期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 化学反应工程的研究方法

化学反应工程的研究方法精品(七篇)

时间:2023-09-11 17:25:31

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇化学反应工程的研究方法范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

化学反应工程的研究方法

篇(1)

关键词:化学反应工程研究方法;教学应用

中图分类号:G642.0 文献标识码:A 文章编号:1671-0568(2012)29-0078-02

化学反应工程是化学工程与工艺专业的核心课程,以化学反应过程的共性规律、反应器的设计、放大和优化为主要研究对象,用自然科学的原理考察、解释和处理工程实际问题,是一门实践性很强的工程学科。面向本科生的化学反应工程课程教学的目标,是使学生掌握化学反应工程基础知识,学习化学反应工程的研究方法和思路,了解化学反应工程最新进展和发展方向,提高创新思维能力。[1]笔者在长期的教学中将“方法论”作为重点,不断总结教材各章节、研究各类反应过程的共同方法,并应用于教学,对学生掌握化学反应工程的基本观点和工程方法,培养学生分析与解决工程问题的实际能力起到了很好的作用。

一、数学模型方法

工业反应器中进行的化学反应过程往往与物料的流动、混合、传质、传热、反应计量学、催化剂性能等有直接关系,浓度、温度、压力等参数影响反应结果,影响因素多,相互耦合,通常表现出很强的非线性,传统的因次分析和相似方法不能反映化学反应工程的基本规律。[2]教学中,把反应器中进行的过程分解为化学反应过程和物理传递过程,反应器中进行的过程分解为化学反应过程和物理传递过程,分别建立反应动力学模型和反应器传递模型,然后通过物料衡算和能量衡算把它们综合起来,建立反应器的数学模型,用数学模型方法来研究化学反应工程,进行反应器设计、放大与优化,比传统的经验方法能更好地反映其本质。因此,数学模型方法是化学反应工程的基本研究方法,可以通过数学模型的建立和求解去预测和模拟反应器的实际操作状况。[3]在阐明化学反应工程基本概念和原理的基础上,将各类反应器的数学模型作为讲授重点,尤其突出间歇反应器、平推流反应器、全混流反应器数学模型的建立和求解方法,借此培养学生利用数学模型方法设计反应器的能力。

二、物料、能量衡算中非线性问题的线性化处理方法

反应速率一般是由反应实际进行场所的浓度和温度决定。而工业上广泛使用的气固相催化反应器、流固相非催化反应器,气液反应器中物料温度和浓度的变化呈现非线性特点。处理的共同方法为反应器设计中物料衡算、能量衡算时,衡算范围取一个微元,在微元内物料温度和浓度的变化近似按线性关系计算。在气固相催化反应工程讨论中、以单颗粒的球形催化剂为基础,在其中距中心R处取一厚度dR的微元球壳进行物料衡算、能量衡算;在气液反应工程讨论中、以双膜理论为基础,在液膜中距界面x处取一厚度dx的单位面积微元液膜进行物料衡算;在流固相非催化反应工程讨论中,以收缩未反应芯模型为基础,对单个球形固体颗粒,在其固相产物层内距中心R处取一厚度dR的微元球壳进行物料衡算;平推流反应器、非理想流动反应器轴向混合模型的计算中,在距反应器进口L处取一厚度dL的微元管段进行物料衡算、能量衡算。这些问题的研究方法有相似性,在教学中强调相互的联系,可以加深学生对内容的理解和对反应器设计中线性化处理非线性问题方法的掌握。

三、解决复杂问题时先分解后综合的方法

影响工业反应过程的因素多,关系复杂,若直接全面分析求解,往往比较困难,不容易理解。在教学中可采用先分解后综合的方法,把复杂的问题分成若干步、先研究每一步的规律,再综合得出整体的规律。气固相催化反应工程讨论中,先分外扩散、内扩散、化学反应过程分别讨论三个过程的规律和计算公式,再综合三个过程得出单个催化剂颗粒的反应规律,再进一步综合得出整个床层的反应规律;气液反应工程讨论中,先分气液两相间的传递规律、液膜中的扩散反应规律,液相主体中的扩散反应规律,再综合得出整个气液相反应规律;流固相非催化反应工程讨论中,先分流体滞流膜扩散控制、固体产物层(或惰性残留物层)内扩散控制、化学反应控制分别讨论,再综合得出总体的规律和计算公式;讨论吸附动力学方程中,先按单组分反应物的化学吸附控制、表面化学反应控制、单组分产物的脱附控制分别讨论,再综合得出总体的吸附动力学方程。这样的教学方法,往往能使复杂的问题变得简单明了,复杂的计算过程得到简化。

四、理论推演与实验结合的方法

化学反应工程自设立以来,作为一门工程学科,其复杂性往往不仅表现在过程本身,而更表现在化学反应器复杂的几何形状及千变万化的物性,[4]因此,广泛采用理论推演和实验相结合的研究方法。通过理论推演得出轴向混合模型、多级串联全混流模型等非理想流动模型,通过实验测定实际反应器停留时间分布、计算出无因次时间方差、选择合适的非理想流动模型,利用实验数据计算出模型参数,进行实际反应器的设计;气固相催化反应内扩散影响的判别中,通过理论推演得出判据式,通过实验测定判据式的值,可判断出内扩散的影响程度;流固相非催化反应中通过理论推演得出不同过程控制时的计算公式,通过温度对总体速率的影响实验,可判别过程是化学反应控制还是扩散控制,通过流速对总体速率的影响实验,可判别过程是流体滞流膜扩散控制还是固相产物层内扩散控制,然后选择相应过程控制的公式,能使计算过程大为简化。反应动力学模型的建立更需要理论推演与实验结合,虽然可以通过理论计算确定化学反应的机理和速率,但对大多数反应体系,这类理论计算所能达到的准确程度尚不能满足工业反应过程开发和反应器设计的要求,实验研究仍然是认识反应过程动力学特征的主要途径。化学反应工程在其发展过程中已形成了一整套动力学实验测定和数据处理方法。[3]教学中,应着重强调利用幂函数型模型,双曲线型模型拟合实验数据的方法,以及它们的优缺点,使学生较好地理解和掌握反应动力学模型的建立方法。

工科院校培养的工程技术人才,不仅要有丰富的理论知识,理论还应当联系实际,具有较高的独立思考能力、发现、分析和解决实际生产问题的能力,这就要求教师不仅要对学生传授知识,更重要地是教给学生求索知识的方法和应用知识的能力。[5]长期的教学中,笔者体会到数学模型方法,物料、能量衡算中非线性问题的线性化处理方法、解决复杂问题时先分解后综合的方法、理论推演与实验结合的方法,并在化学反应工程研究中普遍应用,将这些方法重点介绍给学生,使他们在学习中触类旁通,举一反三,取得了良好的学习效果。

参考文献:

[1]王垚等.化学反应工程教学新理念和实践探索[J].化工高等教育,2009,(2).

[2]朱炳辰.化学反应工程(第五版)[M].北京:化学工业出版社,2012.

[3]朱开宏,袁渭康.化学反应工程分析[M].北京:高等教育出版社,2002.

篇(2)

    一、开设课程设计、培养学生应用知识和反应器优化设计的能力

    我院开设了为期2周的化学反应工程课程设计,要求每个学生独立完成硫酸转化器设计,采用二转二吸中的“3+1”或“2+2”式工艺、四段间接换热绝热式固定床催化反应器。每个学生的设计规模、进一段的原料气组成、净化率、转化率、吸收率不相同,学生自己查阅文献资料、查找设计方法、搜集计算公式、选择工艺参数进行设计。完成后撰写设计说明书,内容包括设计任务书、目录、设计方案简介、工艺计算、设计结果汇总、设计评述与讨论、参考文献,等等。设计过程中学生之间广泛讨论,商讨设计方法,学习氛围浓厚。虽然过程相似,但设计条件不同,每个学生都要单独完成自己的设计任务。通过该课程设计,学生对固定床催化反应器的形式和特点,固体催化剂的性能、内扩散有效因子的概念和计算方法,平衡温度、平衡温度曲线的概念和绘图方法,最佳温度、最佳温度曲线的概念和绘图方法,各段进出口温度、进出口转化率的最佳分配方法,利用本征动力学方程,通过数值积分计算反应时间的方法,催化剂用量的计算及校正方法,反应器直径、高度及其它附件尺寸的计算方法等知识点,有了深刻的理解和较好的掌握。

    二、逐步加大实验、巩固所学知识、培养实验动手能力

    对于化学反应工程这种实践性很强的工程学科来说,实验是学生参加实践获取知识所必需的学习途径。而化学反应工程的主要研究方法也是应用理论推演和实验研究工业反应过程的规律而建立的数学模型方法。所以教会学生如何建立各类实验反应器,如何进行实验设计、反应条件选择和数据处理非常有用。为此在课程建设中,我院通过专业实验课、综合设计型实验课,逐步加大与化学反应工程有关的实验。目前开设多釜串联流动特性的测定、管式反应器流动特性测定两个验证型实验;开设乙酸乙脂水解反应动力学的测定、乙醇催化裂解制乙烯反应动力学测定、乙苯脱氢制苯乙烯、反应精馏制乙酸乙酯等四个综合设计型实验。通过实验,学生对返混、脉冲法、阶跃法的概念以及停留时间分布的测定方法,多釜串联模型、轴向混合模型的流动特性,理想流动反应器与实际反应器停留时间分布的区别,连续均相流动反应器的非理想流动情况及产生返混原因,全混釜中连续操作条件下反应器内测定均相反应动力学的原理和方法,反应精馏与常规精馏的区别,连续流动反应体系中气——固相催化反应动力学的实验研究方法,温度、浓度、进料流量对不同反应结果的影响,转化率、选择性及收率的概念及计算方法等知识点,有了透彻的理解。课堂上学习的理论知识,不但在实验中得到验证和巩固,而且得到了应用,掌握了反应动力学的实验测定和相关设备的使用方法。

    三、开展仿真实训、培养实践操作能力

    我院以前有四周生产实习,实习中遇到企业为了安全和效益等因素不允许学生亲自动手操作时,学生得不到实际操作设备的锻炼机会;一般实习一个化工产品的生产过程,学生掌握了工艺流程、生产原理之后,实习后期学习兴趣、主动性降低,影响实习效果等问题。而且目前大部分化工企业采用DCS控制,技术员主要在控制室通过电脑操作控制生产过程。随着信息时代的到来,计算机仿真技术的应用越来越广泛,采用仿真技术将复杂的工业反应过程虚拟化,从而在计算机上以“慢速”再现反应过程及变化特征,将“抽象”化为“形象”,动态演示工业生产过程。并且,仿真实训具有无消耗、无污染、可重复操作等优点。为此我院购买了北京东方仿真软件技术有限公司的化工培训软件,在校内建立仿真实验室,开展仿真实训教学。将以前四周全在企业的生产实习改为前两周在企业生产现场实习,后两周在校仿真实验室开展仿真实训。目前我院开设的与化学反应工程有关的仿真实习项目有固定床反应器单元、流化床反应器单元、间歇反应釜单元,以及30万吨合成氨生产工艺中的反应部分、甲醇生产工艺中的反应部分,等等。学生要进行冷态开车操作、正常生产操作、停车操作、故障处理操作,以及单人单工段、多人单工段、多人多工段等操作环节的实训。通过仿真操作训练对于学生了解化工反应过程、以及工艺和控制系统的动态特性、提高对化工生产过程的运行和控制能力具有特殊效果。这种运行、调整和控制能力,集中反映了学生运用理论知识解决实际问题的水平。所以,仿真训练是运用高科技手段强化学生掌握知识和理论联系实际的新型教学方法。

    四、参与科研活动、培养创新能力

篇(3)

本科《化学反应工程》课程的教学目标要求教师应从教材内容的组成,章节的编排体系,各部分内容的份量和侧重等方面,依据不同专业学习的特点,对课程进行适当的梳理。我校现用教课书为陈甘棠主编的“十一五”国家级规划教材《化学反应工程》第三版,此书内容系统,易于掌握。同时还选择李绍芬教授编写的“九五”国家级重点教材《反应工程》作为教学参考书,此书最大的特点是编入大量生产实际反应的例题和习题,这种理论联系实际的题型,能提高学生的学习兴趣和联系实际的能力。这两本书的编排体系有所不同,学生在学习过程中可以通过比较,更深地理解反应工程的实质。在教授内容的选择上,《化学反应工程》的基础知识,教师应该重点讲授,教学上可安排较多学时,为后续的学习打下坚实的基础。在其他课程学习过的内容如化学反应速度等概念,教师应做概括性介绍,把主要精力放在新知识和学过知识的应用拓展上。部分章节学生可在教师的安排指导下有目的、有计划地在课外进行自学。生化反应工程基础等章节则可以完全不讲。与此同时,学校还根据我校煤化工的特点,以讲座形式聘请客座教授为学生授课,列举典型生产实例进行讲解和分析,提高学生分析和解决实际生产问题的能力。应用化学专业进行科研实践周活动,让学生在科研实践周里熟悉反应器的选型与优化操作。通过对课程内容的精选和课程线索的梳理,使学生在学习过程中具有很强的针对性,大多数学生都能很好的掌握课程的重点内容和要求。

二、精心组织教学方法,采用多种教学手段

《化学反应工程》内容繁杂,难点较多,有基本的概念描述,也有枯燥的公式演绎。为了保证学生对基本概念能准确理解,基本方法能学以致用,就要对教学方法和教学手段进行改革。教师要精心研究教学方法,采用多种教学手段,满足少学时多内容的教学任务,做到各章节重点和难点突出,使学生易于理解和掌握。首先,在讲课方式上,应用不同的教学方法,充分体现教师“启发引导”和学生“积极主动”的现代教育基本原则。采用启发式教学法,使学生在学习过程中始终处于积极的思维状态。在启发式教学的基础上,针对不同章节可采用对比法、归纳法、提问法等方法来调动学生的学习积极性和主动性。如通过具体事例的讲解,应用对比与归纳法结合的方法对均相反应器型式和操作方法进行评选。对于某些有难度同时又在几种情况下反复出现的概念,采取学生和老师现场探讨形式,而后由学生自己总结结果。这样活跃了课堂教学气氛,提高了教学效果。再次,采用灵活多样的教学手段是教学方法改革的重要措施。根据授课内容的特点,有选择性地使用多种手段进行教学可以起到事半功倍的效果。多媒体在教学上应用,可以将工厂一些实际例子和生产现场搬到课堂,学生通过逼真的影像资讯不仅可以看清楚反应器的内部结构,同时也能了解反应器内传质与传热状况,对于反应器的设计、放大与优化建立必要的感性认识。如对合成氨反应器内部结构和流体流动的展示,激发了学生对反应工程课程的学习兴趣和学习热情。经过近两年多位老师的共同努力,本课程多媒体教案制作完成,经过课堂的使用,同学们反应良好,可以明显地提高教学效率。

三、加强工程技术观念,做到理论实践结合

篇(4)

1精选教学内容

新的人才培养方案要求在教学过程中不能盲目追求高、精、深,要充分考虑人才供给与社会需求的关系,以为地方经济发展培养优质应用技术型人才为导向,我们选用朱炳辰教授主编的《化学反应工程(第五版)》作为教材。在教学内容上我们将整个教学内容分为三大块,第一部分是绪论,在教学过程中通过组织学生讨论平顶山区域煤化工盐化工发展状况,引导学生提出化学反应工程的研究任务、对象和研究方法,激发起学生的学习兴趣。我校为新近升本的二本院校,生源特点是学生基础较差,根据学生的特点结合多年教学经验,重基础知识教学效果较为理想,因此,教学内容的第二部分选择化学反应工程的基本原理、理论和研究方法,精选化学反应动力学、混合与返混、反应过程热量与质量传递、复合反应的选择率与收率、反应器热稳定性等内容,突出讲解影响反应结果的工程因素,为学生开发反应过程和反应器打下扎实的理论基础。基础理论的学习是为了应用,第三部分选择反应器设计、反应器的数学模型和反应器中的传递过程的影响作为重点内容,通过理想的间歇釜式反应器、全混流反应器、平推流反应器的学习,使学生掌握用数学模型进行反应器设计的基本方法,对反应与传递对反应过程的开发,反应器的放大设计的影响有深刻的认识。

2改进教学方法

应用型人才既要具备扎实的基础理论,更要有较强实践能力和解决问题的能力。在反应工程课程教学过程中,突出应用导向,通过由教师教导为主向以学生学为主的转变、案例教学、课程设计来强化基本原理、基础知识,精炼反应器设计、达到突出能力的效果。随着高校的扩招,教学对象的智力因素和学习能力已经产生了巨大的变化,我校不少学生习惯于被动式的学习方式,不愿意主动思考。怎么样在教学过程中充分调动学生的积极性,发挥学生的主观能动性尤为重要。在绪论部分教学中,我们采用由老师抛出问题“平顶山的煤资源和盐资源丰富,现在要扩建年产40万吨氯碱新厂,如果你是厂长的话你该怎么办”,再引导学生展开讨论,如根据年产量确定日产量、选用反应器、确定反应器的体积、确定需要的其他配套装备等等,学生反应非常热烈,通过讨论由学生总结出化学反应工程的研究对象,任务,研究方法,学生经过自己积极思考,大脑风暴后得出结论,大大激发出他们的学习兴趣。在基本原理、理论的教学过程中,重点讲处理问题的方法。反应工程中的基本概念由老师主导精讲,如混合与返混、收率与选择率等概念,强调反应工程处理问题的思维方法,即工程因素通过影响反应物的浓度和反应温度来改变反应结果。对于较难的温度和浓度对反应速率的影响部分,教师详细讲述解决问题的思路,将学生合理分组,提前安排学生自己学习,安排课堂讨论,学生通过自主讨论,举一反三,掌握工程因素对反应影响途径和解决问题的思路、方法。反应器设计部分教师详讲每种反应器的特点,重点讲述反应器设计的思路,列物料衡算和热量衡算式,带领学生推导出间歇反应器的设计方程,再由学生自行推导其他理想反应器的设计方程,学生在推导过程中根据不同反应器的特点,归纳总结,找其中的异同点。通过反复训练,让学生学会独立思考问题、发现问题,培养学生分析问题并解决问题的能力。在反应工程课程的课堂教学中,如何提高学生的学习兴趣,培养他们的创新意识,工程意识,让学生把化学反应工程的基础理论与企业生产相互衔接起来,真正从工程角度去揣摩生产工艺的每一环节,继而成长为一名综合素质高、技术本领硬的卓越工程技术人才,具有十分重要的意义。在与工业反应器联系紧密的反应器设计部分教学中,针对性的采用案例教学,选取与教学内容相关的案例“年产3万吨尼龙66间歇聚合釜设计、年产5万吨甲醇管壳式反应器设计、年产5万吨苯乙烯绝热径向反应器设计”,理论课讲述之前将案例材料发给学生,让学生熟悉材料,再进行理论讲解,以所选取的案例为例,讲解设计思路,例如如何确定反应器体积、操作条件、设备材质结构的确定等,课后由学生分组讨论合作,自行完成设计任务,然后组织学生进行汇报答辩,对所完成的设计进行分析讨论以及评价。学生通过针对性的设计练习,激发出学生的学习热情,培养其应用理论知识解决实际问题的能力。

3积极参与产学研一体化

通过课堂教学改革由知识本位向技能本位转型只是一个方面,是培养应用技术型人才的一种手段,从根本上真正提高教学质量的关键是大力开展产学研一体化,充分利用学校和企业两种不同的教育环境和教育资源,通过学和企业双向培育,将理论知识、技能训练和企业实际工作经历有机结合,培养高素质的应用技术性人才。在本课程的教学中,充分利用我院的校企合作平台,与许昌龙兴达煤化有限公司,河南赛福特农产品检测服务有限公司等单位进行专业对接,为学生创建校外实习基地,保证理论知识在实践中的应用,企业为学生提供部分工作岗位,使得学生在校期间能接受到真正的高技能训练。

4结语

篇(5)

关键词:化学反应速率;活化能;微型化实验;探讨

DOI:10.16640/ki.37-1222/t.2017.02.005

关于化学反应速率和活化能的测定条件的微型化探讨,具有非常大的研究意义。大部分的书本和参考资料上提供的实验设计方案,使用的实验试剂基本上都是过二硫酸铵和碘化钾[1]。根据书本和参考资料上提供的实验设计方案,主要有两个问题,第一个问题是实验过程中过二硫酸铵很容易分解,第二个问题是实验过程中实验试剂的用量太大,并且废水处理很困难[2]。基于以上问题,化学反应速率和活化能的测定条件的微型化探讨就显得尤其有必要进行。

微型化实验是一种新的实验,它的主要优点有节约实验的费用、减少实验过程产生的污染、实验快速[3]。化学反应速率与活化能的测定条件的探讨,实验过程中的现象非常明显,但是实验试剂的用量过大,实验过程中产生的污染非常严重[4]。为实现化学教学的绿色化发展,运用微型化的思想和微型化的原则对当前教学中通用的实验方案进行分析和研究,对于化学反应速率和活化能的测定条件的探讨,实验过程中广泛存在的问题,如实验试剂容易变质、实验试剂的用量过大等都进行了准微型化和微型化的探讨,其中温度对化学反应速率的影响,只需在10℃左右的温差就可以进行实验的探讨,这样的实验设计方案,改变了以前必须在一定的严格温差下进行化学反应速率和活化能的测定,使实验的操作更简化,实验效率得到了很大地提高[5]。

本文从实验药品的微型化对化学反应速率和活化能的测定进行了微型化学实验设计,从而对化学反应速率和活化能的测定条件进行了探讨。

1 仪器与试剂

秒表;水浴锅;烧杯;量筒;温度计。

碘化钾、淀粉、硫代硫酸钠、硫酸铵、过硫酸铵、硝酸钾、硝酸铜等不同浓度溶液新配。

2 实验方法

2.1常规实验数据

在常规实验中,我们分别从反应物浓度、反应温度和催化剂等方面探讨了化学反应速率和活化能的测定的条件探讨。为了便于实验数据的对比我们同样也做了常规实验。

2.2 微型实验探讨

为了进一步验证数据我们将试剂的用量改为原来的十分之一来进行实验。

2.2.1 试剂用量对化学反应速率的影响

首先保持所用的实验试剂的浓度不变,将实验试剂的体积缩小为原来的十分之一,用吸量管量取相应的溶液倒入到50mL的烧杯中。将实验数据记录于表2中。根据记录的实验数据进行数据处理,求出反应速率和反应速率常数。

2.2.2 温度对化学反应速率的影响

按照同样试剂的用量,通过改变实验的温度,同样的实验方法、步骤进行操作。记录数据于表3中,根据记录的数据进行数据处理,求算出反应速率和反应速率常数。

根据上述常规实验和微型实验中记录的实验数据,进行数据处理,求出反应级数和反应活化能,将求出的数据分别填入下面的表4和表5中。

3 结 论

本论文通过对“化学反应速率与反应活化能的测定”这一经典实验的实验条件的改进,通过常规实验的实验结果与微型化实验的实验结果对比可以得出结论:微型化实验的实验结果是准确并且可靠的,并且微型化实验中实验试剂的用量很小,可以节约实验资源,产生较少的污染。正因为微型化实验具有节约实验的费用、减少实验过程产生的污染、实验快速、数据准误差较小等优点,所以适合在学生实验中推广应用。

参考文献:

[1]陈广,杨晓丽,万照.化学反应速率和活化能的测定实验的微型化研究[J].曲靖师范学院学报,2013(05).

[2]张秀丽,程志国,秦好静,杨志强,姜浩,刘晓鸿.化学反应速率与活化能测定实验微型化[J].中国地质大学材料科学与工程学院实验技术与管理,2010(03).

[3]张秀丽,程志国,秦好静.化学反应速率与活化能测定实验的微型化[J].实验技术与管理,2010,27(03):237-238.

篇(6)

关键词:燃烧;燃烧技术;教学内容;热能与动力工程

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)21-0055-02

目前,化石燃料在世界各国能源中占有主导地位,约占全球能源消费的87%,而且在未来可以预见的时期内,全球能源结构仍是以化石燃料为主,其他新型能源为辅的格局。随着社会和科技的发展,对能源的需求越来越多,能源短缺已成为一个全球各国共同面临的现实问题。由于化石燃料的大规模使用,其所带来的环境污染问题也日趋严重。目前,节能减排已成为世界各国当前和未来的重要发展目标。研究和开发高效、低污染燃烧装置,提高燃料燃烧能量利用率,减少对环境的污染,是目前世界各国迫切需要解决的重大关键技术。

哈尔滨工程大学基于当前对节能减排的迫切需求,自2006年起,在动力与能源工程学院热机专业本科教学计划中,开设了“燃料与燃烧”课程;自2007年起,分别在硕士研究生和博士研究生相关专业培养计划中开设了“高等燃烧学”和“燃烧学的理论方法及应用”等课程。

一、“燃料与燃烧”课程定位

哈尔滨工程大学作为工业和信息化部直属学校,其动力与能源工程学院热能与动力工程专业是国家级特色专业,同时拥有工信部教学中心和黑龙江省级教学示范中心。作为燃烧机械的基础,“燃料与燃烧”与大学普通物理、工程热力学和流体力学等多门基础课程密切衔接,课程在科学理论指导下,密切联系实际工程应用。通过课程学习,可以拓宽学生专业眼界,了解燃烧学科发展前沿和发展重点,培养学生综合运用知识的能力和动手能力。“燃料与燃烧”课程对于培养学生的独立思考能力、创新能力和团队合作能力具有重要作用[1,2]。自2006年设课以来,“燃料与燃烧”一直作为本科热能与动力工程专业的骨干基础课程。

“燃料与燃烧”课程的教学水平直接影响我校热机各专业方向的学生素质和教学质量。对“燃料与燃烧”课程进行教学内容改革,提高其教学质量,对于提升哈尔滨工程大学热能与动力工程专业在国内的影响和地位具有重要意义。

二、“燃料与燃烧”课程教学内容设计

除基础理论部分外,“燃料与燃烧”课程中工程应用部分教学内容更新很快。随着科学技术的不断发展,燃烧技术不断进步,燃料及燃烧装置不断推陈出新,相应教学内容也需不断随时更新,要求授课教师有坚实和广阔的理论基础,掌握国内外燃烧理论和技术的最新发展。

哈尔滨工程大学是我国进行船舶动力装置研究和培养该领域高层次创新人才的重要基地,近年来对高性能船舶动力装置进行了大量深入的研究,承担完成了包括工信部高技术船舶项目、省市部委项目和各级基金项目等多项课题研究,对发动机预混燃烧、扩散燃烧、均质燃烧、稀薄燃烧和低温燃烧等燃烧模式均有深入的研究,取得了多项具有国内外先进水平的研究成果,发表了大量的相关论文和专利。这些科研成果为“燃料与燃烧”课程教学和师资平台搭建提供了丰富的资源,对“燃料与燃烧”的教学改革起到了很大的推动作用。

随着燃料技术、燃烧技术和燃烧装置的不断发展和进步,为满足教学需求,及时反映燃烧技术的最新进展,我校教学团队编写了《燃料与燃烧》本科教材。该教材是根据船舶动力装置燃烧的特点,基于我校“三海一核”教学和学科的研究特色编写的。《燃料与燃烧》教材系统阐述了燃烧的基本原理和理论;详细讲述了燃料动力学燃烧的计算方法,详细论述了燃烧热力学和燃烧化学反应动力学,着重介绍了船舶动力装置涉及的预混燃烧和油滴蒸发控制的扩散燃烧;最后,为及时反映燃烧技术的研究进展,增添了新型船舶动力装置所采用的高效低排放燃烧技术[3]。在教材的编撰过程中,大量引用了我校燃烧理论和燃烧装置研究领域相关教师及硕博研究生的研究成果和国内外最新研究进展。教材内容丰富新颖、专业针对性强,可为我校及其他院校热能与动力工程专业各研究方向本科生奠定系统的专业理论知识。通过课程学习,使学生在掌握扎实理论知识的同时,获取燃料与燃烧相关工程应用知识。教材强调了“燃料与燃烧”课程教学内容的系统性、理论性以及工程应用性,编写过程中注重了教学内容的易懂性,和培养学生应用所学知识、实际动手实验以及团队合作的能力。

通过“燃料与燃烧”课程的教学,使学生对燃料性质、燃烧现象的本质以及燃烧基本理论有一定的认识,进而掌握燃烧技术中所必须的热化学、燃烧动力学及燃烧过程的基本知识与基本理论。掌握动力机械中气态、液态和固态燃料的相互关系和区别,以及它们的特性、燃烧特点和规律,包括闪点、着火点和自燃点,不同燃料闪点、着火点和自燃点的变化规律,以及着火的形式和条件、火焰的传播、燃烧产物的生成机理等。课程侧重预混气的爆震、层流预混燃烧、气体扩散燃烧和燃料液滴燃烧等与动力机械密切相关的燃烧理论[3]。

国内外对动力装置节能减排的要求实质上推动了燃料、燃烧理论及燃烧装置的快速发展,为确保“燃料与燃烧”课程教学内容能充分反映相关理论和技术的发展,最新国内外燃料技术、新型燃烧技术及燃烧装置应作为课程教学的重点更新内容。“燃料与燃烧”课程先后介绍了燃料及燃料特性、化学反应动力学、燃烧理论和燃烧装置等,涵盖了燃料、燃料的燃烧计算、燃烧化学动力学、燃烧反应系统的守恒方程、着火理论和燃烧界限、预混燃烧、扩散燃烧、液体燃料的燃烧、固体燃料燃烧、燃烧排放控制和燃烧装置等方面的教学内容。课程各教学模块内容主要包括:(1)燃料,主要包括燃料的来源、种类、组成,燃料性质、参数及变化规律,燃料物性计算方法;(2)燃烧过程的物质平衡与热平衡,包括生成焓、反应焓、燃烧焓,固体燃料、液体燃料和气体燃料的理论空气需求量,实际空气供给量和空气过量系数,完全燃烧产物生成量、成分和密度,不完全燃烧产物及燃烧过程的质量检测,燃烧温度和热离解对燃烧温度的影响;(3)燃烧与化学平衡,重点为化学反应速度及化学平衡,反应度与平衡常数的关系;(4)化学反应动力学,内容包括基元反应、质量作用定律、反应级数,化学反应速率及其影响因素、各种级的单步化学反应,链锁反应;(5)燃烧系统守恒方程,分子传输方程,基本守恒方程,流动边界与热边界层;(6)着火和燃烧界限,热自燃理论、强迫着火、熄火、着火爆炸与熄火现象为化学动力学控制的燃烧问题,燃烧界限的影响因素;(7)预混气的燃烧,重点为燃烧波及其区别、瑞利公式、雨果尼奥曲线、雨果尼奥曲线上熵的分布、爆震波后已燃气的速度与当地声速的比较、查普曼-焦格特爆震波速度的确定、爆震波的速度、开爆震性和化学反应动力学决定的爆震极限;(8)层流预混火焰,主要包括热理论,参数对火焰传播速度的影响,火焰驻定原理,火焰淬熄;(9)层流扩散燃烧,主要内容为伯克和舒曼理论的基本假定和求解方法、燃料射流的唯象分析(层流火焰高度和湍流火焰高度)和层流扩散火焰射流(层流射流的混合和有化学反应的层流射流);(10)气体湍流燃烧,重点为湍流火焰的唯象方法;(11)液体燃料的扩散燃烧,主要包括单油滴的蒸发及质量燃烧速度,气流中的燃料液滴,火焰的位置、燃料蒸汽、氧气、产物及温度的分布、喷雾燃烧及油滴群燃烧;(12)固体燃料的燃烧,内容包括固体燃料的燃烧过程、固体碳粒的燃烧(扩散燃烧、动力燃烧和过渡燃烧)、碳粒燃烧的化学反应(碳和氧的反应、碳和二氧化碳的反应、碳和水蒸汽的反应、一氧化碳的分解反应)、多孔性碳粒的燃烧、二次反应对碳粒燃烧的影响、碳粒燃烧速率及燃尽时间、灰分对碳燃烧的影响、固体燃料的燃烧方式和燃烧装置;(13)燃烧排放控制,包括燃烧过程中NOx、SOx和颗粒等污染物的生成机理,影响污染物生成的因素,控制污染物排放的技术措施(改变燃烧途径的措施和后处理措施);(14)液体和气体燃烧技术及燃烧装置,主要包括船舶动力装置(船舶柴油机、船用锅炉和船用燃气轮机等)的燃烧技术。

三、结论

“燃料与燃烧”是当今国内能源动力类本科专业前沿课程之一。作为哈尔滨工程大学动力与能源工程学院热机专业方向的一门核心基础课程,“燃料与燃烧”在我校热能与动力工程本科教学体系中扮演着重要角色。通过对““燃料与燃烧”课程教学内容设计的探讨,确定了以船舶动力装置共性燃烧理论作为基本的教学内容,用国内外最新燃料与燃烧技术的发展更新课程教学内容,以期夯实学生的专业理论知识、扩展学生的眼界、提高学生的综合素质。根据燃料和燃烧应用技术的发展,尤其是船舶发动机行业燃烧技术的发展,及时更新、丰富和优化课程教学内容,是实现课程教学目标、培养创新型人才的关键。通过教学内容的设计和改革,我校近几年的教学实践表明,“燃料与燃烧”课程教学取得了良好的效果。

参考文献:

[1]苏磊.《燃烧学》教学有感[J].中国科教创新导刊,2009,(34):134.

篇(7)

关键词:大克泊湖淖;水化学演化;反向地球化学反应路径模拟

中图分类号:P641 文献标识码:A 文章编号:1009-2374(2012)33-0029-03

在我国华北、西北地区,由于气候干旱,地表水相对缺乏,地下水往往是生活以及工农业生产主要供水水源,鄂尔多斯盆地是我国重要的能源化工基地,对地下水的需求尤其强烈,因此查明该地区地下水循环和水化学形成机理成为指导该地区地下水资源合理开发利用亟待解决的问题。大克泊湖淖是鄂尔多斯盆地众多湖淖中水域面积较大的湖淖之一,对研究鄂尔多斯地下水循环演化方面具有较好的代表性,而且在前期积累了大量的水文地质、地下水水化学和同位素等基础数据,具有较好的工作基础。

1 研究区概况

大克泊湖淖地区位于鄂尔多斯盆地北部,是一个小型盆地,大克泊湖淖位于该小型盆地中央。多年平均气温为5℃,多年平均降水量为322.5mm,且降雨多集中在5~9月。地层由下至上依次为侏罗系、白垩系、第四系。白垩系砂岩是研究区的主要含水层,侏罗系碎屑岩构成了整个含水层的隔水地板。第四系风积沙广泛分布于研究区内,最大风积沙层厚度约为5m,结构松散,基岩零星出露。大克泊湖淖面积约为4km2,湖水面积变化对降雨量响应迅速。湖盆边部分布着众多湖眼。

2 样品采集与测试

3 反向地球化学反应路径模拟

3.1 反向地球化学反应路径模拟简介

反向地球化学反应路径模拟是运用质量守恒原理,通过对比同一地下水水流路径终点和起点的水化学成分和同位素的质量,推测出两点水流路径上地下水由于发生溶解或沉淀等化学反应、蒸发或不同水体之间的混合等物理反应等引起的化学组分和同位素的变化量,总结出地下水从起点到终点间的水文地球化学反应路径。其反应形式可表示为:

3.2 反应路径的选择

3.3 反向地球化学反应路径模型

3.3.1 可能矿物项的确定。岩芯检测结果显示研究区常见的矿物有石英、方解石、碱性长石(钠长石和钾长石)、斜长石(钙长石)、伊利石、石膏。溶滤作用、浓缩作用和阳离子交替吸附作用是研究区浅层地下水普遍存在的水化学形成作用。由于地下水埋深较浅,而且上覆一层松散第四系风积沙,增加CO2作为矿物相。综上把方解石、钠长石、钾长石、钙长石、伊利石、石膏、NaCl、CO2、离子交换、浓缩作用作为可能矿

物相。

4 结果与分析

路径Ⅴ:模拟结果显示在水流路径上均发生了钠长石、NaCl的溶解,方解石沉淀,阳离子交替吸附作用,同时有土壤CO2进入地下水中。由于起点和终点的地下水水位埋深均较深(见表1),因此蒸发作用很弱。

参考文献

[1] Plummer LN.Geochemical modeling of water-rock interaction:past,Present,future.Water Rock Interaction,Volume 1:Low Tempera Ture Environments[M].Netherlands:U.S.Geological Survry,1992:23-33.

[2] L.N.Plummer,Eric C.Prestemon and Dabid L.Parkhurst.An interactibe code(NETPATH) for moding Net geochemical reactions along a flow Path.U.S.Geological Survey,1994.