首页 > 精品范文 > 人工智能与教育的融合
时间:2023-09-28 15:44:01
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇人工智能与教育的融合范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
关键词:贸易经济人才培养大数据与人工智能挑战
中图分类号:G71文献标识码:A文章编号:1672-3791(2020)06(a)-0028-02
21世纪是一个智能化时代,人工智能与智能系统的不断发展,成为当今世界各国发展的重中之重。2015年来,人工智能快速覆盖了我国的各行各业,这些新型行业的出现,一方面给传统产业、行业和企业带来挑战,使得传统行业开始萎缩,对人才的需求开始下降,而新产业、行业和企业的出现并得到快速发展,因此对人才的需求量逐年增加。这一变革,给高校人才培养带来了巨大的挑战和机遇。
1人工智能背景下的贸易经济专业发展现状分析
1.1贸易经济专业办学与人工智能的联系很弱
从贸易经济专业的办学水平和内容来看,均处于传统阶段,对行业在人工智能方向上的变迁没有系统的认识和认知性教育,贸易经济专业的改革势在必行。
以重庆工商大学为例,贸易经济专业的办学与人工智能的结合非常微弱,甚至可以说基本没有考虑到人工智能与专业办学的结合。最近三年,重庆工商大学的贸易经济专业开始探索大数据与专业办学的结合,苦于师资和其他办学资源的限制,目前仍处于讨论阶段。
1.2贸易经济专业的人才培养仍停留在传统模式上
从开设贸易經济专业的高校来看,人才培养模式均未与人工智能、大数据进行紧密结合,这一现状对专业建设与快速发展的行业之间对现代人才需求之间存在着较大的差距,贸易经济专业需要加快改革的力度。
1.3贸易经济专业的课程体系仍未与人工智能结合起来
从课程体系来看,贸易经济专业的专业类课程设置中不同学校有些差异,标志着各校的专业建设和人才培养有所不同,但是大部分课程设置都是传统类课程,如西方经济学、政治经济学、会计学、贸易经济学、零售学、消费经济学、商品学、市场营销、商务谈判、国际贸易、产业经济学。与人工智能、大数据、数据分析的课程很少出现,传统课程也未与人工智能进行交叉,或者以多种方式将人工智能、大数据及数据分析嵌入各门课程中。
2人工智能背景下贸易经济专业发展的机遇
人工智能与大数据的发展势不可挡,产业体系初具规模,支撑能力日益增强。为贸易经济专业的未来发展带来了不可多得的机遇。
2.1人工智能给贸易经济专业带来了新的发展方向
无论从流通2025还是从流通4.0来看,人工智能与流通、贸易行业的深度结合形成的新行业,成为未来发展的新趋势,这些行业的快速发展,对人才的需求,为贸易经济专业明确了未来的办学方向。
2.2人工智能给贸易经济专业的课程体系改革带来了新方向
开设贸易经济专业的各高校均有自己的一些课程建设的特征和特色,在科学研究方面,多学科之间互相支持也具备了前提条件,这一先天优势,给贸易经济专业进行的课程体系的重构,提供了优越的前提条件。人工智能背景为贸易经济专业的课程体系重构和改革提供了新的方向,贸易经济专业可以在专业课程体系设计上,加大大数据与人工智能与贸易经济课程的结合力度。
2.3人工智能给贸易经济专业学生就业带了新机遇
传统时代贸易经济专业主要为商贸流通类企业培养高端商贸人才,或者为政府部门、科研单位培养管理和科研型人才。人工智能与各行业的结合,孕育出了一些新的岗位,这些岗位需要高端人才,这些人才不止懂贸易、物流、商务的专业知识,更要懂数据、大数据,尤其是能够进行数据处理和分析,并等运用大数据进行管理。同时智能贸易、智能零售、智慧商业、智慧物流等行业对新型人才的需求非常紧迫。
因此,贸易经济专业的办学需要进行深入的市场调研,全面深入掌握行业发展和人才需求的实际情况,重构人才培养的体系和思路,重新设计专业课程,这是提升人才质量的关键。
3人工智能背景下贸易经济专业发展的挑战
人工智能+商贸流通的快速发展,以及人工智能在高等教育中的广泛应用,给高校贸易经济专业的办学和未来发展带来了很大的挑战,一方面传统行业的升级换代需要新型人才;另一方面当前高校贸易经济专业的现有资源的落后制约了教育改革。与此同时,智能化不断进入课程,对教师的替代力度在不断提高,这些变化,给高校的专业建设和专业发展带来了巨大的挑战。
4人工智能背景下贸易经济专业发展的路径
4.1建立适应人工智能+背景下的贸易经济专业人才培养理念
人才培养的创新首先是理念的创新与形成,贸易经济专业在人工智能时代的未来发展之路,是从人才培养创新出发,所以首当其冲的是人工智能+的培养理念的形成,根据区域商贸流通业发展与社会对贸易经济人才培养提出的新需求和高等教育与人工智能的融合发展的新趋势,在持续深入开展贸易经济专业人才培养模式的社会调研的同时,深入进行理论研究和实践探索的基础上,形成适合本校独特的人工智能背景下的贸易经济专业独特的培养模式。即“大德育理念”“大商科理念”“学科交叉融合发展理念”。
4.2构建人工智能+的人才培养方式与手段
贸易经济专业的教师和学生面对的是一个瞬息万变的时代,因此,教师要不断地跟进行业发展,成为理论的“创新者”,同时还要增加著名企业的管理者和实践者成为教学团队成员,来促进贸易经济专业教学与时俱进,促进科研、教学与社会服务一体化,形成风格独特的教学内容体系和教学方法,启发学生多思考,培养学生的创新能力和决策能力。
4.3加强适应人工智能+贸易经济专业教学的新型教师团队
教师是教学的最根本资源,是确保教学质量提升的根本性条件,也是推动教学改革的主要力量,贸易经济专业的一切改革均是基于教师的改革。首先,要加强教师在人工智能方面的学习和提升。其次,我国高等院校的贸易经济专业教师还要探索信息技术、人工智能如何支持教师决策、教师教育教学、改进教学手段等,推动新技术与教师专业发展有机融合,实行线上线下结合的混合教学。最后,贸易经济专业教师要充分认识到人工智能技术的广泛应用,不断可以促使和推进教师的研究能力,形成新型的教师团队。
4.4提升学生的在智慧产业中的就业能力
【关键词】大数据时代;人工智能;计算机网络技术
引言
科学技术的飞速发展,使计算机网络成为人们生活和工作的重要组成部分。在计算机应用领域,将人工智能与大数据进行融合,可有效解决计算机网络管理中安全性的问题。然而,在大数据时代背景下,由于人工智能技术的发展仍处在探索阶段,在计算机网络技术中的应用还存在许多问题。基于此,深度探讨人工智能应用优势,并针对人工智能在计算机网络技术中的应用提出几点建议,具有十分重要的意义。
1大数据时代人工智能技术的含义及应用优势
1.1大数据下的人工智能技术
人工智能作为计算机技术体系下的分支,是一门融合开发和研究为一体,主要作用于开发人类智慧所应用的科学技术。在人工智能不断发展的历程中,对于人工智能的探索逐渐延伸至管理学、语言学、社会学等学科,使人工智能能够更好地接近人类大脑,完成对社会中存在各类要素和信息的采集,并模拟出人脑对图像和声音出现的反应。在大数据时代背景下,人工智能可借助大数据内容多和规模大的特征,替代人们完成部分工作,为人们生活和生产提供便利,以进一步增强人们的幸福感。人工智能与大数据的配合,可将人类思考习惯进行数字化处理,并完成对数据的储存。在未来发展中,人工智能可实现对人类日常生活的复制,实现机械化的自动操作和控制。通过大数据和人工智能的相互配合,可为人类和技术的发展提供更广阔的空间。1.2大数据时代下人工智能在计算机网络技术中的应用优势在大数据时代背景下,人工智能在计算机网络技术中应用所体现的优势,主要体现在以下几方面:①完成对信息的预测,在计算机网络运行中,要想提升运转速度就要及时处理系统中存在的模糊数据,但对于这部分信息价值的辨别存在一定的难度。如依照传统处理方法会增加系统运行成本,对系统造成影响。在大数据时代人工智能的干预,可依据模糊分析理论更有效辨别信息价值,完成对信息的预见,进而实现计算机网络运行效率的提高。②增加网络监管能力,计算机系统的快速发展使得计算机网络结构日趋复杂,为网络监管带来难度。而人工智能的参与可实现对网络的分类管理,不但提升管理的效果和能力,还为网络营造更加安全的环境。③人工智能强化数据整合,在人工智能和大数据相互协作下,对于计算机网络空间中存在的信息进行快速整合,完成对各类资源的有效配置。还可加快资源整合的速度,减少资源的消耗,降低计算机网络的运行成本。
2大数据时代下人工智能在计算机网络技术中的应用对策
2.1计算机网络安全管理中人工智能的参与
①在计算机网络网络安全入侵检测中应用人工智能。在大数据时代下,计算机网络环境日趋复杂,各类病毒和木马的入侵可对网络造成不可逆的影响。而在计算机网络管理中应用人工智能,可通过对以往入侵情况的分析,建立数据集成的系统,通过数据编码将入侵特征进行编码转换,在系统中储存完整的信息。一旦计算机网络出现入侵系统的情况,对网络安全造成威胁,系统就可依据设定对入侵类型进行辨别,并完成安全处理,保障计算机系统和网络的安全。②数据挖掘技术在计算机网络安全管理中的应用。数据挖掘主要是指将网络从主机会话中分离出来,并通过对网络控制实现计算的规范化,并将其产生的数据储存到数据库中,在遇到网络风险时就能完成数据的辨别。③人工神经模拟。人工智能的模拟技术可模仿人类大脑的思考和处理逻辑,在网络运行中,可对噪声等要素进行识别,并通过检测,完成对网络的安全性检查,提升网络运行安全性,提升检测的质量。④危险信息拦截和垃圾处理。在计算机网络安全管理中,人工智能可在网络系统中建立智能防火墙,对部分危险信息进行识别,并完成拦截。还可在系统设置访问权限,提升安全防控的效果。同时,在垃圾处理方面,人工智能和大数据的相互配合,可实现对网络遗留数据痕迹和垃圾的检测,快速找到包含病毒的文件,并在人工智能处理模式下完成病毒的处理,消除网络中存在的安全隐患。另外,人工智能可完成对系统资源的扫描,通过对信息的分析和处理,将数字化数据反馈给用户,使用户更加直接地了解计算机网络的运行状况,为进一步保障计算机网络安全提供帮助。
2.2计算机网络管理系统中人工智能的导入
①系统数据库技术。在计算机网络系统中,利用人工智能技术将计算机系统运行的内容转化为数据,将简单内容在变为复杂的程序,在运行中对其进行不断的优化,找到有效的运行方式,实现对系统对有效的管理。这种人工智能和大数据的相互配合,可有效弥补传统数据加工在内容逻辑性方面的缺陷,并通过数据库的建立,使得计算机网络系统在运行速度和储存空间方面都得到提升。②智能问答技术。在计算机网络搜索功能中,人工智能技术的参与可使得用户利用部分有效信息就能获得海量的资源,提升网络资源的使用效率。这种智能问答方式主要以简单指令为核心,通过对关键词的识别在海量数据中快速筛选到相关的资料,获取到用户需要的内容。这种工作方式可减少搜索的时间,完成对资源的合理应用。比如,用户在搜索栏中输入“流行乐”,当下在音乐市场中流行的乐曲都能显示出来,并带出“流行乐”相关的搜索标签,找到更多相关的信息和数据,减少搜索的时间,并提升搜索的整体质量。③智能技术。计算机网络系统可完整记录用户的搜索数据,并从海量资源中挑选出相关内容,完成对用户的精准推送,这种服务的机制,可减低用户大量搜索的时间,并在短时间内找到更有效的相关信息,提升计算机网络系统的应用效果,带给人们更多的便利和帮助。
2.3计算机网络运营系统中人工智能的支持
目前,计算机网络与行业领域的深度融合,奠定了计算机网络的发展基础。同时计算机网络所支持的各类平台,可为整体网络管理工作的开展提供对接渠道,依托于信息传输机制,可有效提高数据传输的时效性,进一步为行业的发展提供保障。(1)在企业管理方面。大多数企业在运行过程中,将产生大量的数据信息,有价值与无价值的信息将呈现出同步传输的模式,计算机网络系统的应用,则是对此类数据信息进行有效整合与分类,为管理人员提供一定的信息决策支持。人工智能的融合,对于原有的计算机网络运营系统来讲,则可有效建立起一种基于人工智能实现的运算环境,通过大数据技术的价值信息挖掘、神经网络与模糊网络的精密算法等,可有效提高数据信息的统计能力,以此来节约企业资金成本的投入。此类人工之能的导入可为企业经济管理建立一种数据运营框架,在相关信息的输入下,可按照有序性的运算模式实现数据的分析,进而提高企业自身的运营质量。(2)在教育教学方面。计算机网络与教育领域的结合,是我国教育改革的一个重要实现载体,通过网络海量资源的支持,可为学生提供更为全面的信息。例如,以人工智能技术为载体的信息分配机制,其可有效建立起一智能化数据体系,学生通过网络进行作答时,计算机系统的分配机制可依据学生作答情况,将各类信息进行精准记录。同时,平台本身还可依据学生的作答信息进行学习行为方面的预期分析,然后针对某一时间点下数据信息呈现出的异常特性来分析出学生学习行为的发展方向,并将此类信息及时反馈到系统中。通过此类信息的正确界定,可对教师的教学行为以及学生的学习行为等进行有效规范。人工智能的支持下,可令计算机网络呈现出智能化运作的特性,对于当前信息时代的发展态势来讲,智能化、自动化的运营模式在行业领域中属于一种必然导向,为此,应针对行业本身的需求,界定出技术的应用形式,以此来发挥出技术应有的价值效果。
上市公司中,威创股份(002308)联手百度利用AI技术打造“智慧幼教”,打造智慧幼教行业解决方案,助力产业升级。视觉中国(000681)与百度签订了战略合作协议,将在内容正版化、人工智能领域建立 全面深入合作,将业务延伸至旅游、教育等2C端产业。
郑商所:调整硅铁1801合约交易保证金标准和涨跌停板幅度,自2017年12月7日结算时起,硅铁期货1801合约交易保证金标准由原比例调整为14%,涨跌停板幅度由原比例调整为8%。
令人震惊!中国私募基金管理资产达到10.77万亿元人民币。据中国资产管理协会最近报告称,随着中国有更多财富流向理财机构,中国私募基金行业管理的财产正在迅猛增长。 这份发表于11月10日的报告称,今年前10个月内,中国私募基金管理的资产同比增长28%,达10.77万亿元人民币(1.63万亿美元)。中国股市缺的不是资金,缺失的是信心!
关键词: 人工智能 足球机器人 人工神经网络 智能控制
引言
足球机器人系统是一个典型的多智能体系统和分布式人工智能系统,涉及机器人学、计算机视觉[1]、模式识别、多智能体系统[2]、人工神经网络[3]等领域,而且它为人工智能理论研究及多种技术的集成应用提供了良好的实验平台。机器人球队与人类足球一样,它的胜负不但取决于机器人本身的性能,而且取决于比赛策略,只有将可靠的硬件与先进的策略结合才能取胜。人工智能技术在足球机器人的平台上有着重要的作用。从机器人的外观到机器人最重要的核心部分——控制、决策,都无不起着重要的作用。专家系统[4]、人工神经网络在机器人的路径规划[5]上得到充分的应用。
1.人工智能研究现状
人工智能[6-8]是一门研究人类智能机理,以及如何用计算机模拟人类智能活动的学科,该领域的研究包括机器人、语言识别[9]、图像识别、自然语言处理和专家系统等,涉及数理逻辑、语言学、医学和哲学等多门学科。人工智能学科研究的主要内容包括:知识表示[10][11]、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
几乎所有的编程语言均可用于解决人工智能算法,但从编程的便捷性和运行效率考虑,最好选用“人工智能语言”[12]。常用的人工智能语言有传统的函数型语言Lisp、逻辑型语言Prolog及面向对象语言Smalltalk、VC++及VB等,Math-Works公司推出的高性能数值计算可视化软件Matlab中包含神经网络工具箱,提供了许多Matlab函数。另外,还有多种系统工具用于开发特定领域的专家系统,如INSIGHT、GURU、CLIPS、ART等。这些实用工具为开发人工智能应用程序提供了便利条件,使人工智能越来越方便地运用于各种领域。
智能机器人是信息技术和人工智能等学科的综合试验场,可以全面检验信息技术和人工智能等各领域的成果,以及它们之间的相互关系。人工智能技术中的视觉、传感融合、行为决策、知识处理等技术,需要使无线通讯、智能控制、机电仪一体化、计算机仿真等许多关键技术有机、高效地集成统一。人们在很多领域都成功地实现了人工智能:自主规划和调度、博弈、自主控制、诊断、后勤规划、机器人技术、语言理解和问题求解等。
2.人工智能主要研究领域
人工智能的研究领域非常广泛,而且涉及的学科非常多。目前,人工智能的主要研究领域包括:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、智能决策支持系统及人工神经网络等。下面主要介绍在足球机器人设计、制造、控制等过程中常用的人工智能技术[13]。
2.1专家系统
专家系统是一个智能计算机程序系统,是一个具有大量专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。专家系统一般具有如下基本特征:具有专家水平的专门知识;能进行有效的推理;具有获取知识的能力;具有灵活性;具有透明性;具有交互性;具有实用性;具有一定的复杂性及难度。
2.2人工神经网络
人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。其中,具有分布存储、并行处理、自学习、自组织和非线性映射等优点的神经网络与其他技术的结合,以及由此而来的混合方法和混合系统,已经成为一大研究热点。由于其他方法也有优点,因此将神经网络与其他方法相结合,取长补短,可以达到更好的应用效果。目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。
2.3图像处理
图像处理是用计算机对图像进行分析,达到所需结果,又称影像处理。图像处理技术主要包括图像压缩,增强和复原,匹配、描述和识别三个部分。常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。数字图像处理中的模式识别技术,可以对人眼无法识别的图像进行分类处理,可以快速准确地检索、匹配和识别出各种东西,在日常生活各方面和军事上用途较大。
3.人工智能在足球机器人中的应用
3.1基于专家系统的足球机器人规划
路径规划或避碰问题是足球机器人比赛中的一个重要环节。根据工作环境,路径规划模型可分为基于模型的全局路径规划和基于传感器的局部路径规划。全局路径规划的主要方法有:可视图法、自由空间法、最优控制法、栅格法、拓扑法、切线图法、神经网络法等。局部路径规划的主要方法有:人工势场法、模糊逻辑算法、神经网络法、遗传算法[14]等。机器人规划专家系统是用专家系统的结构和技术建立起来的机器人规划系统。大多数成功的专家系统都是以基于规则系统的结构来模仿人类的综合机理的。它由五部分组成:知识库、控制策略、推理机、知识获取、解释与说明。随着人工智能计算智能与进化算法研究的逐步发展,遗传算法、蚁群算法等的提出,机器人路径规划问题得到了相应发展。尤其是通过遗传算法在路径规划中的应用,机器人更加智能化,其运行路径更加逼近理想的优化要求。以动态、未知环境下的机器人路径规划为研究背景,利用遗传算法采用了基于路点坐标值的可变长染色体编码方式,构造了包含障碍物排斥子函数项的代价函数,使得路径规划中的地图信息被成功引入到了遗传操作的实现过程中。同时针对路径规划问题的具体应用,改进了交叉和变异两种遗传算子,获得了较为理想的路径搜索效率,达到了较好的移动机器人路径规划效果。
3.2人工神经网络在机器人定导航中的应用
人工神经网络是一种仿效生物神经系统的信息处理方法,其优点主要体现在它可以处理难以用模型或规则描述的过程和系统;对非线性系统具有统一的描述;有较强的信息融合能力。因此在移动机器人定位与导航方面,基于神经网络的多传感器信息融合正是利用了神经网络的这些特性,将机器人外部传感器的传感数据信息作为神经网络的输入处理对象,从而获得移动机器人自身位置与对障碍物比较精确的估计,实现移动机器人的避障与自定位。
结语
随着人工智能技术的进一步研究,足球机器人竞赛水平将不断提高。但就目前情况来看,在现有的基础上扩大应用的范围,增强应用的效果,还应主要在人工智能技术上做进一步的研究。专家系统在专家知识的总结、表述及不确定的情况下推理是目前专家系统的瓶颈所在。制造生产的多变复杂性及操作的人工经验性,使人工智能的应用受到限制。此外,一些工艺参数的定量化实现也不易。随着技术的飞速发展,人工智能技术也在进一步完善,如多种方法混合技术、多专家系统技术、机器学习方法、并行分布处理技术等。随着新型人工智能技术的出现,制造业将会更加光明,性能更加优越的足球机器人也不再遥远。
参考文献:
[1]郑南宁.计算机视觉与模式识别[M].北京-国防工业出版社,1998.3.
[2]Wang Hongbing Fan Zhihua She Chundong Formal Specification of Role Assignment for Open Multi Agent System Chinese of Journal Electronics[J].2007,16(2):212-216.
[3]LIMING ZHANG AND FANJI GU NEURAL INFORMATION PROCESSING VOLUME 1[M]Fudan University Press, 2001.
[4]Cai Zixing,King-Sun Fu. Expert-System-Based Robot Planning ?Control Theory & Applications[J] .1988(2): 35-42.
[5]张锐,吴成东.机器人智能控制研究进展[J].沈阳建筑工程学院学报(自然科学版),2003,19(1):61-64.
[6]蔡自兴,徐光祐.人工智能机器应用(第三版)清华大学出版社,2004.
[7]艾辉.谢康宁,谢百治.谈人工智能技术[J]中国医学教育技术,2004,18(2):78-80.
[8]Nilsson NJ.Artificial Intelligence:A New Synthesis[M].Beijing:China Machine Press,2006:72-95.
[9]Han Jiqing Gao Wen Robust Speech Recognition Method Based on Discriminative Environment Feature Extraction Journal of Computer Science and Technology[J]. 2001;16(5):458-464.
[10]Tang Zhijie Yang Baoan Zhang Kejing Design of Multi-attribute Knowledge Base Based on Hybrid Knowledge Representation Journal of Donghua University 2006,23(6):62-66.
[11]Hu Xiangpei Wang Xuyin Knowledge representation and rule——based solution system for dynamic programming model Journal of Harbin Institute of Technology 2003,10(2):190-194.
[12]姚根.人工智能的概况及实现方法[J] .2009,28(3):108.
关键词: 人工智能 发展过程 研究热点 应用领域 未来发展
一、人工智能概述
人工智能(Artificial Intelligence,简称AI),也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统角度来看,人工智能是研究如何制造出智能机器或智能系统,实现模拟人类智能活动的能力,以延伸人们智能的科学。人工智能是一门交叉学科,是一门涉及心理学、认知科学、思维科学、信息科学、系统科学和生物科学等多学科的综合性技术学科,目前已在知识处理、模式识别、自然语言处理、博弈、自动定理证明、自动程序设计、专家系统、知识库、智能机器人等多个领域取得举世瞩目的成果,并形成了多元化的发展方向。
二、人工智能的发展过程
人工智能经历了三次飞跃阶段:第一次是实现问题求解,代替人完成部分逻辑推理工作,如机器定理证明和专家系统;第二次是智能系统能够和环境交互,从运行的环境中获取信息,代替人完成包括不确定性在内的部分思维工作,通过自身的动作,对环境施加影响,并适应环境的变化,如智能机器人;第三次是智能系统,具有类人的认知和思维能力,能够发现新的知识,去完成面临的任务,如基于数据挖掘的系统。
三、人工智能的研究热点
AI研究出现了新的,这一方面是因为在人工智能理论方面有了新的进展,另一方面是因为计算机硬件突飞猛进地发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低,以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的三个热点是:智能接口、数据挖掘、主体及多主体系统。
1.智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译及自然语言理解等技术已经开始实用化。
2.数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但是又潜在有用的信息和知识的过程。数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱:数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现及网上数据挖掘等。
3.主体系统是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定的自主性。主体试图自治、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理,主要应用在对现实世界和社会的模拟、机器人及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习及多主体系统应用等方面。
四、人工智能的应用领域
1.专家系统
专家系统是一个具有大量专门知识与经验的程序系统,专家系统存储着某个专门领域中经过事先总结、分析并按某种模式表示的专家知识,以及拥有类似于领域专家解决实际问题的推理机制。专家系统的开发和研究是人工智能中最活跃的一个应用研究领域,涉及社会各个方面。
2.知识库系统
知识库系统也叫数据库系统,是储存某学科大量事实的计算机软件系统,它可以回答用户提出的有关该学科的各种问题。知识库系统的设计是计算机科学的一个活跃的分支。为了有效地表示、储存和检索大量事实,已经发展出了许多技术。但是在设计智能信息检索系统时还是遇到很多问题,包括对自然语言的理解,根据储存的事实演绎答案的问题、理解询问和演绎答案所需要的知识都可能超出该学科领域数据库所表示的知识。
3.物景分析
计算机视觉已从模式识别的一个研究领域发展为一门独立的学科。视觉是感知问题之一。整个感知问题的要点是形成一个精练的表示,以表示难以处理的、极其庞大的未经加工的输入数据。最终表示的性质和质量取决于感知系统的目标。机器视觉的前沿研究领域包括实时并行处理、主动式定性视觉、动态和时变视觉、三维景物的建模与识别、实时图像压缩传送和复原、多光谱和彩色图像的处理与解释等。机器视觉已在机器人装配、卫星图像处理、工业过程监控、飞行器跟踪和制导及电视实况转播等领域获得极为广泛的应用。
4.模式识别
模式识别就是识别出给定物体所模仿的标本或标识。计算机模式识别系统能够弥补计算机对外部世界感知能力低下的缺陷,使计算机能够通过感官接受外界信息,识别和理解周围环境。模式识别在二维的文字、图形和图像的识别方面已取得许多成果,在三维景物、活动目标的识别和分析方面是目前研究的热点,同时它还是智能计算机和智能机器人研究的十分重要的基础。此外,人工智能还在机器视觉、组合调度问题、自然语言理解、机器学习、博弈、定理证明等研究应用领域发挥着重要作用。可以说人工智能已深入各行各业,对人类社会作出了巨大的贡献。
5.机器人
机器人学所研究的问题,从机器人手臂的最佳移动到实现机器人目标的动作序列的规划方法,无所不包。尽管已经建立了一些比较复杂的机器人系统,但是现在工业上运行的机器人都是一些按预先编好的程序执行某些重复作业的简单装置,大多数工业机器人是“盲人”。机器人和机器人学的研究促进了许多人工智能思想的发展。智能机器人的研究和应用体现出广泛的学科交叉,涉及众多课题。机器人已在工业、农业、商业、旅游业、空中和海洋及国防等多个领域获得越来越普遍的应用。
五、人工智能的未来发展
目前绝大多数人工智能系统都是建立在物理符号系统假设之上的。在尚未出现能与物理符号系统假设相抗衡的新的人工智能理论之前,无论从设计原理还是从已取得的实验结果来看,Soar在探讨智能行为的一般特征和人类认知的具体特征的艰难征途上都取得了有特色的进展或成就,处在人工智能研究的前沿。上世纪80年代,以NewellA为代表的研究学者总结了专家系统的成功经验,吸收了认知科学研究的最新成果,提出了作为通用智能基础的体系结构Soar。目前的Soar已经显示出强大的问题求解能力。在Soar中已实现了30多种搜索方法,实现了若干知识密集型任务(专家系统),如RI等。对于人工智能未来的发展方向,专家们通过一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络及其情感。
目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来人工智能应用的新领域。未来智能计算机的构成,可能就是作为主机的冯・诺依曼型机与作为智能的人工神经网络的结合。研究表明:情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。
根据这些前瞻性研究我们也可以通过想象模拟勾画出人工智能未来发展的三个阶段。
1.融合时期(2010―2020年)
(1)用语言操纵和控制的智能化设备十分普及,像远程医疗这样的服务也更为完善。
(2)以计算机和互联网为基础的远程教育十分普及,在家就可以上大学。
(3)在身体里植入许多不同功能的芯片已不新奇。
(4)量子计算机和DNA计算机会有更大发展,新材料不断问世。
(5)抗病毒程序可以防止各种非自然因素引发灾难。
2.自信时期(2020―2030年)
(1)智能化计算机和互联网既能自我修复,也能自行进行研究、生产产品。
(2)一些新型材料的出现,促使智能化向更高层次发展。
(3)有了高水准智能化技术的协助,人们“定居火星梦”可能性大增。
3.非神秘时期(2030―2040年)
(1)新的全息模式世界将取代原有几何模式的世界。
(2)人们对一些目前无法解释的自然现象会有更完善的解释。
(3)人工智能可以模仿人类的智能,因此会出现有关法律来规范这些行为。
据统计,2017年中国人工智能核心产业规模超过700亿元,随着各地人工智能建设的逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,年复合增长率将达31.7%。
随着人工智能技术的不断成熟,人工智能创业的难度逐步降低,越来越多的创业公司加入人工智能的阵营。
2018年被称为人工智能爆发的元年,人工智能技术应用所催生的商业价值逐步凸显。人工智能逐步切入到社会生活的方方面面,带来生产效率及生活品质的大幅提升。智能红利时代开启!资本、巨头和创业公司纷纷涌入,将人工智能拉到了信息产业革命的风口。
如何把握产业动向,抓住风口机会?创业邦研究中心凭借在人工智能等前言科技领域持续研究、洞察的能力,在对国内人工智能创业公司进行系统调研的基础上,推出《2018中国人工智能白皮书》,对人工智能的核心技术、主要应用领域、巨头和创业公司的布局、未来发展态势和投资机会进行了深度解析。
第一部分人工智能行业发展概述
1.人工智能概念及发展
人工智能(Artificial Intelligence, AI)又称机器智能,是指由人制造出来的机器所表现出来的智能,即通过普通计算机程序的手段实现的类人智能技术。
自1956年达特茅斯会议提出“人工智能”的概念以来,“人工智能”经历了寒冬与交替的起起伏伏60多年的发展历程。2010年以后,深度学习的发展推动语音识别、图像识别和自然语言处理等技术取得了惊人突破,前所未有的人工智能商业化和全球化浪潮席卷而来。
人工智能发展历程
2.人工智能产业链图谱
人工智能产业链可以分为基础设施层、应用技术层和行业应用层。
A基础层,主要有基础数据提供商、半导体芯片供应商、传感器供应商和云服务商。
B技术层,主要有语音识别、自然语言处理、计算机视觉、深度学习技术提供商。
C应用层,主要是把人工智能相关技术集成到自己的产品和服务中,然后切入特定场景。目前来看,自动驾驶、医疗、安防、金融、营销等领域是业内人士普遍比较看好方向。
人工智能产业链
资料来源:创业邦研究中心
第二部分人工智能行业巨头布局
巨头积极寻找人工智能落地场景,B、C 端全面发力。
资料来源:券商报告、互联网公开信息,创业邦研究中心整理
第三部分机器视觉技术解读及行业分析
1.机器视觉技术概念
机器视觉是指通过用计算机或图像处理器及相关设备来模拟人类视觉,以让机器获得相关的视觉信息并加以理解,它是将图像转换成数字信号进行分析处理的技术。
机器视觉的两个组成部分
资料来源:互联网公开信息,创业邦研究中心整理
2.发展关键要素:数据、算力和算法
数据、算力和算法是影响机器视觉行业发展的三要素。 人工智能正在像婴儿一样成长,机器不再只是通过特定的编程完成任务,而是通过不断学习来掌握本领,这主要依赖高效的模型算法进行大量数据训练,其背后需要具备高性能计算能力的软硬件作为支撑。
深度学习出现后,机器视觉的主要识别方式发生重大转变,自学习状态成为视觉识别主流,即机器从海量数据里自行归纳特征,然后按照该特征规律使图像识别的精准度也得到极大的提升,从70%+提升到95%。
3.商业模式分析
机器视觉包括软件平台开发和软硬件一体解决方案服务。整体用户更偏向于B端。软件服务提供商作为技术算法的驱动者,其商业模式应以“技术层+场景应用”作为突破口。软硬件一体化服务供应商作为生态构建者,适合以“全产业链生态+场景应用”作为突破口,加速商业化。
(1)软件服务:技术算法驱动者—“技术层+场景应用”作为突破口
这种商业模式主要是提供以工程师为主的企业级软件服务。有海量数据支撑,构建起功能和信息架构较为复杂的生态系统,推动最末端的消费者体验。
此类商业模式成功关键因素:深耕算法和通用技术,建立技术优势,同时以场景应用为入口,积累用户软件。视觉软件服务按处理方式和存储位置的不同可分为在线API、离线SDK、私有云等。
国内外基础算法应用对比
资料来源:互联网公开信息,创业邦研究中心整理
(2)软硬件一体化:生态构建者—“全产业链生态+场景应用”作为突破口
软硬一体化的商业模式是一种“终端+软件+服务”全产业链体系。成功的因素是大量算力投入,海量优质数据积累,建立算法平台、通用技术平台和应用平台,以场景为入口,积累用户。亮点是打造终端、操作系统、应用和服务一体化的生态系统,各部分相辅相承,锐化企业竞争力,在产业链中拥有更多话语权。
4.投资方向
(1)前端智能化,低成本的视觉解决模块或设备
从需求层面讲,一些场景对实时响应是有很高要求的。提供某些前端就本身有一定计算能力的低成本的视觉模块和设备将有很大市场需求。前置计算让前端设备成为数据采集设备和数据处理单元的合体,一方面提升了处理速度,另一方面可以处理云端难以解决的问题。
机器视觉在消费领域落地的一个障碍是支持高性能运算的低功耗、低价位芯片选择太少。从低功耗、高运算能力的芯片出发,结合先进的算法开发模块和产品,这类企业将在机器视觉领域拥有核心竞争力。
(2)深度学习解决视觉算法场景的专用芯片
以AI芯片方式作为视觉处理芯片有相当大的市场空间。以手势识别为例,传统的识别方案大都基于颜色空间,如 RGB,HSV ,YCrBr,无法排除类肤色物体及黑色皮肤对识别精度的干扰。借助深度学习,如通过 R-CNN 训练大量标注后的手势图像数据,得到的模型在处理带有复杂背景及暗光环境下的手势识别问题时,比传统方案的效果好很多。
(3)新兴服务领域的特殊应用
前沿技术带来的新领域(如无人车、服务机器人、谷歌眼镜等),对机器视觉提出了新要求。机器视觉可以让机器人在多种场合实现应用。服务机器人与工业机器人最大的区别就是多维空间的应用。目前国内的机器视觉,涉及三维空间、多维空间,其技术基本上处在初始阶段,未来存在较大市场增长空间。
(4)数据是争夺要点,应用场景是着力关键
机器视觉的研究虽然始于学术界,但作为商业应用,能解决实际问题才是核心的竞争力。当一家公司先天能够获得大量连续不断的优质场景数据,又有挖掘该数据价值的先进技术时,商业模式和数据模式上就能形成协同效应。创业公司要么通过自有平台获取数据,要么选择与拥有数据源的公司进行合作,同时选择一个商业落地的方向,实现快速的数据循环。
第四部分智能语言技术解读及行业分析
1.语音识别技术
(1)语音识别技术已趋成熟,全球应用持续升温
语音识别技术已趋成熟,全球应用持续升温。语音识别技术经历了长达60年的发展,近年来机器学习和深度神经网络的引入,使得语音识别的准确率提升到足以在实际场景中应用。深度神经网络逐步找到模型结构和调参算法来替代或结合高斯混合算法和HMM算法,在识别率上取得突破。根据Google Trends统计,自2008年iPhone及谷歌语音搜索推出以来语音搜索增长超35倍。百度人工智能专家吴恩达预测,2020年语音及图像搜索占比有望达到50%。Echo热销超过400万,带动智能音箱热潮。
(2)语音识别进入巨头崛起时代,开放平台扩大生态圈成主流
语音识别即将进入大规模产业化时代。随着亚马逊Echo的大卖,语音交互技术催生的新商机,吸引大大小小的公司构建自己主导的语音生态产业链。各大公司纷纷开放各自的智能语音平台和语音能力,欲吸引更多玩家进入他们的生态系统。
(3)语音识别技术发展瓶颈与趋势
低噪声语料下的高识别率在现实环境使用中会明显下降到70-80%,远场识别、复杂噪声环境和特异性口音的识别是下一个阶段需要解决的问题。
麦克风阵列类前端技术不仅是通过降噪和声源定位带来识别率的提高,带环境音的语料的搜集、标注可用于模型的训练,有助于打造更新一代的语音识别引擎技术。语音巨头已经在布局。
在IOT包括车载领域,云端识别并非通行的最优方案,把识别引擎结合场景进行裁剪后往芯片端迁徙是工程化发展的方向。
2.自然语言处理(NLP)发展现状
(1)多技术融合应用促进NLP技术及应用的发展
深度学习、算力和大数据的爆发极大促进了自然语言处理技术的发展。深度学习在某些语言问题上正在取得很大的突破,比如翻译和写作。2014年开始LSTM、Word2Vec以及Attention Model等技术研究的进展,使DL有了路径在语义理解领域取得突破,并且已经有了明显的进展。对话、翻译、写作新技术成果里都开始逐渐混合入DL的框架。2014-2015年,硅谷在语义理解领域的投资热度剧增。
深度学习能最大程度发挥对大数据和算力资源的利用,语义理解的发展还需要深度学习、搜索算法、知识图谱、记忆网络等知识的协同应用,应用场景越明确(如客服/助理),逻辑推理要求越浅(如翻译),知识图谱领域越成熟(如数据饱和度和标准性较强的行业),技术上实现可能性相对较低。在各种技术融合应用发展的情况下,具备获取一定优质数据资源能力并可结合行业Domain knowledge构建出技术、产品、用户反馈闭环的企业会有更好的发展机会。
(2)NLP主要应用场景
问答系统。问答系统能用准确、简洁的自然语言回答用户用自然语言提出的问题。基本工作原理是在线做匹配和排序。比如 IBM 的 Watson,典型的办法是把问答用FAQ索引起来,与搜索引擎相似。对每一个新问题进行检索,再将回答按匹配度进行排序,把最有可能的答案排在前面,往往就取第一个作为答案返回给用户。
图像检索。同样也是基于深度学习技术,跨模态地把文本和图片联系起来。
机器翻译。机器翻译的历史被认为与自然语言处理的历史是一样的。最近,深度学习被成功地运用到机器翻译里,使得机器翻译的准确率大幅度提升。
对话系统。对话系统的回复是完全开放的,要求机器能准确地理解问题,并且基于自身的知识系统和对于对话目标的理解,去生成一个回复。
(3)创业公司的机遇
1)机器翻译方面:经过多年的探索,机器翻译的水平已经得到大幅度提升,在很多垂直领域已经能够在相当大程度上替代一部分人工,机器翻译技术的商业化应用已经开始进入大规模爆发的前夜。
2)应用于垂直领域的自然语言处理技术
避开巨头们对语音交互入口的竞争,以某一细分行业为切入点,深耕垂直领域,对创业公司也是一个不错的选择。
第五部分人工智能在金融行业的应用分析
人工智能产业链包含基础层、技术层、应用层三个层面。基础层的大数据、云计算等细分技术被应用到金融征信、保险、理财管理、支付等金融细分领域;技术层的机器学习、神经网络与知识图谱应用于金融领域的征信与反欺诈、智能投顾、智能量化交易,计算机视觉与生物识别应用于金融领域的身份识别,语音识别及自然语言处理应用于金融领域的智能客服、智能投研;应用层的认知智能应用于金融领域的智能风控。
人工智能在金融行业的典型应用情况
资料来源:创业邦研究中心
第六部分人工智能在医疗行业的应用分析
1.人工智能在医疗行业的应用图谱
人工智能在医疗行业的应用潜力巨大,目前在健康管理、辅助诊疗、虚拟助理、医学影像、智能化器械、药物挖掘和医院管理等领域均有企业在布局,其中医学影像、药物挖掘、健康管理,辅助诊疗、虚拟助理的应用发展速度较快。
图 人工智能在医疗行业的应用图谱
资料来源:创业邦研究中心
2.人工智能在医疗行业的具体应用场景
医学影像。人工智能应用于医学影像,通过深度学习,实现机器对医学影像的分析判断,是协助医生完成诊断、治疗工作的一种辅助工具,帮助更快的获取影像信息,进行定性定量分析,提升医生看图/读图的效率,协助发现隐藏病灶。 人工智能通过影像分类、目标检测、图像分割、图像检索等方式,完成病灶识别与标注,三维重建,靶区自动勾画与自适应放疗等功能,应用在疾病的筛查、诊断和治疗阶段。目前较为火热的应用有肺部筛查、糖网筛查、肿瘤诊断和治疗等。
药物挖掘。人工智能在药物研发上的应用可总结为临床前和临床后两个阶段。临床前阶段:将深度学习技术应用于药物临床前研究,在计算机上模拟药物筛选的过程,包括靶点选择、药效和晶型分析等,预测化合物的活性、稳定性和副作用,快速 、准确地挖掘和筛选合适的化合物或生物,提高筛选效率,优化构效关系。临床后阶段:针对临床试验的不同阶段,利用人工智能技术对患者病历进行分析,迅速筛选符合条件的被试者,监测管理临床试验过程中的患者服药依从性和数据收集过程,提高临床试验的准确性。
虚拟助理。医疗虚拟助理是基于医疗领域的知识系统,通过人工智能技术实现人机交互,从而在就医过程中,承担诊前问询、诊中记录等工作,成为医务人员的合作伙伴,使医生有更多时间可以与患者互动。医疗虚拟助理根据参与就医过程的功能不同,主要有智能导诊分诊,智能问诊,用药咨询和语音电子病历等方向。
第七部分智能驾驶行业分析
1.智能驾驶行业产业链
智能驾驶行业的中心业务是以Google、百度为代表的智能驾驶操纵解决方案提供商和以特斯拉、蔚来为代表的成车厂商。该类厂商,上接上游软硬件提供商,下接公司和消费者,在整个业务链中扮演至关重要的一环。
产业链上游厂商多为细分技术提供商,如深度学习、人机交互、图像识别和新材料、新制造新能源等。
智能驾驶产业链图谱
资料来源:创业邦研究中心
2.智能驾驶市场分析
伴随着 ADAS 技术的不断更新,推断全球 L1-L5 智能驾驶市场的渗透率会在接下来 5年内处于高速渗透期,然 后伴随半无人驾驶的普及进入稳速增长期。在未来的 2025 年无人驾驶放量阶段后,依赖全产业链的配合而进入市场成熟期。预测到2030年,全球 L4/5 级别的自动驾驶车辆渗透率将达到 15%,单车应用成本的显着提升之 外,从 L1-L4 级别的智能驾驶功能全面渗透为汽车产业带来全面的市场机会。
按照 IHS Automotive 保守估计,全球 L4/L5 自动驾驶汽车产量在 2025 年将接近 60 万辆,并在 2025- 2035 年间获得高速发展,年复合增长率将达到43%,并在2035年达到2100万辆。另有接近 7600 万辆的汽车具备部分自动驾驶功能,同时会带动产业链衍生市场的大规模催化扩张。
根据独立市场调研机构 Strategy Engineers 的预测,L4 高度自动驾驶等级下,自动驾驶零部件成本约在 3100 美元/车,其中硬件占比 45%,软件占比 30%,系统整合占比 14%,车联网部分占比 11%。按照全球 1 亿辆量 产规模计算,理想假设所有车辆全部达到 L4 高度自动驾驶水平,那么全球自动驾驶零部件市场规模在 2020 年 将达到 3100 亿美元。
第八部分中国人工智能企业画像分析
随着人工智能技术的不断成熟,人工智能创业的难度逐步降低。创新的大门吸引众多创业企业进入。为了观察行业风向,助力创新企业发展,创业邦研究中心对国内200多家人工智能创业公司进行了系统调研,从发展能力、创新能力、融资能力等多维度指标,评选出“2018中国人工智能创新成长企业50强”。
地域分布
全国88%的人工智能企业聚集在北京、上海、广东和江苏。其中,北京人工智能企业最多,占比高达39.66%;其次是上海,人工智能企业占比达21.55%;位列第三的是广东,人工智能企业占达15.52%。北京以领先全国其他地区的政策环境、人才储备、产业基础、资本支持等,成为人工智能创业首要阵地;华东地区的上海、江苏、浙江均有良好的经济基础和科技实力,人工智能应用实力雄厚,也聚集了一批人工智能垂直产业园;广东互联网产业发达,企业对数据需求强烈,依靠大数据产业链推动人工智能产业发展。
行业分布
从行业大类分布来看,行业应用层的企业占比最大,为56.03%;其次是应用技术层的企业,占比达31.04%;基础技术层的企业占比最小,仅为12.93%。随着人工智能技术的发展,人工智能与场景深度融合,应用领域不断扩展,行业应用公司比重不断提升。在基础层技术方面,国际IT巨头占据行业领先地位, 国内与国际差距明显,中小初创企业很难进入。
从行业应用来看,智能金融企业占比最大,为16.92%;其次是机器人企业,占比达15.38%;位列第三的是智能驾驶和智能教育,占比均为12.31%。金融行业的强数据导向为人工智能的落地提供了产业基础,智慧金融被列入国家发展规划中,庞大的金融市场为人工智能落地带来了发展前景。机器人作为人工智能产业落地输出, 目前市场需求较大,商业机器人占据较大份额。中国智能驾驶市场在资本推动下进入者较多,企业积极推动应用落地,百度、北汽等大型企业尝试商业化落地智能驾驶汽车。人工智能推动教育个性化落地,相关初创企业涉入教育蓝海,推动智慧教育的发展。
收入情况
收入分布在500-10000万之间的企业最多,占比达49.14%;500万以下的企业位居其次,占比达 26.72%;位列第三的是10000-100000万之间的企业,占比为17.24%。
最新估值
企业最新估值均在亿元级别,且分布较为均衡。三成企业估值超过15亿元,还有企业估值达到百亿级别,如优必
选科技、达闼科技和商汤科技等,将来或将跻身人工智能独角兽企业。(备注:分析样本量剔除一半未披露企业)
第九部分典型企业案例分析
1.Atman
企业概述
Atman由来自微软的人工智能科学家和产业经验丰富的产品团队创办,提供专业领域机器翻译、机器写作、知识图谱、大数据智能采集挖掘等语言智能产品,致力于成为医学、新闻、法律等专业领域语言智能专家,为专业领域用户赋能,推动专业领域用户进入人工智能时代,助力专业领域文字智能水平实现跨越式提升。Atman已为强生、新华社参考消息、北大法宝、君合律师事务所等世界领先药企、新闻媒体、法律服务机构开发机器翻译、机器写作、知识图谱、大数据智能采集挖掘等语言智能产品。
目前Atman在北京和苏州两地运营,能快速响应全国各地客户需求。
企业团队
创始人&CEO:马磊
清华大学计算机系毕业,曾先后在微软研究院和工程院担任研究员和架构师,机器学习专家、多次创业者、曾主导多项人工智能重大项目,和申请国际专利共计15+项。
Atman公司核心团队由来自微软、百度、法电等领域高端人才和资深技术人才组成,公司员工40人,其中硕士以上学历占比60%,技术开发人员占比70%,一半以上来自微软亚洲研究院和工程院。
核心技术与产品
技术方面,擅长机器学习(深度学习、强化学习、群体智能)在复杂问题的应用,和国际专利15项,Atman神经网络机器翻译系统于2016年9月首秀,早于谷歌的GNMT,专业领域翻译效果在公测标准和行业客户测试中均持续领先。核心产品为垂直领域机器翻译、机器写作、知识图谱抽取构建、大数据智能挖掘等语言智能产品。
Atman的机器翻译产品可自动翻译编辑专业文献、报告、音视频和网页,支持私有部署和云端混合部署,提供包括数据隐私安全以及自学习的端到端解决方案。
机器写作可对海量数据进行快速搜索、过滤、聚类,根据行业需求自动生成专业文档,适用于所有专业写作场景,可大幅减少专业报告写作过程中的繁复工作,大幅提升专业领域写作效率。
知识图谱可实现海量数据的语义检索、长链推理、意图识别、因果分析,形成一个全局知识库。大数据智能采集挖掘系统为专业领域用户提供智能数据源管理、海量专业数据获取和非结构化数据自动解析并结合知识图谱提供auto-screening、知识重构、专业决策辅助,帮助用户建立强大的以专业大数据为基础的业务辅助能力。
2.黑芝麻
企业概述
黑芝麻智能科技有限公司是一家视觉感知核心技术与应用软件开发企业,2016年分别在美国硅谷和上海成立研发中心,主攻领域为嵌入式图像、计算机视觉,公司核心业务是提供基于图像处理、计算图像以及人工智能的嵌入式视觉感知平台,为ADAS及自动驾驶提供完整的视觉感知方案。
目前公司和博世、滴滴、蔚来、上汽、上汽大通、EVCARD、中科创达、车联天下和云乐新能源等展开深入合作,提供基于视觉的感知方案;除此之外,公司还在消费电子、智能家居等领域布局为智能终端提供视觉解决方案。目前公司已经完成A+轮融资。
企业团队
团队核心成员来自于OmniVision、博世、安霸、英伟达和高通等知名企业,平均拥有超过15年以上的产业经验,毕业于清华、交大、中科大和浙大等知名高校。
创始人&CEO:单记章此前在硅谷一家全球顶尖的图像传感器公司工作近20年,离职前担任该公司的技术副总裁一职,工作内容覆盖了图像传感器研发和设计、图像处理算法研发和图像处理芯片设计。
核心技术和产品
在汽车领域,黑芝麻可提供车内监控方案(DMS),自动泊车方案(AVP),ADAS/自动驾驶感知平台方案。黑芝麻智能科技提供的解决方案包括算法和芯片两个核心部分:黑芝麻感知算法从基础的控光技术,到面向AI的图像处理技术出发来提高成像质量,以及应用深度神经网络训练,结合视频处理和压缩技术,形成从传感器端到应用端的处理过程;黑芝麻芯片平台采用独有的神经网络架构,包括独有的图像处理,视频压缩和计算机视觉模块,与黑芝麻视觉算法结合,采用16nm制程,设计功耗2.5w,每秒浮点计算达20T。
3.乂学教育
企业概述
乂学教育,成立于2014年,是一家网络教育培训机构,采用人工智能和大数据技术,为学生提供量身定制学习解决方案和个性化学习内容。核心团队来自美国Knewton、Realizeit、ALEKS等人工智能教育公司,销售团队有全国40亿toC销售额的经验。
企业自主研发了针对中国K12领域的学生智适应学习产品,其核心部分是以高级算法为核心的智适应学习引擎“松鼠AI”,该产品拥有完整自主知识产权,能够模拟真实特级教师教学。企业发表的学术论文得到了全球国际学术会议AIED、CSEDU、UMAP认可,并在纽约设计了人工智能教育实验室,与斯坦福国际研究院(SRI)在硅谷成立了人工智能联合实验室。
主要产品
学生智适应学习是以学生为中心的智能化、个性化教育,在教、学、评、测、练等教学过程中应用人工智能技术,在模拟优秀教师的基础之上,达到超越真人教学的目的。该产品性价比高,以人工智能+真人教师的模式,做到因材施教,有效解决传统教育课时费用高,名师资源少,学习效率低等问题。
智适应学习人工智能系统
智适应学习人工智能系统模拟特级教师,采用图论、概率图模型,机器学习完成知识点拆分和个人学习画像,采用神经网络、逻辑斯蒂回归和遗传算法为学生实时动态推荐最佳学习路径,实现个性化教育。
业务模式
线上与线下,2B和2C相结合。以松鼠AI智适应系统教学为主,真人教师辅助,学生通过互联网在线上学习课程。开创教育新零售模式,授权线下合作学校,已在全国100多个城市开设500多家学校。
4.云从科技
企业概述
云从科技成立于2015年4月,是一家孵化于中国科学院重庆研究院的高科技企业,专注于计算机视觉与人工智 能。云从科技是人工智能行业国家队,是中科院战略先导项目人脸识别团队唯一代表,唯一一家同时受邀制定人 脸识别国家标准、行业标准的企业。2018年,云从科技成为祖国“一带一路”战略实行路上的人工智能先锋,与 非洲南部第二大经济体津巴布韦政府完成签约。
云从科技奠定了行业领导地位: 国家肯定,国家发改委2017、2018年人工智能重大工程承建单位;顶层设计,唯一同时制定国标、部标和行标的人工智能企业;模式创新,三大平台解决方案,科学家平台、核心技术平台和行业应用平台。
企业核心团队
创始人
周曦博士,师从四院院士、计算机视觉之父—ThomasS.Huan黄煦涛教授,专注于人工智能识别领域的计算机视觉 研究。入选中科院“百人计划”,曾任中国科学院重庆研究院信息所副所长、智能多媒体技术研究中心主任。
周曦博士带领团队曾在计算机视觉识别、图像识别、音频检测等国际挑战赛中7次夺冠;在国际顶级会议、杂志 上发表60余篇文章,被引用上千次。
核心技术团队
云从科技依托美国UIUC和硅谷两个前沿实验室,中科院、上海交大两个联合实验室上海、广州、重庆、成都四 个研发中心组成的三级研发架构。目前研发团队已经超过300人,80%以上拥有硕士学历。
技术优势
全方位多维智能学习模块适应不同场景要求;模块化设计为在工业视觉、医学影像、自动驾驶AR等领域扩展打下良好基础。
云从科技具有高技术壁垒:世界智能识别挑战赛成绩斐然,在CLEAR、 ASTAR、 PASCAL VOC、 IMAGENET、FERA以及微软全球图像识别挑战赛上共计夺得7次世界冠军;在银行、公安等行业智能识别技术 PK实战中,85次获得第一;2018年,云从科技入选MIT全球十大突破性技术代表企业。
在跨镜追踪(ReID)技术上取得重大突破。Market-1501,DukeMTMC-reID,CUHK03三个数据同时集体刷 新世界记录, Market-1501上的首位命中率达到96.6%,首次达到商用水平。
正式在国内“3D结构光人脸识别技术”,可全面应用于手机、电脑、机具、设备、家电。相较以往的2D人 脸识别及以红外活体检测技术,3D结构光人脸识别技术拥有不需要用户进行任何动作配合完成活体验证的功能, 分析时间压缩到了毫秒级以及不受环境光线强弱的影响等诸多优点,受到国际巨头公司的关注。
行业应用
目前国内有能力自建系统的银行约为148家。截止2018年3月15日,已经完成招标的银行约为121家,其中云从科 技中标了88家总行平台,市场占有率约为72.7%;在安防领域推动中科院与公安部全面合作,通过公安部重大课题研发火眼人脸大数据平台等智能化系统,在民航领域,已经与中科院重庆院合作覆盖80%的枢纽机场。
5.Yi+
企业概述
北京陌上花科技是领先的计算机视觉引擎服务商,为企业提供视觉内容智能化和商业化解决方案。致力于“发现视觉信息的价值”。
旗下品牌Yi+是世界一流的人工智能计算机视觉引擎,衣+是时尚商品搜索引擎。公司在图像视频中对场景、通用物体、商品、人脸的检测、识别、搜索及推荐均达到领先水平。
目前公司和阿里巴巴、爱奇艺、优酷土豆、中国有线、CIBN、中信国安、海信、华为、360等数十家顶级机构/产品深度合作,通过提供边看边买引擎、图像视频内容分析引擎、人脸识别引擎等基于视觉识别技术的数据结构化产品服务于海量用户,同时帮助政府机构、广电系统、内容媒体、零售商、电商、视听设备等行业实现智能分析、智能互动与场景营销。目前公司已经获得B轮融资。
企业团队
团队成员来自于斯坦福、耶鲁、帝国理工、新加坡国大、南洋理工、清华、北大、中科院等名校及谷歌、微软、IBM、英特尔、阿里巴巴、腾讯、百度、华为等名企。
创始人&CEO:张默
北京大学软件工程硕士, 南洋理工大学创业创新硕士。连续创业者, 曾任华为算法工程师、微软WindowsMobile工程师、 IBM SmarterCity 架构师,北方区合作伙伴经理,主机Linux中国区负责人,中国区开源联盟负责人,年销售额数亿。 2013年创业于美国硅谷和新加坡,2014年6月在中国设立北京陌上花科技有限公司。
核心技术与产品
技术方面,在国际顶级计算机视觉竞赛ImageNet中,成绩曾超过谷歌、斯坦福等,2015-2016年2年获得十项世界第一。2018年3月,人脸识别准确率位列LFW榜首。Yi+通过遵循无限制,标记的外部数据协议。 Yi+的系统由人脸检测,人脸对齐和人脸描述符提取组成。使用多重损失和训练数据集训练CNN模型,其中包含来自多个来源的约10M个图像,其中包含150,000个人(训练数据集与LFW没有交集)。在测试时, Yi+使用原始的LFW图像并应用简单的L2norm。图像对之间的相似性用欧氏距离来测量,最终取得优异成绩。
公司的核心产品主要包括视觉搜索引擎,图像视频分析引擎以及人脸识别和分析引擎:
行业解决方案
针对营销、安防、相机和电视的不同特点,推出相应解决方案。
营销+AI。场景化广告方案中,大屏AI助理信息流推荐、神字幕、物体/人脸AR动态贴图、video-out、场景化角标与广告滤镜等形式的广告内容推荐,适用于快消、汽车、电商、IT、金融、旅游服务等多个行业。
智慧城市+AI。使用计算及视觉助力智慧城市,在智慧安防、智慧交通、智慧园区等方面提供解决方案。在智慧安防实时识别上,实时处理直播摄像头信息,算法反应敏捷,相应迅速。建立智慧园区方案模型,考虑扩展性&灵活性、数据管理、松散耦合性、安全性、实时整合性以及功能性和非功能性需求等技术方案要素,从业务和技术两方面整合解决方案实现步骤。
电视+AI。电视+AI的解决方案赋予智能电视多样播放能力和营销能力。
相机+AI。相机更具交互能力。用户通过搜索关键字标签同步展示图片,打通相册和购物一站式体验。准确识别人物属性特征,动态适应表情变化,可以在视频以及图像中对人脸实时检测,基于深度学习技术,进行人脸相似度检测,实现面部关键点定位、妆容图像渲染,试用与粉底、唇彩以及眼影等多种虚拟试装方式。实时检测摄像头中出现的物品、场景和人脸等,添加AR效果,SDK支持本地检测、识别、追踪,平均检测帧率可达到25fps。
新零售+AI。Yi+新零售解决方案是基于公司自主研发的人脸识别、商品识别和其他图像识别算法技术为核心,建立一整套基于人脸、商品的智能零售门店管理方案。Yi+新零售解决方案主要包含数据采集、算法模型说明和部署方案三部分,其中数据采集包括人脸数据采集、商品数据采集;算法模型说明包括识别算法训练、商品识别、识别输出;部署方案包括本地部署、云端部署、本地部署与云端部署结合。
6.擎创科技
企业简介
擎创科技成立于2016年,专注于将人工智能和机器学习赋予传统IT运维/企业运营管理,为企业客户提供智能运维大数据分析解决方案,从而取代和改善对高技能运维人员严重依赖的现状。2017年,擎创科技已实现全年2000万营收,迅速成为国内AIOps领域的领跑者和中流砥柱。2018年初,擎创科技完成了数千万人民币的A轮融资,由火山石投资领投,晨晖创投、元璟资本及新加坡STTelemedia跟投。
核心团队
擎创团队的核心成员主要由BMC、微软等美国企业服务上市公司的运维老兵,与新浪、饿了么等知名互联网公司的大数据、算法专家组成,核心团队成员至少拥有10年以上的行业经验。其中CEO杨辰是国内最顶级的B端销售,曾带领团队获得10倍的业绩增长;CTO葛晓波拥有长达15年的企业级软件开发和运维经验;而产品总监屈中泠则来自甲方,创业前为浦发硅谷银行企业架构师,深知甲方对企业运维产品的需求。这个曾经深耕于运维企业服务市场的团队,如今在智能运维企业服务赛道继续领跑,让擎创科技成为最懂企业的客户,最值得企业客户信赖的软件厂商。
主要产品
“夏洛克AIOps” 作为擎创自主研发的大数据智能运维主打产品,自2016年上线以来,已从1.0版本升级至1.9版本,可应用在金融、大型制造业、铁路民航、能源电力等涉及国家发展和民生问题的多种行业。在2017全球运维大会上,夏洛克AIOps获得由中国信息通信研究院与高效运维社区联合颁发的“年度最具影响力AIOps产品”奖。
“夏洛克AIOps”充分利用自研算法辅助客户实现IT运维价值,结合客户的现有情况,规划从传统ITOM至AIOps智能运维的一站式路径,助其运营落地,由此打破数据孤岛,建立统一的大数据智能分析平台,实现以人工智能为核心,驱动传统IT运维监、管、控三个层面,并将相关运维数据及业务数据实时展现。
“夏洛克AIOps”拥有多项自研算法,犹如运维界的福尔摩斯,能迅速发现并定位运维问题的根因,实现秒级排障,最大程度避免企业产生重大损失。更有价值的是,“夏洛克AIOps”还能通过长期的数据积累和机器学习,运用新型深度神经网络算法对企业的业务数据进行预测,帮助企业提前规划IT资源,高效预防各类黑天鹅事件的发生。
商业模式
目前,擎创科技已与多家金融和制造行业标杆客户形成稳定的合作关系,包括浦发银行、浦发硅谷银行、国家开发银行、上海铁路局、银联、海尔、浙江能源等。针对不同客户,采用个性化的商业模式进行服务,目前主要有私有模式和SaaS模式两种,都具有较强的可复制性。
核心优势
关键词:现代教育技术;虚拟现实;教学模式;教育应用
引言
新一轮的信息革命将深刻地改变传统行业,逐渐克服技术难题之后,5G通信技术、人工智能技术、虚拟现实技术都得到了长足的发展,研究者们开始关注虚拟现实技术的应用,它在现代教育领域的运用成了瞩目的焦点。
1现代教育技术的特点和发展趋势
现代教育技术是把现代教育理论应用于教育、教学实践的现代教育手段和方法的体系。它以实现教学过程、教学资源、教学效果、教学效率的最优化为目的[1]。它的现代化体现在教学设计现代化、教学手段现代化、教学媒体现代化。随着现代教育科学和现代信息技术的飞速发展,现代教育技术和教育联系紧密,它增加了信息传递的方式与方法,提升了教学效果与效率。现代教育技术与普通教育技术没有本质区别,突出”现代”一词的目的是要更多地关注现代科学技术的相关问题,吸纳新的科学技术成果和思维方式,凸显教育技术的时代特色。目前,教育技术在教育中的应用可以按照技术特点大致分为以下5类:(1)基于传统媒介(如书本、图片、画册、黑板、模型、实物、小型展览)的常规教学模式;(2)基于视听技术(计算机技术)的多媒体教学模式;(3)基于卫星通信技术的远距离教学模式;(4)基于因特网等网络技术的网络直播教学模式;(5)基于三维仿真技术的“虚拟现实”的教学模式。随着现代信息技术的快速发展,许多新技术被用到教育教学实践中,丰富了现代教育技术的内涵。现代教育技术突破了传统教育方式,正朝着多媒体化、网络化、信息化、教育技术应用模式多样化和远程教育普及化的趋势发展[2]。而“虚拟现实”的教学模式,具有多种教学模式的优势,试想一个场景——分散在世界各地学习者穿戴着虚拟现实设备,汇集到一个共同的虚拟社区,在这里自由交流与学习——这种美好的愿景并不遥远。
2虚拟现实的概念及特征
虚拟现实是一项融合了计算机图形技术、多媒体技术、传感器技术、人机交互技术、网络技术、立体显示技术、心理学及仿真技术等多种科学技术发展起来的计算机综合技术[3]。虚拟现实技术有三大基本特征:沉浸感、交互性和想象力,它强调人在虚拟现实技术中的主导作用[4]。交互性是指用户与虚拟空间中的虚拟物体的互动能力;沉浸性是指用户在计算机生成的虚拟环境中,通过模拟视觉、听觉等感官,给人以真实感觉;想象性是指用户在虚拟环境中,根据环境传递的信息以及自身沉浸在系统的行为,通过自己的逻辑判断、联想等思维过程,想象虚拟现实系统中并未直接呈现的画面和信息。近年来,科技不断发展,信息量呈爆炸式增长,虚拟现实技术能有效地提高信息传播和教学效率。虚拟实现的特性符合现代教育技术对提高教学水平的要求。
3虚拟现实技术在教学中的运用途径
3.1自主学习
虚拟现实提供了一种崭新的交互方式,学生可以通过眼睛、耳朵等多种感觉器官与它进行实时互动。学生凭借自然语言交互,以触觉、视觉、听觉作为媒介,和计算机进行交流沟通。这种崭新的人机交互方式,给与学习者全新的体验:在这个虚构的学习场景中,真实与虚拟模糊了边界,理论知识和实践操作同时进步。虚拟现实模拟的环境大体可以分为三个层次:(1)“显示现实”,还原真实的环境,但是一般人不容易直接接触,如火山口的场景、银河中的场景、危险的化学实验室等;(2)“模拟现实”,模拟现实中不存在的环境、特殊条件下才会产生的事物,如仿真训练、模拟训练等;(3)“创造现实”,突破现实的制约,想象力有多大,创造力就有多大,一切现实法则都可以在虚拟空间中被颠覆,给学生发挥创造力的机会,把好的创想在虚拟空间中尽情展现。
3.2虚拟实验室
虚拟实验室是虚拟现实技术的一大创新,学生可以在其中自由实验,动手操作,观察各种实验反应,摆脱常规实验室的局限。在虚拟物理实验室中,学生可以虚拟出各种物理现象,实验效果直观可见;可以看见现实中看不到的磁场,理解磁场变化的原理;可以感受桥梁大厦的建造与崩塌,分析其中的力学原理。身处虚拟生物实验室内,可以仔细观察人体组织的切片结构,各种骨骼结构也变得清晰透明。在虚拟化学实验室中,学生可以远离现实实验室的各种危险,安全地操作天平、砝码,观察燃烧、爆炸等反应现象;在虚拟地理实验室中,学生可以进行地震和火山爆发等实验,瞬间遨游太空,瞬间又深潜入海底,尽情体验地理科学的魅力。想象力的边界才是虚拟实验室的边界,虚拟实验室将成为学生们最喜爱的场所。
3.3技能训练
虚拟现实沉浸感和互动性的特性,可以使学习者全身心进入学习状态,在安全的虚拟环境中反复练习,不断试错,直到熟练掌握技能。例如,在虚拟射击培养体系中,学生可以重复射击,提高反应能力,学习不同的掩体情况下的射击方法,直到熟练掌握。运用VR技术可以使医务工作者反复操练,保障手术训练的实效。在教学技能训练方面,与传统微格教室相比,在虚拟教室中,师范生可以自由选择面对的学生人数,克服上台教学的畏惧心理。但是值得注意的是,真实的情景也是技能训练不可或缺的内容,需要合理安排虚拟现实学习和真实情景练习,找到它们之间的平衡点,最大化利用虚拟现实技术的优势。
4虚拟现实教育应用的展望
虚拟现实技术正处于高速发展阶段,它会给教育带来巨大的变革,未来的虚拟现实系统能够与通信技术、大数据技术、人工智能技术等前沿科技紧密结合。在虚拟教育社区,每个学习者都有自己唯一的虚拟身份,能够在虚拟的空间中与他人的虚拟角色互动交流,也能与人工智能的虚拟角色交流。人工智能虚拟学伴可以为学习者提供全程的学习规划指导,制定个性化的培养方案;学习者的成长轨迹全程被记录在虚拟世界之中,通过物联网技术制作的可穿戴设备,学习者的身体健康状况也可以被详实记录。数字虚拟世界和真实世界共同培养人才,这正是未来智慧教育的图景