期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 初中物理模型法

初中物理模型法精品(七篇)

时间:2023-09-07 17:29:25

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇初中物理模型法范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

初中物理模型法

篇(1)

关键词:模型构建教学法;含义;种类;运用

中图分类号:G427 文献标识码:A 文章编号:1992-7711(2012)13-026-1

教授物理的方法很多,如实验法、模型法、推理法、分析法、假设法、图象法、数学法等。在此,本文着重进行模型法在初中物理教学中的运用的探讨,并举出几个有代表性的例子。

一、模型构建的含义及模型构建教学法

1.模型构建的含义

模型构建也称建模,即为了对某一事物作出理解而对该事物做出的一种抽象的、无歧义的书面描述。模型构建包含了两个方面的内容,一方是模型本身,另一方面是构建模型的过程[1]。

模型主要分为逻辑模型和物理模型两大类。模型可以是实物,即按原物的一定比例做出来的与原物特征一致的样品。如车模、船模等;模型也可以是抽象的,即当某一事物无法用实物加以说明时,就用语言表达的方式描述出事物的特征,以便在脑海里对其有个印象,从而达到认识事物的目的。比如为了表示磁场和电场而引入的磁力线、电感线等。无论是物理模型还是逻辑模型都必须经过一个从无到有的建立过程。

2.模型构建教学法

模型构建教学法就是运用建立模型的方式,让学生的思维和意识上建立起对要理解的知识点的模型,从而使得某一概念或事物能被学生所接受的教学方法。在给学生讲解有关概念之前,让其的思想意识当中先建立起相关的印象对教学是有推动作用的。此法是物理教学中的常用方法,它对形成物理概念以及对物理规律的形成有着重要的作用[2]。

二、模型的种类及说明

模型分为物理对象模型、物理过程模型、理想化实验模型、模拟式模型、数学模型。

物理对象模型:有些实际存在的事物在特定的条件下不容易被人们所接受,那么往往可以把它抽象地认识为理想的研究对象,这个研究对象就是物理对象模型。质点就是物理对象模型之一,它是研究直线运动物体运动轨迹的。物理对象模型还有:薄透镜、光线、弹簧振子、理想电流表、理想电压表、理想电源和分子模型等。

物理过程模型:将一些复杂的物理过程经过分解、简化,忽视次要因素,考虑主要因素,忽略个性、考虑共性,抽象为简单的、使之成为易于理解的过程,即物理过程模型。常见的物理过程模型有匀速直线运动、变速直线运动、自由落体运动等。

理想化实验模型:在进行物理实验的时候,依据逻辑推理抓主要因素,忽略次要因素,对实验过程进一步分析、推理、找出其规律的模型称为理想化实验模型。理想化实验模型便于看清事物的本质,从而能将事物本身揭示得更为透彻。伽利略著名的自由落体运动实验就是理想化的实验模型。

模拟式模型:有些物理概念在形式和规律上是抽象的,在内容上则是具体的。这部分概念可以用与之相似的事物模拟出来,即模拟式模型。模拟式模型通常是一种假设的模型,模拟式模型能使一些看见不见、摸不着的事物变得形象、具体化。比如为了研究磁场和电场而引入的磁力线和电感线。

数学模型:物理虽然研究的是事物变化的客观规律,但也能通过数学的形式表达出来。物理学通常是采用客观、抽象与概括的方法去研究客观事物的,数学模型则将所研究对象的属性及规律公式化,而使得其成为定量,达到便于理解的目的。如压强、功率等的公式就是用数学的方法建立的模型。

三、模型构建教学法在初中物理教学中的运用

模型构建教学法的引入为在学生的意识中预先建立起对所涉及概念的雏形提供了帮助,为教学的顺利进行提供了支撑。构建的模型亦同样可以分为物理和逻辑两大类。物理模型常见的如各种实验,逻辑模型则不能用实验来表达,而需要用建模的方式在学生的脑海中建立起印象,再逐步加以说明。以下笔者就来举例阐述模型构建教学法在物理教学中的运用。

例如可以用物理过程模型来向学生说明什么是参照物。参照物是为了研究物体的运动或静止而引入的比对物体。比如火车启动后,窗外的树不断地向后退,并且在火车到站的这段时间内窗外的树都是如此,那么这时一个物理过程模型就建立起来了。随着这个过程的进行,我们可以通过窗外的树向后退从而判断出火车是在运动的,因此树也就成了参照物。同样,当树停止后退时,我们便能判断出火车也停了。

又如要研究光的特性,而引入了光线,光线本身是不存在的,它只是为了方便对光的各种现象加以阐释而虚拟出来的,是逻辑意义上的。光线属于物理对象模型,当要向学生讲解光的传播方向时,先要将光以光线的形式表达出来,并告诉学生把光线看作是光本身,而不要看作是一条实际意义上的线,然后通过言语表述与课堂视频或是挂图或是板书相结合的形式来标示出光线的方向,从而让学生理解光是沿直线传播的。最后还要特别强调一句只有在均匀的介质中光才是沿直线传播的,而在非均匀介质中,光的传播方向就不是直线了,是可变的,如反射和折射现象就是光在非均匀介质中传播而造成的现象。

四、模型构建教学法注意事项

模型构建教学法主要是用来为学生事先没有建立起来的印象或是一时还难以形成的意识而做的说明,但它也不是在任何情况下都适用的,有的物理概念除了抽象以外,还要配合其他的方式才能让学生理解,比如实验法,推理、分析法等。模型构建教学法拓展了学生的思维,也给老师教学的顺利进行提供了帮助。

[参考文献]

篇(2)

【关键词】物理模型;初中物理教育;简单性原理

模型在我们日常生活、工程技术和科学研究中经常见到,对我们的生产生活有很大帮助。物理学研究具有复杂性。怎样发现复杂多变的客观现象背后的基本规律呢?又如何简单的表达它们呢?人们有幸在漫长地实践活动中找到一些有效的方法,其中一个就是:在具体情况下忽略研究对象或过程的次要因素,抓住其本质特征,把复杂的研究对象或现象简化为较为理想化的模型,从而发现和表达物理规律。

既然物理模型是物理学研究的重要方法和手段,物理教育和教学中对物理模型的讲述和讲授就必不可少。建立物理模型就要忽略次要因素以简化客观对象,合理简化客观对象的过程就是建立物理模型的过程。根据简化过程和角度的不同,将物理模型分为以下五类:物理对象模型、物理条件模型、物理过程模型、理想化实验和数学模型。下面我们逐个加以说明。

(一)物理对象模型――直接将具体研究对象的某些次要因素忽略掉而建立的物理模型。这种模型应用最为广泛,在初中物理教材中有许多很好的例子。例如:质点、薄透镜、光线、弹簧振子、理想电流表、理想电压表、理想电源和分子模型。作为例子,我们详细分析质点。质点,就是忽略运动物体的大小和形状而把它看成的一个有质量的几何点。其条件是在所研究的问题中,实际物体的大小和形状对本问题的研究的影响小到可以忽略。这样以来,很多类型的运动的描述就得到化简。比如所有做直线运动的物体都可以看成质点。因为作直线运动的物体的每一个部分每时每刻都做同样的运动,所以就可以忽略其大小和形状,而只找这个物体上的一个点作为概括,当然这个点的质量等于物体本身的质量。这样,直线运动物体的运动轨迹就是一条直线,很容易想象、理解和刻画。很多具体例子都可以这么做,例如以最大速度行驶在笔直铁轨上的火车,沿着航空路线飞行的客机,从比萨斜塔上下落的铁球,等等。

(二)物理条件模型――忽略研究对象所处条件的某些次要因素而形成的物理模型。在初中物理中有:光滑面、轻质杆、轻质滑轮、轻绳、轻质球、绝热容器、匀强电场和匀强磁场等。我们以轻质杆为例加以分析。比如简单机械里的杠杆,在初中阶段问题往往归结到力矩的平衡上来。即:动力×动力臂=阻力×阻力臂。动力和阻力都包括杆以外的物体对杠杆的作用力,还包括杆本身的重力。而杆重力的力臂在杆上的每一点都不同,这样除了杆的形状是几何规则的少数例子以外的绝大部分杠杆问题在初中阶段就没法解决。而轻质杆的引入正好解决了这一问题。轻质杆是忽略了自身重力的弹性杆。当外界物体对杠杆的力矩远远大于杆自身重力的力矩或者杆自身重力的力矩相互抵消时,就可以把杆当成轻质杆,杠杆受到的力矩只有外力矩,这样所有杠杆平衡问题都可以迎刃而解。

(三)物理过程模型――忽略物理过程中的某些次要因素建立的物理模型。在初中物理中有:匀速直线运动、稳恒电流等。这些物理模型都是把物理过程中的某个物理量的微小变化忽略掉,把这个物理量看成是恒定的。因为这些量的变化量与物理量本身相比太小了,以至于可以略去不计。这样不用考]过程中物理量的复杂变化情况而只考虑恒定过程,分析问题就容易多了。

(四)理想化实验――在大量实验研究的基础上,经过逻辑推理,忽略次要因素,抓住主要特征,得到在理想条件下的物理现象和规律的科学研究方法就是理想实验。理想化方法是物理科学研究和物理学习中最基本、应用最广泛的方法。初中物理中就有一个非常著名的理想化实验:伽利略斜面实验。伽利略的斜面实验有许多,现在举其中的一个例子,同样的小球从同种材料同样高度的斜面上滑下来,在摩擦力依次减小的水平面上沿直线运动的路程依次增大。伽利略由此推知:小球在没有摩擦的水平面上永远做匀速直线运动(在理想条件下的物理现象)。牛顿又在此基础上建立了牛顿第一定律。无需多论,也足以见得理想实验的强大力量。

篇(3)

一 创设入门台阶,排除学习障碍

初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律。初中物理教学以直观教学为主,在学生的思维活动中呈现的是一个个具体的物理形象和现象,所以初中学生物理知识的获得是建立在形象思维的基础之上;而高中较多地是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型。

由于初中物理内容少,问题简单,讲解例题和练习多,课后学生只要背背概念、公式,考试就很容易了。而高中物理内容多而且难度大,各部分知识相互联系,有的学生仍采用初中的那一套方法对待高中的物理学习,结果是学了一大堆公式,虽然背得很熟,但一用起来就不知从何下手,学生感到物理深奥难懂,从而心理上造成对物理的恐惧。高中物理对学生运用数学分析解决物理问题的能力提出了较高要求,在教学内容上更多地涉及到数学知识,物理规律的数学表达式明显加多加深,例如:匀变速直线运动公式常用的就有10个之多,每个公式涉及到四个物理量,其中三个为矢量,并且各公式有不同的适用范围,学生在解题常常感到无所适从;开始用图象表达物理规律,描述物理过程;矢量进入物理规律的表达式。

二 搞好初、高中物理教学的衔接

1.研究重视教材与教法

高中物理教师不单是研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径,在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次、实施适当的教学方法,降低"阶差",保护学生物理学习的积极性,使学生树立起学好物理的信心。

2.循序渐进

高中物理教学大纲所指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高。高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度。

3.透析物理概念和规律

使学生掌握完整的基础知识,培养学生物理思维能力,能力是在获得和运用知识的过程中逐步培养起来的。首先要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来;其次弄清每一个概念的内涵和外延及来龙去脉,要使学生掌握物理规律的表达形式的同时,明确公式中各物理量的意义和单位,规律的适用条件及注意事项。

4.物理模型的建立

高中物理教学中常用的研究方法是确定研究对象,对研究对象进行简化建立物理模型,在一定范围内研究物理模型,分析总结得出规律,讨论规律的适用范围及条件。建立物理模型是培养抽象思维能力、建立形象思维的重要途径,要通过对物理概念和规律建立过程的讲解,使学生领会这种研究物理问题的方法;通过规律的应用培养学生建立和应用物理模型的能力,以实现知识的迁移。

物理模型建立的重要途径是物理习题讲解,习题讲解要注意解题思路和解题方法的指导,有计划地逐步提高学生分析解决物理问题的能力。讲解习题时,要把重点放在物理过程的分析,并把物理过程图景化,让学生建立正确的物理模型,形成清晰的物理过程。物理习题做示意图是将抽象变形象、抽象变具体,建立物理模型的重要手段,要求学生审题时一边读题一边画图,养成良好的习惯。解题过程中,要培养学生应用数学知识解答物理问题的能力,学生解题时的难点是把物理过程转化为抽象的数学问题,再回到物理问题中来,教学中要帮助学生闯过这一难关。

5.学生自主学习习惯培养。

培养学生良好的学习习惯是教育的一个重要目的,也是培养学生能力、实现教学目标的重要保证。如何培养良好的学习习惯,首先是要培养学生独立思考的习惯,独立思考是学好知识的前提,学生经过独立思考,就能很好地消化所学知识,才能真正想清其中的道理,从而更好地掌握它。其次培养学生自学能力,使其具有终身学习的能力,阅读是提高自学能力的重要途径,阅读是对学生进行智育的重要手段,阅读物理教材不能一扫而过,而应潜心研读,边读边思考,挖掘提炼、对重要内容反复推敲,对重要概念和规律要在理解的基础上熟练记忆,养成遇到问题能够独立思考以及通过阅读教材、查阅有关书籍和资料的习惯。

篇(4)

1.原始物理问题比物理习题能够更好地甄别出初中学生的物理思维水平。

初中学生在解决原始物理问题上还存在很大的不足,表现在他们在解决物理问题的思维上存在着缺陷,而这些不足和缺陷,是在解决传统的物理习题中无法暴露出来的。对于使用阿基米德原理解决物理习题,学生们都很熟悉也很熟练,找到相关的已知量代入公式就可以求解了,但如果遇到一个实际问题时,学生就会感到十分茫然,不知道该从哪入手,就无法正确解决了。而原始物理问题在学生的思维训练过程中的思维诊断功能是物理习题所无法比拟的。

2.在初中物理教学中适时适量地引入原始物理问题是完全可行的。

相当多的初中学生对解决原始物理问题还是有一定潜力的,思维方向还是非常准确的,但这部分学生由于对原始物理问题接触极少,心理上的接受能力较差,比较紧张,导致最后阶段出现了一定的思维障碍,造成结果出现了错误。笔者认为这类学生如果能够经常接触原始物理问题,那么能够成功解决原始物理问题的几率是很大的,所以在初中物理教学中适时适量地引入原始物理问题是完全可行的。

3.传统的物理习题教学使一部分学生丧失了解决实际问题的能力。

部分初中学生在解决原始物理问题时,缺乏创造性思维,思维片面,依然停留在传统物理习题的思维水平上,第一感觉就是怎么什么条件都没有?该套哪个公式?总想着如何向物理习题靠近,能够找到一两个关键点,但是由于对原始物理问题比较生疏,无法正确地抽象物理模型的全部,也无法全面的对相关物理量进行赋值。在传统物理教学模式下,学生能够解决习题,能够得到很高的分数,但他们并没有真正的学会物理。因为在解答传统的习题过程中,是不需要学生自己去考虑的,题目都事先抽象出清晰的物理模型,并对相关的物理量给予明确的数值,学生需要做的只是根据物理模型和相关的已知条件,在头脑里找到一个合适的公式或者定理,按部就班就能完成。学生虽然做对了一道习题,但他可能并不理解这个物理问题的本质,不清楚具体的物理情形。传统的物理习题训练,学生只要通过演算、推导便能够得到最后的结论。而由原始物理问题到物理习题的抽象和设置物理量,都由命题者完成了,这样就使原始物理问题和物理习题之间存在了一个鸿沟,使学生运用物理知识解决实际问题的思维出现了断层,所以学生在面对问题时,就无从下手,不知道怎么去解决,失去了解决实际问题的能力。

4.教学建议。

①初中物理常规教学中应有计划、有意识地渗透一些原始物理问题。

初中物理教师可以通过不同的方式在教学中渗透原始物理问题,比如在学习一个新的物理概念之前,可以用一道原始物理问题引入,这样既显得物理学贴近生活,激发了学生的学习兴趣,也给物理课堂增加了无限生机;教师还可以将书本上的习题还原成原始物理问题,让学生解答,让学生明确书本上的习题正是来源于生活。这样就可以逐步提高学生的创新意识。

②在物理教学过程中引入原始物理问题,应注重“因材施教”的原则。

“让每位学生的个性都得到张扬,使每位学生都能全面发展”是我们每一位教师的殷切希望。但是在这一过程中,教师不能搞一刀切,要充分地了解学情,一切从学生的实际出发,注重“因材施教,分层指导”的原则。在教学实践中我们了解到,学生在解决原始物理问题时的思维差异很大,所以,无论是编制原始物理问题还是讲解原始物理问题,一定要关注不同学生的认知水平,尽可能使课堂上出现的原始物理问题能够满足不同层次学生的需要,使每一位学生都能有所收获。

③在教学过程中,应该多创设情境,让处于“最近发展区”的学生能够有所发展。

部分初中学生对物理模型的抽象能力较弱,因为对于传统物理习题,学生并不清楚其中的物理模型是怎么简化得来的,他们也不需要知道就能正确解题。因此,教师在平时的教学中,应该向学生多创设情境,介绍物理模型的简化,引导学生知道这些简化模型的由来,清楚为什么可以简化,为什么可以这样简化,使学生对物理本质能够有更深的了解。或者有意识地让学生对一些生活中的物理现象进行模型抽象。另外,物理课堂教学在注重实验演示的同时,应该更多地为学生提供实际感受物理情景的机会,使学生通过感官切身体验物理情景。这样,学生对于现实生活中的物理现象才能理解得更加深刻,才能更好地利用物理规律去解决实际物理问题。

④对少数物理学习困难的学生不要轻易放弃,应采取循序渐进的原则,进行有针对性的指导。

教师在引入原始物理问题的过程中要注意低起点,小步距,并相应的给学生提供一些解决原始物理问题的方法。这样学生就可以从物理习题的海洋中走出来,去接触原始物理问题,去感受实际生活中发生的各种物理现象,逐渐地提高解决原始物理问题的能力。

篇(5)

[中图分类号]:G633.7 [文献标识码]:A

[文章编号]:1002-2139(2013)-2--01

许多学生从初中升入高中时都会有这样的体会那就是上物理课时都能听得懂但是在做题时却会遇到很大的困难,甚至与我们在书本上所学的东西有一些脱节,这令很多刚接触高中物理的新生非常困惑与此同时物理的学习成绩会较初中也会有大幅度的下降。这样会出现对高中物理的畏难情绪与倦怠情绪这对高中物理的学习十分不利。其实要解决这些问题是有办法的,我们只要了解了高中物理与初中物理的区别并及时调整学习方法和策略就可以做好初中物理与高中物理学习的衔接。俗话说万事开头难我们只要做好了高中和初中物理的衔接这也就意味着我们高中物理学习的平台已经搭建起来了,随之我们才能谈及对高中物理学习的兴趣。

一、高中物理与初中物理的特点

刚从初中升入高中的新同学来说,高中物理的学习是一大难点,这是因为高中物理相对初中物理来说有一些不同的特点,其一,初中物理主要以现象研究为主,研究的问题比较直观常止步于定性的研究,即使有定量的研究也只要求运用所学的知识来分析解决实际问题,对思维层面没有更高的要求。高中物理较初中物理来说难度更大、内容更多、灵活性更强、深度更深、对思维的层面要求很高并且要求精确的定量的计算;其二,初中物理以形象思维为主、通常从熟悉、具体、直观的自然现象和演示入手建立物理概念和规律。高中物理则以理想模型代替直观现象入手通过逻辑判断和抽象思维建立概念和规律,高中物理的思维方式较多地强调应用科学概念和原理进行深刻的逻辑思维和抽象思维,这一点在初中物理很少涉及到;其三,高中物理的过程和现象都比初中物理较复杂,且高中物理与数学的联系的要求也比初中物理更高。

二、给高一新生学习物理的一些建议:

1、记好笔记,理清条理。

有一部分同学认为物理这样理科性的学科不需要记笔记,这种认识是极端错误的,因为对物理的概念和定理老师往往会适当的进行加深和支解,这样会出现很多在书本上无法直接获得的知识,不记笔记很易忘记,再者在物理学习的过程中老师会针对概念附以例题以便有针对性的理解,在教学过程中老师还经常会利用经典例题来让学生建立物理模型,如果这些东西我们都能够做好笔记,并且随时温习之可以帮助我们更加准确理解物理概念和定理,使物理的学习更加有条理性,可达到“立主脑、去枝蔓”的效果,记好笔记物理学习的第一步我们就已经迈开了。

那么物理笔记应该如何记呢?记什么呢?这也是困扰同学们的一个重要问题。我认为首先我们要明确记笔记的目的是实用性和条理性,以便于我们我们能更好的理解概念和课后复习。有的同学一味追求笔记的完整性,过多地考虑笔记的形式,甚至想记录下老师所讲的每一句话每一个题,这样为做笔记而做笔记的后果常常会忽略听课的效果;有的学生课后不整理,不翻阅笔记,这就失去了记笔记的目的。记课堂笔记不是目的,目的是帮助理解学习内容,有利于复习和记忆知识。课堂笔记要用自己的话,把老师讲的重点记下来,书本上有的少记或不记,书上没有的多记,尤其要重视记下分析解决问题的典型思路和方法技巧等,让笔记成为自己的探索新知识的激发点。课后要及时整理笔记。整理笔记的过程,既是加深理解的过程,也是复习巩固的过程。如果还没有掌握记笔记的方法,听课和笔记发生矛盾时要把听好课放在首位,下课后再参照同学的笔记补起来。

2、熟记公式和定理,理解公式和定理的内涵

公式和定理是高中物理应用的理论源泉,若没有公式和定理,我们的解题就没有了理论依据,所以必须熟记。我们不能在应用的过程中现场推导,这样会增加题目的难度,降低解题效率。对于推导的过程我们只需要了解就可以了,对公式和定理的记忆我们一方面要求大家全面熟记,另一方面又要求大家在熟记以后从死板教条的记忆中解脱出来。也就是所我们不能为记忆而记忆,我们必须在熟记基础上深刻理解和挖掘公式和定理的内涵,也就是说记忆是手段而理解和挖掘内涵才是目的,比如在学习利用平行四边形定则和正交分解法解决平衡问题时我们首先要弄清楚平行四边形和正交分解法的定义,但最终我们还要充分理解其内涵:首先不管是平行四边形法还是正交分解法实际上都可以归结为平行四变形法,只不过正交分解法中的平行四边形是矩形而已,这是因为在矩形中可以更方便利用三角函数解题。同时我们还要理解不管我们使用平行四边形法还是正交分解法其实都是将多力平衡问题转化为二力平衡问题即达到化“繁”为“简”的目的。

3、以经典题目为线条建立物理模型。

在学习高中物理的过程中,若我们只是将每个题目孤立起来看待,那么我们很容易深陷题海,苦不堪言。但我们对每一章的题目仔细分析,我们就不难发现其中有很多题目是出自于同一种模型和同一种思想,所以我们可以将经典的、可以建立模型的题目罗列在一起,做熟做透,再辅之以针对性的训练,就可以将这些模型深深的刻在我们的脑海里。我们学会分析问题和解决问题的方法增强解题能力比单纯的接受知识更加重要,这就是我们常说的“受之以鱼,不如受之以渔”的道理。比如我们在学习万有引力与航天这一节时我们就必须研究透彻两种经典物理模型:1、把天体运动看作是匀速圆周运动的模型即中心天体体系(一个天体以某一天体为中心做匀速圆周运动)2、一物体在某天体表面上受到的重力与万有引力的关系的模型即非中心天体体系。这两种题型形成解决万有引力与航天这一节的基本题型,这一节的大部分题目都可以由这两种物理模型来解决或者从中受到启发。只要我们将每一章像这样的物理模型能建立起来就可以起到举一反触类旁通的效果。

4、适量的定时练习。

物理模型建立以后必须要有定时定量的练习以验证模型的正确性和适用性,同时通过训练加深对模型的理解。在模型中可能还有一些不适用或者有变化的地方,也可以通过不断的练习加以判别。题目必须是精选的,题型较活,有浅有深,并且要求有一定的题量。这就是我们常说的从“量变”到“质变”的过程。

篇(6)

一、初、高中物理教学有梯度

初中物理教学是以观察、实验为基础,使学生了解力学、热学、声学、光学、电学和原子物理学的初步知识以及实际应用;高中物理教学则是采用观察实验、抽象思维和数学方法相结合,对物理现象进行模型抽象和数学化描述,要求通过抽象概括、想象假说、逻辑推理来揭示物理现象的本质和变化规律.初中物理教学以直观教学为主,在学生的思维活动中呈现的是一个个具体的物理形象和现象,所以初中学生物理知识的获得是建立在形象思维的基础之上的;而高中较多的是在抽象的基础上进行概括,在学生的思维活动中呈现的是经过抽象概括的物理模型.

初、高中物理教学衔接难点:(1)初、高中的教材方面相衔接是教学中的一个难点.(2)学习中的知识层面和难度加大,如何做到循序渐进地进行渗透式教学.(3)如何在教学中透析物理概念和规律.(4)教学中物理模型如何建立.(5)初中升入高中后,需要重新构建其学习习惯.

二、初、高中物理教学衔接难点的

对策

1.高中物理教师不单要研究高中的物理教材,还要研究初中物理教材,了解初中物理教学方法和教材结构,知道初中学生学过哪些知识,掌握到什么水平以及获取这些知识的途径.在此基础上根据高中物理教材和学生状况分析、研究高中教学难点,设置合理的教学层次,实施适当的教学方法,降低“阶差”,保护学生物理学习的积极性,使学生树立起学好物理的信心.

2.高中物理教学课标指出,教学中应注意循序渐进,知识要逐步扩展和加深,能力要逐步提高.高中教学应以初中知识为教学的出发点逐步扩展和加深;教材的呈现要难易适当,要根据学生知识的逐渐积累和能力的不断提高,让教学内容在不同阶段重复出现,逐渐扩大范围和增加难度.

3.使学生掌握完整的基础知识,培养学生物理思维能力.能力是在获得和运用知识的过程中逐步培养起来的.首先,要加强基本概念和基本规律的教学,要重视概念和规律的建立过程,让学生知道它们的由来;其次,要弄清每一个概念的内涵和外延及来龙去脉,要使学生掌握物理规律的表达形式的同时,明确公式中各物理量的意义和单位,规律的适用条件及注意事项.

4.高中物理教学中常用的研究方法是确定研究对象,对研究对象进行简化建立物理模型,在一定范围内研究物理模型,分析总结得出规律,讨论规律的适用范围及条件.建立物理模型是培养抽象思维能力、建立形象思维的重要途径,要通过对物理概念和规律建立过程的讲解,使学生领会这种研究物理问题的方法;通过规律的应用培养学生建立和应用物理模型的能力,以实现知识的迁移.物理模型建立的重要途径是物理习题讲解,习题讲解要注意解题思路和解题方法的指导,有计划地逐步提高学生分析解决物理问题的能力.

5.培养学生良好的学习习惯是教育的一个重要目的,也是培养学生能力、实现教学目标的重要保证.如何培养良好的学习习惯,首先是要培养学生独立思考的习惯.独立思考是学好知识的前提,学生只有经过独立思考,才能很好地消化所学知识,才能真正想清其中的道理,从而更好地掌握知识.其次,培养学生自学能力,使其具有终身学习的能力.阅读是提高自学能力的重要途径,是对学生进行智育的重要手段.阅读物理教材不能一扫而过,而应潜心研读,边读边思考,对重要内容反复推敲,对重要概念和规律要在理解的基础上熟练记忆,养成遇到问题能够独立思考以及阅读教材、查阅有关书籍和资料的习惯.

篇(7)

[关键词] 物理学 研究方法 科学

现在大力提倡素质教育,掌握科学的研究方法是中学生必备的素质。我认为,掌握科学的研究方法比单纯的记住一个现象、一种结果、一项规律更重要,对学生的可持续发展尤为重要。这就要求教师在教学过程中注重对学生科学研究方法的指导,现就初中物理教学中常用的科学研究方法及实例归类总结。物理学的研究方法有许多种,如控制变量法、转化法、实验推理法、等效替代法、理想模型法、归纳法、类比法、比较法、图像法等。

一、控制变量法

在研究物理问题时,某一物理量往往受到多种因素的影响,为了确定其中一个因素对被研究对象的影响情况,首先,要控制其它因素不变,也就是排除其它干扰因素,只改变这一因素,观察该因素的变化对被研究对象的影响情况,找出内在的规律,这就是控制变量法。控制变量法是探究性实验中最常用的方法。初中物理应用实例:

研究压力的作用效果(压强)与压力和受力面积的关系;

研究物体的动能与质量和速度的关系;

研究电流与电阻和电压之间的关系即欧姆定律;

研究电磁铁磁性的强弱与线圈匝数和电流大小的关系。

二、转化法

有些物质的形态通常是看不见的,可以通过该物质产生的各种效应来研究,也就是通过间接的方法来研究该物质。例如,风是看不见的,我们可以通过观察风产生的效应如被风刮起的尘土、树叶、烟、旗面、水波来判断风向、风速。这种研究问题方法就是转化法。初中物理应用实例:大气压是看不见、摸不着的,我们可以通过研究大气压产生的现象来认识它;电流是看不见、摸不着的,我们可以通过观察电路中的灯泡是否发光、发光亮度来判断电路中是否有电流以及电流的大小;磁场是看不见、摸不着的,我们可以通过观察其中的小磁针的北极所指的方向来判断磁场方向;在磁体周围撒一些铁屑来判断磁体周围的磁场分布情况;判断电磁铁的磁性强弱时,我们可以通过观察电磁铁能够吸引大头针的多少来确定;音叉发声时的振动不易观察,我们可以把正在发声的音叉接触水面,通过观察水面的振动来判断,也可以把正在发声的音叉靠近并接触用细线吊起的乒乓球,通过乒乓球的振动来判断。在研究响度与振幅的关系时,可以在鼓面上放一些塑料泡沫颗粒,用大小不同的力敲击鼓面时通过观察塑料泡沫颗粒的振动的高度来判断鼓面的振幅。

三、实验推理法

有些特定实验条件不易达到或不能达到,我们可以通过使现有的实验条件逐渐接近要达到的特定实验条件,通过现有的实验规律进行科学推理,得出特定条件下的结论。这种研究问题的方法就是实验推理法。初中物理应用实例:在研究牛顿第一定律时,通过大量实验得出,在水平面上运动的小车,如果受到的摩擦阻力逐渐减小,小车的运动速度变化会逐渐减少,据此可以推理得出:假如在水平面上运动的小车不受摩擦阻力,小车的运动速度将保持不变,小车将做匀速直线运动;在研究真空能否传声时,把正在发声的电铃放入玻璃罩内,用抽气机把玻璃罩内的空气逐渐抽出,听到的铃声逐渐减小,根据这一规律可以推理得出:假如玻璃罩内被抽成真空,在周围的人将听不到铃声,据此得出“真空不能传声”的结论。

四、等效替代法

某些物体的物理量由于受到实验本身的特殊限制或因实验器材的条件限制,不可以或很难直接进行测量,可以通过测量与之有相同效果的物体的物理量来进行研究,从而得出相同的结论,这种研究问题的方法就是等效替代法,这种方法可以使要研究的问题简单化、直观化,易于理解,便于操作。初中物理应用实例:在著名的“曹冲称象”故事中,大象的质量太大,在当时的条件下不便于直接测量,可以测量与之效果相同的石块的总质量,从而得出大象的质量;在电路中,一个电阻可以等效于几个电阻,几个电阻也可以等效于一个电阻,如串联电路的总电阻、并联电路的总电阻都是利用了等效的思想;在力的合成与分解中,若干个分力可以等效于一个合力,一个力也可以分解为作用效果相同的若干个分力。

五、理想模型法

理想模型法就是指把复杂的问题简单化,摒弃次要因素,抓住主要因素,对实际问题进行理想化处理,构成理想化的物理模型。这是一种重要的物理研究方法,有时为了更加形象的描述所要研究的物理现象、物理问题,还需要引入一些虚拟的内容,借此来形象、直观地表述物理情景。初中物理应用实例:光线、磁感线都是虚拟假定出来的,但却能形象、直观地表述物理情景与事实,方便地解决问题,通过磁感线研究磁场的分布,通过光线研究光传播的路径和方向;洪水季节,江河中的水有时会透过大坝的底层从大坝外的地面冒出来,形成“管涌”,“管涌”的物理模型就是连通器;杠杆是一种理想模型,杠杆在实际使用时,都会发生形变,这个形变可以忽略不计。因此,我们就把杠杆理想化,认为它无形变视为一个硬棒,从而使学生在研究时不被细枝末节的因素影响,顺利地得出杠杆平衡原理。

六、归纳法

在研究某一现象的规律时,不可能也没有必要把与之有关的所有现象都列举出来,而是通过大量与某一现象有关的事实,从中找出共同的规律,这种研究问题的方法就是归纳法。初中物理应用实例:声音是由物体振动产生的;光在同一中均匀介质中沿直线传播;光的反射规律;光的折射规律;平面镜成像特点;凸透镜成像规律;分子运动论;晶体的熔化特点;液体的沸腾特点;牛顿第一定律,阿基米德原理;液体压强规律;杠杆的平衡条件;功的原理;欧姆定律;焦耳定律,磁极间的相互作用规律;电磁感应;能量守恒定律。

七、类比法

有些物理现象、概念比较抽象,对学生来说比较陌生、难于理解和记忆,我们可以通过学生熟知的事物来类比,找出类似的规律,类比的对象要有相同或相似之处,这种研究问题的方法就是类比法。初中物理应用实例:用水流类比电流;用水压类比电压;用抽水机类比电源;用速度类比功率。

八、比较法

比较法就是找出事物之间的相同点和不同点,便于理解、记忆和区别。初中物理应用实例:比较汽油机和柴油机的构造和工作原理;比较晶体和非晶体的熔化和凝固特点;比较蒸发和沸腾的条件、剧烈程度、特点、吸热;比较乐音和噪声;比较电动机和发动机的构造、工作原理、工作过程、能量转化;比较火电站、水电站、风电站、核电站,太阳能电站的工作原理、工作过程、能量转化、以及对环境的污染和可持续发展情况。