时间:2023-09-05 16:31:27
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇电磁波的实际应用范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
“导学案”的精髓贵在一个“导”字,是通过引导学生,让学生自主进行学习探究,发现问题、解决问题,进而实现高效课堂培养能力的目的。所以在设计这一节课时,我更注重引导学生,让他们能从我所给出的指引中动脑动手,获得知识。为此,我设计了三活动,一个测试,依次从电磁波是什么、电磁波的应用以及改变世界的信息技术三个方面来构成核心,让学生在活动的轻松愉快的氛围中“动有所得”,最后的小测试来加深理解、巩固知识。
一、学习目标
1.知道光是一种电磁波。了解电磁波在信息传播中的作用。
2.记住电磁波在真空中的传播速度。知道波长、频率和波速的关系并会进行简单的计算。
3.电磁波的应用。
4.初步了解现代通信网络。
二、重点难点分析
1.波长、频率和波速的关系。
2.电磁波的应用。
三、课堂设计
活动(一)神奇的电磁波
做一做 事先准备好了五套实验用具,将全班学生分成五组,指导他们做了如下实验:打开收音机的开关,转动选台的旋钮,调到一个没有电台的位置,并开大音量。将一节干电池的正极与一把钢锉良好接触,负极连一根导线,用手拿着导线的另一头,使它在锉面上滑动,让学生观察现象并分组讨论产生这一现象的原因。
读一读 在活动之后,指导学生阅读教材,并明确如下两个内容。
1.当导体中的电流迅速发生变化或通一高频率的交变电流时,导体就会向四周空间发射电磁波。只有频率很高的电流产生的电磁波才能传得很远。电磁波的国际单位是赫兹(Hz),简称赫,常用频率单位还有千赫(kHz)和兆赫(MHz)。其换算关系:1kHz=103Hz;1MHz=106Hz。
2.电磁波可以在真空中传播,光也是一种电磁波。真空中电磁波的波速为c,在空气中与真空中电磁波的波速非常接近,c=3×108m/s。相邻两个波峰(或波谷)的距离,叫做波长。电磁波的波速c等于波长和频率f的乘积:c=λf。在空气或真空中,各种频率的电磁波的波速是相同的,所以,频率越高的电磁波,它的波长就越短。
议一议 在获得了如上知识后,再结合“做一做”的内容探讨论如下的物理现象:手机放在电视机旁边,当有电话来时,电视机的画面会出现一些“雪花”,这是为什么?并且长时间用手机连续通话,会出现头晕的情况,这是为什么?
活动(二)电磁波的应用
由于电磁波比较抽象,我特意做了课件,主要涉及军事应用,如探测飞机、导弹用的雷达;民航应用,如GPS导航;天文应用,如探测遥远星球;气象应用,如探测台风、雷雨等。通过课件中设计的一些小问题,引导学生对摸不到看不见的电磁波有一定的形象认识。此活动的另一个主要目的就是激发学生的学习兴趣。
活动(三)改变世界的信息技术
引导学生阅读如下内容,更深入了解电磁波的应用对社会产生的巨大影响。
1.卫星通信是利用人造地球卫星作为中继站,转发无线电波,进行通信的。通信卫星大多是相对地球“静止”的同步卫星。一般只要有三颗互成120°的同步卫星,就覆盖了几乎全部地球表面,可以实现全球通信。卫星通信具有传输距离远、覆盖区域大、灵活、可靠、不受地理环境条件限制等独特优点。全球卫星定位系统(GPS)就是卫星通信的实际应用。
2.光缆通信是应用光的传播特性,把光能限制在光纤内部,用光信号取代传统通信方式中的电信号,从而实现信息的传递。光纤具有传输容量大、传输距离长、高抗干扰等特性。
3.移动通信由电磁波传递信息,可以在信号覆盖的任何地方使用。当前应用最为普遍的为“蜂窝系统”。
四、随堂测试
1.电磁波在真空中的传播速度是__________;电磁波的波长越长其频率就越______________;电磁波___________(填“能”或“不能”)在空气中传播。
2.2012年7月28日03时12分(北京时间),伦敦奥运会开幕,媒体通过通讯卫星用______波把奥运会的信息及时传到世界各地。若中央电视台第一套节目的频率为52.5MHz(1MHz=106Hz),则中央电视台第一套节目的波长为________m。
3.以下与电磁波应用无关的是()
A.手机通信 B.微波炉加热食物
C.雷达侦查 D.听诊器了解病情
4.关于电磁波和现代通信,下列说法正确的是()
A.光纤通信传输的信息量很大,主要用于无线电广播
B.移动电话靠电磁波传递信息
C.电磁波的波长越大,频率越高
D.电磁波的应用对人类有利无害
5.关于电磁波和现代通信,下列叙述不正确的是()
A.光是一种电磁波,电磁波可以在真空中传播
B.电磁波的频率越高,在空气中传播的速度就越大
C.同步通信卫星绕地球转动的周期跟地球自转的周期相同
关键词:仿真软件;优化;可视化
中图分类号:TP391.7 文献标识码:A 文章编号:1009-3044(2014)04-0792-03
电磁场与电磁波课程是电子信息科学专业学生必修的一门重要的专业基础课程,该课程理论性强,相关定理模型抽象。由于电磁场、电磁波看不见、摸不着,传统教学基本依据公式推导出其传播特性、存在状态等特性,抽象的定律、严密的数学推证令学生望而生畏。整个教学过程既难教又难学,而近几年该课程在教学内容不变的情况下课时却不断被压缩。因此,如何在教学过程中把握重点、弱化数学比例、优化课程结构成为课程改革重点。
结合长期积累的教学经验,修改教学文件,将仿真软件引入电磁场与电磁波的教学中,把课程中抽象概念定理以三维模型的形式直观的展示给学生;利用软件模拟各种电磁波分布形式、波导结构和自由空间电磁波的特性等,并能动态模拟电磁波的传播和辐射特性;利用软件简化数学计算,减少公式推导过程;还可以设计电磁仿真实验,把理论教学和仿真实验教学有效结合起来,加深学生对理论知识的理解,收到了较好的教学效果。
1 仿真软件在教学中应用
1)基本概念、定理定律的仿真演示。本课程涉及较多的定理,库仑定律、安培力定律、高斯通量定理、安培环路定律等定理是研究电磁场的基础,电磁场的理论基础麦克斯韦方程组也是由这些定理上推导总结出。以往在讲解过程中,公式繁杂, 推导多, 学生用大量的时间理解定律模型、复习数学知识,浪费大量学时,反而忽略了对概念本身的理解。利用仿真软件将这些定理动态演示,将复杂的电磁场理论通过演示的方式表示出来,结果清晰、直观的表现出了各种电磁场模型的特性,形象、直观、便于理解,它不仅可以激发学生的学习兴趣,而且加快学生理解速度提高了教学质量。
2)电磁场和电磁波的存在形式、特性分布等内容的图示化。课程中涉及较多的求解场量分布、特性等内容,以往教学中推导出结果都是数学公式,对数学知识薄弱和空间思维差的学生而言整个教学过程就像解数学题、而与场无关。我们利用软件将常见的场量分布形式图形化,根据源的不同分布求出不同场图,绘制矢量线(电力线、磁力线)、等值线(等位线)、箭头图等,以帮助学生更好地理解场。例如电偶极子的电场分布、同轴电缆电场分布、均匀平面电磁波传播、球面电磁波传播、矩形波导传播时电磁场特性等。
3)计算方式的简化。课程在求解问题时,经常会涉及复杂的数学计算过程,利用软件强大的仿真功能,将计算过程简化,运用符号运算功能进行数学公式推导,根据数值计算功能进行习题求解等,节约授课时间,提高教学效率。如电磁场中梯度、散度、旋度问题、求静态边值时有限差分法、有限元法、镜像法等。
2 具体应用实例
随着计算机的快速发展,近几年出现了大量的电磁场和微波电路仿真软件,如美国ANSOFT公司的HFSS(高频电磁场仿真)、MATLAB、ANSYS等软件。这些软件功能强大、界面友好,编程简洁、效率高,特别适合于教学演示和学生实践,用户可以在短时间内掌握其主要内容和基本操作。下面我们简单介绍几个具体应用实例:
1)镜像法
镜像法是一种求解边值问题的间接方法,其基本原理是:用放置在所求场域之外的假想电荷(即像电荷)等效的替代导体表面(或介质分界面)上的感应电荷(或极化电荷)对场分布的影响,从而将求解实际的边值问题转换为求解无界空间的问题。利用软件仿真孤立电荷产生的场和像电荷产生场以及叠加后的场,电荷电量、导体半径等参数可根据实际情况输入。下图为半径为2电荷为4时产生的场图。
2)矩形波导传播
课程在讲解矩形波导传播时,电磁场分量公式表示如公式所示。
让学生根据公式理解其传输特性比较困难。通过Matlab 计算并绘出任意时刻金属矩形波导的主模 TE10 模的电磁场分布图,直观的展示了波的传输特性。
3)有限差分法求电磁场静态边值
有限差分法是求电磁场静态边值问题的一种数字计算法,把连续空间离散化,空间离散化越细,解的误差越小,其计算量就越大,就使课程中大量时间用在处理数据上。而利用matlab编写程序,根据已知条件自动生成矩阵数据,绘制电场和电力线图形,使讲解过程清晰明了。
3 结束语
本文根据电磁场与电磁波少学时、概念抽象等特点,将仿真软件强大的计算与图像功能运用于电磁场与电磁波的教学中,使电磁场与电磁波分析研究问题简单方便,帮助学生直观的分析和理解课程内容,不但能大大加深学生对抽象电磁场问题的理解,激发学生的学习兴趣,而且也提高了学生对工程软件的实际应用能力,取得了很好的教学效果。对提高教学效果具有非常重要的意义。
参考文献:
[1] 陈其昌.MATLAB在射频电路设计中的应用[M]. 北京:电子工业出版社,2013.
[2] 梁振光. MATLAB在电磁场教学中的应用[J].南京:电气电子教学学报, 2004,26(3):73-75.
[摘要]针对应用型二本高校的特点对“电磁场与电磁波”课程进行教学研究。从教学内容上进行分层次教学,突出重点、弱化难点;在教学方式上采用形象化、系统化教学,并利用实践教学的方式,通过HFSS软件仿真激发学生的学习兴趣,从而提高教学效果。
[关键词]电磁场与电磁波;教学研究;HFSS;实践教学
“电磁场与电磁波”主要研究电磁场和电磁波的基本概念、基本理论与应用。该课程主要从矢量分析入手,介绍电磁场中的静态场、时变场和电磁波的基本理论与特点,为“微波技术基础”、“天线与电波传播”、“射频电路”等后继课程的学习奠定必要的理论基础。但是由于该课程数学要求高、公式多、物理概念抽象、理论难以掌握,使学生在学习过程中力不从心,往往有畏难情绪在里面。特别是对合肥师范学院这种应用型二本高校来说,学生的基础相对重点院校的学生而言要差点,而且学习的自主性也欠缺,因此学习效果不是很理想,可能会有个别学生到学期结束都达不到这门课程学习的基本要求。如何做好应用型高校电磁场与电磁波课程的教学工作是比较紧迫的问题,需要花更多的心思和精力来探讨研究。笔者结合多年电磁场与电磁波课程的教学经验,有针对性的对课程进行改革,通过课堂上学生实时反馈情况对教学方式进行调整,结合应用型高校的实际情况探索该课程的教学。
1教学内容研究
本课程包括电磁场和电磁波两大部分。电磁场部分是在高等数学的基础上,运用矢量分析的方法,描述静电场和恒定磁场的基本物理概念、研究静态场的解题方法、以及在总结基本实验定律的基础上给出时变电磁场的基本规律。电磁波部分主要是介绍平面电磁波传输特性、电磁波在导行系统的传播规律及天线的基本理论。由于本校电磁场与电磁波课程只有48学时,需要针对应用型高校学生的特点分层次讲解课程内容,对理论性、逻辑性较强的知识点做选修处理,既满足大部分学生对基本知识点掌握的要求,又满足部分学生向重点高校考研的需求。将课程的必修知识点按照掌握、理解、了解三个层次具体划分为:掌握矢量运算,梯度、散度和旋度,高斯公式和斯托克斯公式,时变电磁场的麦克斯韦方程组、电磁波的波动方程等;理解电磁场的矢量位势和标量位、泊松方程、时谐平面电磁波、截止频率和谐振频率等概念;了解分离变量法、库仑规范、洛仑兹规范、滞后位等。而对镜像法、有界空间中电磁波的求解方法、电磁辐射等作为选修内容。做出以上的安排主要考虑下面两个因素:
一、有限的课时要优先考虑重点内容,对电磁场和电磁波涉及的核心知识点必须要详细讲解,比如散度、旋度、梯度、麦克斯韦方程组、波动方程、平面电磁波等,至少要花三分之一的课时结合多种教学手段让学生在理解物理概念的基础上掌握基本公式及应用。而对一些比较复杂的问题,如分离变量法、镜像法等知识点,通过弱化在总学时的比例或用选修的方式做简化处理;
二、由于我校电子信息工程、通信工程专业有电磁场与电磁波方面的后继课程----专业必修课“微波技术”、专业方向课程“天线与电波传播”和“射频电路”,这些课程覆盖了“电磁场与电磁波”课程的不足,如有界空间中电磁波的求解方法、电磁辐射等知识点完全可以在后继课程中系统学习。
2教学方法研究
通过多年课堂教学的探索和总结,针对二本高校学生数理基础较薄弱的特点,同时为适应应用型高校的办学需求,为该课程制定一套教学方法,使抽象的概念形象化,难懂的公式物理化,知识掌握的系统化,最终将理论基础与实际应用密切联系,激发学生兴趣,培养学生探索性学习素养,启迪学生创新思想,促进学生知识拓展应用能力的提高。
2.1知识点形象化、系统化
在形象化讲解抽象概念的基础上,将相近或易混淆的内容做比较,通过列表的方式从物理概念、数学公式、适用条件等方面将概念进行区分,使分散的问题系统化,加深学生的理解和记忆。下面以三个度(梯度、散度、旋度)的讲解为例,说明该过程的具体实施。如何将概念形象化?例如在讲解梯度时,以温度场为例,介绍温度沿不同方向的变化率。该问题针对某一温度场中的山峰,甲、乙、丙三人分别从三个不同的方向由山脚爬到山顶,行程L分别是120km、100km、80km,其中丙是垂直路径,可以很容易算出三种不同方向的温度平均变化率ΔTL,其中丙方向的变化率最大。然后引导学生思考,如果是对温度场的某点A来说,平均变化率就变为温度沿三种方向在A点的变化率,表述为TL沿不同方向,自然引出方向性导数的概念。进一步提示学生,在所有方向的变化率中,总有一个方向变化率是最大的,这个值就是梯度的大小,这个方向就是梯度的方向,最终将针对标量场的梯度概念给完整引出。在系统讲解完梯度、散度、旋度后,用列表的方式对问题进行区分,找到三者之间的异同。
2.2HFSS软件实践教学
为改善比较死板的教学现状,同时贴合应用型办学思想,对该课程的一些知识点在理论推导的基础上用软件仿真的形式将无形的场结构有形化,加深学生对知识点的把握程度。工程上常用的HFSS有限元分析软件,对于一些典型的电磁场问题,如电场分布、磁场分布、电感、电容等,可以提供直观的场结构显示。下面就以半波偶极子为例,利用HF-SS软件建模仿真其空间辐射场结构。例:设计一个中心频率为3GHz的半波偶极子天线,计算其空间电场分布。传统教学过程是首先分析电偶极子的远区电场分布,通过在球坐标系中将电位函数高阶近似的方式推出电偶极子的远区场电场E=-"φ=p4πε0r3(2cosθer+sinθeθ),其中p为电偶极矩;然后根据偶极子天线的对称性计算对称天线的辐射电场;最后计算3GHz下天线的辐射场分布和方向性函数。实践教学过程则是依托HFSS软件,通过建模仿真的方式直观的得到半偶极子场结构。设置扫频范围2.5GHz-3.5GHz,S11参数、方向图,以及电场分布。相比繁琐的理论公式的推导计算,HFSS软件实践教学方式更容易被学生接受,在掌握电场结构的基础上提高了学习兴趣,为以后的工程应用奠定基础。
3总结
“电磁场与电磁波”做为电子信息类、通信工程类本科专业的一门专业基础课,具有十分重要的核心地位。针对应用型高校如何实施教学过程是值得研究和探索的问题。本文从教学内容和教学方式两个方面,围绕教学做了初步探讨。经过实际教学检验,取得了令人满意的教学效果。
[参考文献]
[1]王士彬,张莲,万沛霖,包明.“电磁场”课程教学内容改革的实践[J].电气电子教学学报,2006,28(5):8-11.
[2]彭麟.中美高校电磁场教学比较研究[J].中国电力教育,2014,312(17):73-74.
[3]谢处方.电磁场与电磁波[M].北京:高等教育出版社,2010.
[4]孙玉发.电磁场与电磁波[M].合肥:合肥工业大学出版社,2006.
[5]刘德国.“电磁场”课程中梯度、散度、旋度教学方法探讨[J].科技信息,2014,15:51-52.
关键词:教学改革;考核方式改革;“电磁场与电磁波”
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)17-0115-02
电磁场理论为众多交叉学科领域及新技术的理论基础和重要的发源地。“电磁场与电磁波”课程涵盖的内容是信息类专业学生应具备知识结构的重要组成部分,对于通信工程的学生尤为重要。“电磁场与电磁波”课程是通信工程专业的必修课程,开设此课程让学生通晓和掌握电磁场与电磁波的基本规律、基本特性、分析方法及其应用,为后继专业课程学习及今后的工作奠定必要基础。
一、教师和学生明确课程的教学地位及教学目的
针对“电磁场与电磁波”课程难教难学的现状,应从教师和学生两个方面改进教学。教师要把课程的目标定位弄清楚,就是要使学生能够掌握电磁场与电磁波的知识的同时,也要注重各种能力的培养(如逻辑推理、科学思维、创新意识等)。课堂教学是提高教学质量的关键,要加强教师本身的能力和素质,还要真心地热爱教学工作,所以上课要有热情,掌握节奏,有张有弛,要让学生思考与老师同步。老师要准备好课堂教学,上课要突出“讲”字,不能背书。课堂讲解要留有悬念,讲透就是失败者了。电磁场与电磁波课程强化场与波的基本概念和基本理论,充分调动学生的学习积极性,引导学生认识知识的重要性,把学生的主观能动性发挥出来。作为教师还应该关注科技动态,不断充实自己,做到与时俱进。
学生方面,学生需理解电磁场理论,而不是简单地了解。要充分认识电磁场与电磁波理论在现代通信中的重要性,努力克服困难来掌握电磁场与电磁波的基本理论知识,不断提高自己的各种能力,才能在未来的学习和工作中具备一定的优势。一名合格的电子、通信、信息工程类专业的大学生,应学好电磁场理论,以处理本专业中出现的最基本的电磁场问题。
二、电磁场与电磁波课程教学体系的变化
为了使学生学习电磁场与电磁波的课程变得容易些,教材前面补充了一些数学矢量分析和场论的内容,这样就补充了学习场的分析方法、解决电磁场的数学基础,能更好地建立场的概念。通过课程的学习,学生对宏观电磁场与电磁波的基本概念和规律有深入完整的理解。掌握麦克斯韦方程组的含义及其应用,了解媒质的电磁特性及电磁边界条件,学会定量计算简单电磁场和电磁波问题的基本方法,具备对简单工程电磁场问题的分析能力。教学中会遇到一些困难,如概念抽象、理解困难、公式多、运算难、数学基础要求高、内容繁杂、信息量大、基础理论与实际应用联系的距离远等。针对这些困难在教学内容上进行了相关的调整。改变以往电磁场分析和电磁波传播理论两大部分组成的内容,我们要建立电磁场和电磁波的整体概念,采用静态和动态的混合教学模式,来突出电磁场的基本规律,归纳总结出宏观电磁现象的普遍规律即经典麦克斯韦方程组,讨论静态场、时变场以及电磁波的传播与辐射特性。教学围绕基本知识点展开,从多个途径、多个角度尽可能将科学内涵表述清楚。教师要重视绪论课,也就是第一堂课一定要讲得精彩,牢牢抓住同学们的注意力,激发电磁场学习和探索的兴趣和欲望。绪论课介绍电磁场相关内容,如什么是电磁场、电磁场理论的作用、电磁场理论的用途、发展、为什么学习电磁场课程、怎样学好电磁场课程等。还要推荐参考书和相关网站,以及读书时的注意事项。随着科学技术的发展,电磁科学领域特别是电子与信息科学领域取得一系列重大成就,课程针对这些问题进行尝试,如增加应用实例、科研成果,将能反映近代科学技术的成就和一些对学生有重要意义的工程内容,引入本门课程的课堂教学之中。
三、教学方法改革
教师要有先进的教学思想,提高自身的业务能力,改进教学方法,增强课堂教学效果。重点培养学生学习兴趣和爱好。在教学实践中,应介绍本课程的定位、内容、特点、与其他课程的关系以及学习方法等。教师在上课时要有激情,必须真心地热爱教学工作。教学过程不仅仅是传授知识,更要重视学生能力的培养,如分析能力、运用能力和解决问题能力。学习要以思考为基础,而思考是由怀疑和答案组成的。知道的越多怀疑就越多,于是问题也就增加了,所以发问会使人进步,问题和答案一样重要。电磁场理论博大精深,倾毕生心血也未必能讲好,教师应积极开展教改、教研活动,注意教学团队的培养,要经常交流教学情况,讨论课程的重点和难点。组织教学改革和教学研究等方面的研讨,吸收并掌握国内外先进的教学理念,了解课程发展动态。讲课过程就是自己学习的过程、发现知识缺陷的过程、提高进步的过程、享受人生的过程。教师要把发展学生独立思考和判断能力始终放在首位,而不应当把获得专业知识放在首位。鼓励学生追求知识,培养他们提出问题的习惯。加强教学过程中的互动效果和学生的参与程度,引导学生多思考,多问为什么,任意表达,敢于标新立异,打破陈规,怀疑一切。建设“电磁场与电磁波”网络课程。网络信息量大,可在课堂上实时地补充相关教学资料,图文并茂,形象生动,学生不会疲倦。教师可以通过网络课程的教学和辅导,丰富素材,使网络课件内容具有前沿性、实用性、综合性和系统性,有利于不断提高课程教学质量。还要加强电子教材的制作,使电子教材资源的数量和质量得到提高,同时完善“电磁场与电磁波”试题库、在线测试与答疑等。
四、考试方法的改革
对该课程概念抽象、理论公式复杂、知识点多等特点,老师们在完成课程教学时,要制定合适的教学大纲,选定合适的教材,采用适合学生的教学方法和考试方式等,这样对学生而言,既能学习知识又能培养能力。考试题不出难题、怪题,出些概念题、基本知识题。对于学习努力的学生,考试时得到高分是有利的,可以减少学生学习这门课程的恐惧心理,同时增加亲近感,有付出就有回报,这样就可以让更多的学生选择上电磁场课,客观上普及了电磁场知识。而且好分数对就业有利,今后学生在工作中遇到电磁场问题时不回避,增加解决问题的信心。注重平时基本概念和分析计算方法的训练及考核。加强平时环节,避免让学生出现期末一考定乾坤的现象。需要我们考试采用多样形式,闭卷笔试是一种常用考试手段,但不唯一。可以加强平时习题的训练,来提高平时的成绩,再如开展小测验、教与学的交流、课堂教学讨论等,每学期再加上期中考试,检验学生前半学期的学习效果,减轻学生期末考试的压力。这样平时作业占总成绩的10%,平时表现5%,面试小测验的成绩占总成绩的10%,期中考试成绩占总成绩的20%,加起来可达到45%,学生对期末考试的压力将会大大减少,对待学习自己也会倍感轻松的。
五、结束语
“电磁场与电磁波”在通信工程专业建设中有着重要的地位。通过教学上的改革,使学生感到枯燥乏味的“电磁场与电磁波”课程教学变得生动有趣,充分调动学生的学习兴趣。经过教学实践和改革,有了满足培养学生要求的“电磁场与电磁波”的教学内容、教学大纲、考试题库等材料。通信工程专业的“电磁学与电磁波”是专业基础课程,教师进行反复摸索,现已形成具有专业性、基础性、前沿性的教学方法和教学手段,当然,还有不完善的地方,这需在今后的教学中继续完善。对于学生而言,掌握好本课程的理论,需要从场与波的角度理解和掌握,对后续专业课程有很大的帮助,能够深入分析与解释物理现象的本质,学生学好“电磁场与电磁波”会对相关学科中不断出现的新内容有一定的理解能力,有利于增强学生的创新能力。
参考文献:
[1]雷菁,郑林华,韩方景,丁宏.关于通信工程专业教学改革的几点思考[J].高等教育研究学报,2001,24(2):51-53.
1 前言
太赫兹波的概念虽然早已经被人类所提出,但是在上世纪八十年代,太赫兹波被正式命名,对其特性的研究和发现,却是九十年代之后的事情。在此之前,其一直被简单地划归远红外线的范畴。由于技术限制,太赫兹波在通信范畴内的应用却一直未能有效实现。
而随着技术的发展,电磁波波源和光源更加稳定。太赫兹波才能够得以有效应用。太赫兹波具有高抗噪性、高传输稳定性、瞬态性等优势,同时其带宽高,能耗低,穿透性高。因此,太赫兹波与微波以及光波相比,具有更高的信息传递优势。目前的技术水平对于太赫兹波皮秒量级的脉宽可以有效分辨。对宇宙微波背景有较强的抗噪性。
2 目前太赫兹波技术的主要研究成果
2.1 太赫兹波辐射源
目前,广泛应用的太赫兹波辐射源主要有两种,首先是半导体太赫兹波辐射源。该种辐射源具有体积小、使用方便、能耗低的特点。目前使用较为广泛的有Impatt、Gun振荡器,光子产生方面有QCL等。目前较为主流和先进的太赫兹信号源可以达到200mW的脉冲功率。并且已经产生了太赫兹波成像技术;其次是基于光学和光子学的太赫兹波辐射源。以飞秒级的激光脉冲形成光电流,产生太赫兹辐射脉冲。
2.2 太赫兹波调制技术
利用无线电传输信号,就必须对无线电波进行调制。在2003年,科研人员就已经通过半导体结构和电控结构对太赫兹波进行调制。但效果不佳,且只能在低于80k的温度下进行工作。由于太赫兹波频率过高,传统的无线电调制技术很难对其进行调制。所以一般采用电磁波代替电流信号的调制方法进行调制。该方法可以在较高的工作温度下实行,而且大幅度地提高了数据的传输速率。在解调方面,目前也只能通过间接的方法对太赫兹波的震荡进行检测。
2.3 太赫兹波脉冲规律的研究
太赫兹波的的波长介于微波与光波之间,略长于红外线。因此,太赫兹波的传输过程中容易发生衍射。同时,太赫兹波在传播过程中,也极易受到介质的散射作用影响。即散射颗粒越小,介质对于太赫兹波的散射作用越明显。在空气中传播时,受空气中极性分子所带电荷的影响,太赫兹波容易被极性分子所吸收。进一步加强了太赫兹波的衰减。目前,较为知名的120GHz无线电通信技术,仅仅可以通过亚太赫兹波实现10m以内的近距离通信和1km左右的远距离通信。但是,相较于红外线传输技术,这已经是一项较为重要的进步。
3 太赫兹波通信的应用优势及存在问题
相对于目前已经得到广泛应用的微波通信技术,太赫兹波具有更为稳定的特点。其极高的频率,极小的波长使得太赫兹波通信技术拥有了更高的信息容量和传输速率,其理论传输速率最高可以达到10Gb/s。太赫兹波的理论频带宽度,高出了微波通信频带宽度1~4个数量级。而太赫兹波较短的波长也使其波束较窄,这样,太赫兹波就具有较强的方向性,可以减小天线尺寸,简化设备结构。而相对于光波通信来说,太赫兹波具有更强的穿透性。可以减小天气对于电磁波信号传输效果的影响,同时能量利用率较高。因此,在解决了辐射源稳定性的问题之后,太赫兹波传输在未来必将是一种高穿透性、高速率、低能耗的电磁波通信手段。
但是目前在太赫兹波通信的应用上,依然存在着很多的技术瓶颈无法突破。例如目前很难保证太赫兹波在大气传输过程中的频段稳定性。即使频段得到了稳定的控制,也很难在当前的技术范围内找到一种合适的调制技术对波段进行控制。其次,由于太赫兹波通信信号源载波功率较低,必须对太赫兹波进行间接调制才能够实现信息传输。而实际应用中,在技术上要求的载波功率通常要高于实际的太赫兹载波功率。因此,必须通过完善太赫兹载波信号放大技术进行调制与解调。然而,此项技术还没能有效实现。其三,虽然在理论上,太赫兹波的传输稳定性很高,但是还不能够完全满足商业化、普及化应用的需求。频率不足、传输性能不足、调制和探测技术不成熟也就成为了太赫兹波通信技术发展的重大瓶颈。综上所述,太赫兹波的最终大规模应用还需要克服调制的高效性、信号源的稳定性、更为有效的接收技术和信号放大技术才能够真正得到大规模的实际应用。
关键词:电磁兼容 变电站 保护室 EMC EMI 继电保护
中图分类号:TM63 文献标识码:A 文章编号:1007-9416(2013)08-0196-03
1 背景分析
由于早期继电器保护设备对电磁环境敏感,且大功率对讲机存在造成继电器保护装置误动的可能性,因此管理层本着“安全第一、预防为主”的原则,严格控制(通常的做法是禁止)无线设备在变电站保护室内的使用,甚至不允许将手机带入主控室。该管理方式对保护室内诸如设备调试等工作带来一定程度的不便,尤其随着智能电网的建设,变电站数据采集节点不断增加和物联网的持续应用,无线技术不断地向生产领域贴近,甚至偷偷的溜进了应用领域,生产工作对其慢慢产生依赖性,但是由于现行管理原则的限制而无法名正言顺的实行。
需求发展了技术,如传统上对电磁干扰敏感的医院和航空领域,都陆续放松对无线设备的限制措施,但是电力行业除用电网迫不得已,输电网对无线技术的应用依然犹抱琵琶半遮面。关于现行的电磁兼容管理原则是否合理的问题,很多人都存有疑问,但是综自和保护专业由于技术领域的问题无法对这个问题进行讨论,通信专业由于没有这个领域的话语主导权并且需求不明显,也懒得去碰这条线。但是需求之所在,总需要好好琢磨一下。这个问题如果解决了,可以极大的提高各种通信业务保障的灵活性,促进生产效率的结合。
很多研究和论文都是研究如何在变电站的电磁干扰环境中如何保障通信可靠性的问题,极少有文章讨论无线信号对继电保护和综自设备产生干扰,尤其是是在微机保护使用之后,比如你是否会担心你打手机、用WIFI会干扰你的电脑正常工作?办公电脑尚且不会担心,反过来担心工控机,仅仅是因为生产中的重要性不一样,这个理由难免有些牵强。
2 电磁干扰的基本概念
如图1所示,变化的电场产生变化的磁场,反过来变化的磁场又产生变化的电场,循环往复形成了电磁场并向四周传播。电磁波的存在远超人类的发展时间,雷电、太阳黑子爆发都能产生强烈的电磁波造成对电子设备的干扰,此外地球磁场、静电、星光都是电磁波,只不过影响小一些。在电磁能广泛应用的今天,大量应用着诸如通信、广播、家用电器、雷达、电脑等电子器件,在正常运行的同时也向外辐射电磁能,可能会对其他电子设备产生危害,这就是电磁干扰。我们生活和工作的空间中充满了电磁波,虽然看不到摸不着,但是确实是客观存在,重要做的是提高抗干扰能力,而不是一味的限制某种设备的使用,毕竟红头文件无法限制太阳黑子的爆发,政策法规也不能禁止宇宙射线风暴进入大气层。
电磁干扰的传播途径分为传导骚扰和辐射骚扰,传导骚扰即是基于线缆的有线方式的电磁能传播,严格来讲不能算是电磁波,比如电焊机等大功率设备造成的电压瞬变可沿着电源线进入设备内部,雷电通过信号电缆传导入设备内部等,均会干扰电子设备的正常运行;辐射骚扰是电磁波在空间传播过程中,设备的外壳、外部线缆起到天线的作用,耦合了电磁波的能量,产生变化的电信号——噪声,传导入设备内部后干扰了电子器件的工作,是本文所要讨论的干扰形式。
辐射骚扰对电子设备的干扰强度主要取决于两个方面,一是设备所处环境中电磁场本身的强度,1000V/M的电场强度对设备的影响肯定大于10V/M的环境;二是取决于设备对电磁波的感应程度,也就是耦合性高低。类似不同形状的电视天线能接受不同频段的节目一样,接收体形状、材料等性质决定电磁波对其影响的大小,通过特定的外形设计和外涂层选择隐形飞机达到减小雷达波反射的目的,电子设备可以采用同样的方式电磁波对其影响,这就涉及到一个产品电磁兼容(EMC)设计方面的问题。
3 变电站内电磁环境分析
如图2所示,变电站内同时运行着多种电压等级、多频率的线缆和设备,各种类型的电磁波交织在一起,构成了一个复杂的电磁环境,无法用简单的数学模型进行准确描述,一般通过实地测量来进行定性的分析。典型的为美国电力科学研究院,对变电站内电磁兼容问题进行了长达30年的持续研究,其成果表明高压开关操作干扰、一次系统短路故障干扰、雷电干扰对电子设备影响最大。变电站内断路器、隔离开关等一次设备在操作时,会产生一系列的电磁干扰,这些干扰会通过各种耦合进入到二次回路;一次系统短路故障时,在站内架空导线和接地网上会流过很大的短路电流,并在二次电缆周围产生很强的空间磁场,会对二次设备造成较大的干扰;雷电可以以耦合、传导、辐射等形式侵入二次设备。
由于电磁波首先要在设备外壳和连接线上产生感应电压或电流,通过端口进入设备内部才能影响电子器件的正常运行,在最终的干扰方式上和传导骚扰是同样的。因此,由上所述,一次系统的操作,能够产生千伏/米数量级的电场强度的电磁干扰,会通过传导和辐射的方式直接耦合到设备内部。有研究表明,即使在无操作的正常环境中,保护室内的电场强度长期保持在4V/M以上,特殊时刻会瞬间远超这个数值。此外,电视广播、无线广播、卫星通信、手机基站甚至太阳黑子等不可控的电磁信号产生的干扰,是设备设计阶段即可以预见并加以防治的,其造成的影响相比站内干扰源要次之。
4 继电保护和综自系统的电磁兼容性能
变电站内保护室内主要的电子设备包括继电保护装置、综合自动化装置以及通信设备,其中通信设备由于数字化程度高,器件密度大,处理信号速率高(G级别速率),其产品自身设计制造时即考虑了较高的电磁兼容性能,可以承受较强的电磁干扰而不影响正常运行。不考虑各种标准文件,简单的想一下即可得知,离手机天线辐射最近的电子器件恰恰就是手机自身,虽然手机电路由于器件密集易受感染。因此常常被看做干扰源的通信设备自身反而抗扰能力最强,也就不存在对手机等无线设备的使用限制。除此之外,保护室内严格限制无线设备使用的原则,主要是考虑的是继电保护和综自系统,即使多年的技术进步和发展,很多运维人员对设备的电磁兼容性能所知甚少,传统上依然认为它们是电磁敏感型设备。
继电保护设备及自动化设备对电网正常、稳定运行的重要作用毋庸多言,由于其工作电磁环境恶劣,因此各厂家均将提高产品的电磁兼容性能作为产品设计的一个关键因素。国际电工委员会IEC标准TC95技术委员会成立了专门的电磁兼容研究工作组,制定了一系列的相关标准,至今所颁布的标准中有一项通用标准、一项电磁发射标准和八项抗扰度标准,即IEC 60255系列标准,我国相应的继电保护标准化组织已将相应的国际标准转化为国家标准,即GB/T 14598系列标准;自动化电磁兼容标准为IEC 60870-2-1,对应我国标准为GB/T 15153.1。规定了设备在1MHz脉冲群干扰实验、静电放电试验、辐射电磁场骚扰试验、电快速瞬变/脉冲群抗扰度试验、浪涌抗扰度试验、射频场感应的传导骚扰抗扰度试验、工频抗扰度试验等方面的电磁兼容性能。除此之外,电力行业还编制了电力行业标准“DL/Z 713—2000 500kV变电所保护和控制设备抗扰度要求”。
以上这些标准都从各个方面对继电保护和自动化设备的抗电磁干扰能力提出了严格的要求,其模拟环境要严酷于可预想情况,其产生耦合的线缆和接口要多于设备正常配置、其规定的正常工作的限制要高于实际应用情况。总之,电磁兼容测试环境的要求是要高于设备正常应用环境的,按照标准规定,在宽频范围内(80——1000MHz)设备测试环境的严酷等级为3级,即电场强度为10V/M。通常将电磁环境的严酷等级分为3级:1级为低辐射环境,如离电台、电视台1km以上,附近只有小功率移动电话在使用。2级为中等辐射环境,如在不近于1m处使用小功率移动电话,为典型的商业环境。3级为较严酷的辐射环境,如附近有大功率发射机在工作,为典型的工业环境。而为了在制造符合测试环境的电场强度,一般场强、试验距离与功率放大器的关系见表1,一般来讲EMC测试中产生10V/M场强至少需要100W以上功率的放大器,这是一个相对较大的辐射强度了。
5 手机等无线设备的电磁辐射探讨
5.1 行业标准对电磁辐射的要求
如前文所述,电磁辐射能够对设备产生的影响,主要方面是取决于设备本身对电磁波的耦合程度,而能够耦合电磁波的设备外壳和端口引线起到的是一个天线的作用。众所周知,天线对电磁波是有选择性的,不同频率和不同极化方向的电磁波在天线上产生的感应电动势是不同的。继保和自动化设备的电磁兼容测试选择的是80M——1000Mhz这个频率范围,这说明其它频率的电磁波干扰要折合到这个频率范围来计算,这涉及到对信号进行傅里叶展开等频域的换算,具体公式不谈,结果是不是所有能量都会变换到指定频域,体现在实际中就是虽然发射功率足够大,但是不一定能够产生同等的干扰能力。因此,世界各国的标准化组织对无线设备电磁辐射规定都是对低频域设置的。表2是各组织在两个手机常用频点上的功率密度的限制值,此处需要说明一个问题,虽然通过功率密度和电场强度的换算关系式可以得出,约265μW/cm2即可在相应位置产生10V/M的电场强度,看起来门限不高,但是功率密度是辐射功率在单位面积上产生的(cm2)分配,如果半径为1米的话,球面积为125600cm2,按照26μW/cm2计算,不考虑路径中的损耗,则该层功率合计为33W,因此,实际测试环境考虑到各种损耗和天线等因素,一般选择250W的功率放大器。(如表3)
5.2 WIFI设备辐射功率的探讨
目前个人广泛使用的无线设备主要是WIFI路由器和手机。对于WIFI设备其工作频率在2.4G和5G,也就是2400MHZ和5000MHZ这两个波段,其设计的初衷是为了覆盖100米之内的范围,所以辐射功率较小。根据有关机构的测试,在2英尺(0.6米)的距离上,WIFI设备所能产生的辐射,大概是2μW/cm2,即每平方厘米百万分之一瓦特。相比而言,由电视、收音机这些设备工作时产生的辐射,大概是1μW/cm2,所以IEEE802.11b设备的辐射只不过是这个数据的2倍。我国无线电管理委员会的规定,无线局域网产品的发射功率,不能大于10mW,所以我们一般从市场上买到的无线路由器,其配置菜单对功率的调节最大就是10mW。由此看来,WIFI设备辐射的电磁场干扰,对继保和综自设备抗扰性来说是微乎其微的。在当前IP业务泛滥的情况下,很多新型接入业务都依赖于WIFI设备的部署,这也是在各种安全管控的高压态势下,却屡禁不止的一个原因。为了更好的发展,我们要以积极的态度研究WIFI设备在变电站内的应用,而不是简单的一禁了之。
5.3 手机辐射功率的探讨
除WIFI外,我们最常用的移动无线设备就是手机了。当前我国手机网络主要分为2G和3G两种。2G网络的代表为GSM制式,3G网络都是基于CDMA技术的。GSM手机工作在800M和1800M两个频段上,对于GSM900M发射功率分为不同的级别,每个功率级别差2dB,手机最大发射功率级别是5(33dBm,2W),最小发射功率级别是19(5dBm,3.2mW);对于GSM1800M最大发射功率级别是0(30dBm,3W),最小发射功率级别是15(0dBm,1mW)。CDMA IS-95A规范对手机最大发射功率要求为0.2W-1W(23dBm-30dBm),实际上目前网络上允许手机的最大发射功率为23dBm(0.2W),规范对CDMA手机最小发射功率没有要求。
在实际通信过程中,在某个时刻某个地点,手机的实际发射功率取决于环境,系统对通信质量的要求,语音激活等诸多因素,会随着与基站之间的链路测算进行实时调整。手机与系统的通信可分为两个阶段,一是接入阶段,二是话务通信阶段。对于GSM系统,手机在随机接入阶段没有进入专用模式以前,是没有功率控制的,为保证接入成功,手机通常以最大发射功率。在专用信道分配后,手机会根据基站的指令调整发射功率,通常每60ms调整一次,幅度是一个级别(2db)。对于CDMA系统,手机在随机接入状态下,会根据接收到的基站信号电平估计一个较小的值作为初始发射功率,如果没有得到基站的应答信息,会增加发射功率,直到收到基站的应答或者到达设定的最多尝试次数为止。在通话状态下,每1.25ms基站会向手机发送一个功率控制命令信息,命令手机增大或减少发射功率,幅度为1dB(10倍)。
图3和图4为某机构对CDMA和GSM在常见环境下的发射功率分布图,表4为10种典型手机发射功率的实测值。CDMA手机的线性平均发射功率为2.4dBm(1.72mW),以最大功率(23dBm,0.2W)发射的概率为0.2%;GSM手机的线性平均发射功率为28.9dBm(773mW),以最大功率(2W)发射的概率为21.8%。表4为某机构对十款常见手机的辐射功率的测试结果。从中可以看出,虽然GSM手机的发射功率偏大,但是考虑到4G时代的来临,2G手机制式已经逐步退出历史舞台,现在普遍使用的基于CDMA的3G制式,手机的辐射功率将小得多,低于我们电磁测试环境要求的限值。
6 结语
本文的编写不是学术型目的,而是基于为相应管理者提供参考,因此内容尽量通俗,,文章对公式的应用和概念的描述并非十分严格,目的是为了易于非专业人士理解所要阐述的思想。本文所要说明一个论点就是要深入考虑变电站保护室内对无线设备的禁用原则,将研究重点转到如何在复杂和恶劣的电磁环境下保证设备正常运行,以及对入网设备进行相应的检测,要让设备适合我们的应用,而不是我们来适合设备。随着智能电网的建设和物联网的发展,无线业务的应用趋势势不可挡,我们要积极的探索适合变电站内系统的无线模式,以此来跟上社会潮流,提高工作效率,反而可以进一步提高电网的安全可靠性。
参考文献
[1]邹澎.电磁兼容原理、技术和应用.清华大学出版社,2007.
[2]Theodore Frankel S.Rappaport[美].无线通信原理与应用.电子工业出版社,2007.
[3]王海青.电磁辐射环境研究[J].航空电子技术,2001(01).
文献标识码:B文章编号:1008-925X(2012)07-0185-01
摘要:
在对建筑岩土工程锚杆锚固质量检测中常用的电磁波探测法和地震波-超声波探测法两类无损检测技术进行分析后,结合建筑岩土工程锚杆锚固失效机理,介绍了基于应力波的无损检测技术具体工作流程。
关键词:建筑岩土工程;锚杆锚固;无损检测技术
岩土锚固技术在矿山、水电、桥梁、建筑、公路、以及铁路等工程中作为主要的岩土永久性支撑体系,得到广泛推广使用,不仅技术较为完善而且使用量相当大。随着建筑工程建设步伐的不断加快,预应力锚索(杆)在建筑岩土工程中得到了快速发展,主要用于工程区边坡加固和地下建筑物工程的加固支护。由于建筑工程是一个涉及专业多、施工环境复杂的大系统,加上建设材料、施工技术、岩土地质条件等因素的共同影响,建筑岩土锚固结构系统在施工和后期运营使用过程中,必然会存在一些安全问题,具有一些缺陷。对于建筑岩土工程的锚杆-围岩支付加挂结构系统而言,从大量文献资料和实际工程经验可知,主要存在的缺陷有:锚杆体自身质量缺陷(如:锚杆材质不均匀、存在裂缝、孔洞等,锚杆杆体防腐措施不到位出现锈蚀等)、胶结体自身质量缺陷(如:密封胶结体密实度不够、内部存在孔洞、裂隙、以及“蜂窝”等)、密封胶结体与锚杆体、围岩等物体间的胶结性能不良;另外还可能存在建筑岩土工程建设区地质界面、软弱地层等不利地质条件对锚杆锚固工程质量造成影响。上述存在锚固性能缺陷的锚杆-围岩结构体系,在建筑过程中通常称为“缺陷锚杆”,缺陷锚杆不仅会影响整个工程的施工综合质量水平,而且还会为后期高效稳定运营埋下巨大的安全隐患。随着这些安全隐患不断产生和积累,就会大大降低建筑岩土工程的综合支付性能水平,甚至使具有永久支护的岩土工程出现失效等严重事故。因此,对建筑岩土工程的锚固结构存在的缺陷进行检测识别,通过无损检测进行质量诊断,并结合实时分析和补强技术,一直作为建筑岩土工程人员研究的一个重要课题[1]。
1 建筑岩土工程锚杆锚固质量无损检测技术
常规的静载荷质量检测方法在准确性、实时性、可靠性、以及大面积动态检测等方面均不能满足现代建筑岩土工程锚杆锚固质量大面积检测需求,无损检测技术主要利用一些辅助仪器设备对锚杆锚固质量进行动态检测,不仅能够准确检测分析出锚杆锚固质量水平,同时还不会对锚杆产生二次破坏,尤其适用于建筑岩土工程大面积探伤检测领域。岩土工程中无损探测技术主要利用与锚杆锚固质量检测相应硬件仪器设备、传感器、以及相应的数据信号处理器共同组成,从而利用系统的检测分析系统对岩土工程锚杆锚固质量水平进行系统检测和综合安全评估。用于建筑岩土工程的无损探测技术是在电子技术、传感器技术、计算机技术等高新技术不断完善的基础上发展起来的,经过岩土安全质量检测工作人员几十年的不断研究和工程应用,逐步形成了一整套完善的无损检测体系,并发展出了多种岩土工程无损检测方法,主要以电磁波探测法和地震波-超声波探测法最具代表性。电磁波无损检测法主要包括地质条件雷达、红外线温度场综合扫描探测法、射线探伤诊断法、以及光学成像法等。工程中常用的另一种无损探测技术地震波-超声波无损探测法主要包括高精度地震波法、瑞利波法、TSP法、以及声波(超声波)探伤法等。从两类岩土工程无损检测技术的工作机理来看,电磁波无损探测技术主要以电磁振荡激发形成对应的电磁波,通过对电磁波进行综合分析,获得相应的探测数据信息结果;地震波-超声波无损探测技术为机械震动激发形成地震波、声波(或超声波),然后利用相应计算单元对此类波形进行分析,形成对应的探测结果。
2建筑岩土工程锚杆锚固失效机理分析
从大量文献资料和实际工作经验可知,建筑岩土工程锚杆锚固失效机理主要表现在以下四个方面:
2.1杆体钢筋拉断。
杆体钢筋是整个岩土锚固体系中主要受力体,杆体钢筋拉断常出现在锚杆杆体尾部的丝扣部位,由于该处是一个应力集中点,很容易出现应力综合作用导致出现拉断问题。工程中常采用热处理,提高钢筋的韧性,从而防止出现杆体钢筋拉断失效现象。
2.2托板失效。
锚杆托板在实际应用中可能受到的最大压力与锚固锚杆的最大拉拔力相等,为了避免出现托板失效现象,通常采用高强度钢材、增大锚杆托板厚度等技术措施,提高托板耐压能力,提高整个锚固结构性能水平。
2.3粘结破坏。
粘结破坏是影响锚杆锚固质量的外部主要原因,在工程中通常表现为三种失效现象:a.锚固锚杆-粘结剂接触面间发生破坏;b.岩土围岩-粘结剂接触面间发生破坏;c. 软弱围岩抗剪强度一般小于7MPa,从早晨破坏面深入到围岩体内,形成粘结破坏。工程中通常采用树脂锚固剂和增加锚杆锚固长度等措施,防止出现岩土锚固结构出现粘结破坏现象。
2.4围岩局部破坏造成锚空失效。
从大量工程实际应用工程经验表明,锚固锚杆出现由于锚空失效的主要原因是由于岩土围岩局部发生破坏引起。当采用锚固锚杆或锚喷等技术进行岩土巷道工程支护时,由于荷载在围岩中某些薄弱点面出产生的应力不均匀,就会在某些薄弱环节处发生局部破坏,这样就会导致锚固锚杆的切向锚固力迅速减小甚至丧失,相应径向锚固力(托板托锚能力和粘结粘锚能力)也会随着大幅度减小,从而引起锚固结构支护性能发生大面积降低,出现更大范围的破坏[2]。
3 建筑岩土工程锚杆锚固质量无损检测
在进行建筑岩土锚杆锚固质量无损检测分析前,首先在搜集完围岩地质基本资料信息后,准确标定瞬态外力激振所产生的应力波速度大小,然后再利用相应数据自动采集装置动态获取反射波的数据信息,从而通过相应程序计算分析获得岩土锚杆长度、锚固质量水平等数据结果,基于应力波检测的无损检测技术具体工作流程如图1所示:
在进行数据分析时,如果频谱分析分析数据中应力波峰值的频率间隔量(即通常所说的频差Δf)存在大小不等、变化区间较大等现象时,则可以判断该锚固体内部砂浆的强度较高、握裹力较大;反之,当频差大小基本保持一致,且呈现等间距分布状态时,则可以判断砂浆强度较小、握裹力较小,利用这些基本经验结合动态检测数据信息就可以动态分析建筑岩土工程锚杆锚固质量水平。
4 结束语
建筑岩土工程无损检测技术是在电子技术、计算机技术、信号处理技术等高新技术不断发展基础上形成的,在岩土工程锚杆锚固质量水平检测领域具有非常强大的应用前景。
参考文献