、供电及用电管理等方面的技术工作。
开设院校
致力科研 成就斐然
杜小泽致力于大型火电机组空冷系统优化等前沿科学的研究,从多个角度提出了提高空冷机组运行效率和优化设计的技术手段,其研究使供电煤耗降低4.5g~7g/kWh,将使火电行业年节约标准煤500万吨,有力推进了我国火力发电行业的节能减排,赢得了良好的社会效益和经济效益。他勇于创新、刻苦钻研,近5年,先后承担国家自然科学基金项目、国家“973计划”项目等10余项;发表学术论文近100篇;研究成果被国内外同行引用300余次;获得授权发明专利11项。
授业解惑 教书育人
在人才培养中,杜小泽始终坚持将授业解惑、教书育人有机统一。在本科生教学、研究生培养指导中,经常深入学生班级、研究所、实验室悉心指导,工作认真细致、及时到位,深受学生信赖。
在专业课教学中,用科学研究的最新进展和工程实践的前沿需求对课程的知识体系不断进行更新和补充,并参加和主持多项教学改革,以及“传热学”“热工基础”精品课程建设项目,不断探索新的更为有效的教学模式。
锐意进取 引领学科发展
能源动力学科是华北电力大学最重要的支柱学科之一。杜小泽从修订完善人才培养方案、凝练研究方向、全方位学术交流和引进人才等具体而基础的工作入手,为能动学科的发展打下了扎实的基础,形成了围绕电力节能,同时跟踪学科前沿且具有鲜明能源特色的学科方向。这些工作为华北电力大学成功获批动力工程及工程热物理一级学科博士点和热能工程国家重点学科、并入选“985工程”优势学科创新平台奠定了基础。