时间:2023-08-27 14:55:25
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇统计学概念范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
一、样本与总体
前面已提及,医学研究中实际观测或调查的一部分个体称为样本,研究对象的全部称为总体。如作水质检验时从井水或河水中采的水样,临床化验中从病人身上采的血液或其它活体组织标本,是样本;而整个一口井或一条河的某一段所有的水,某病人全身所有的血液或某个组织器官,则是总体。这类总体是具体存在的,但另有些总体却是假想的,只是理论上存在的一个范围。例如试验某一治疗流感新药的疗效,最初接受治疗的一批流感患者,不论数量多少,都只是一个样本。若该药疗效得到肯定,从而加以推广,那么此后凡在相同条件下接受该药治疗的所有流感患者,都属于这个总体。可是当初试用时,这个总体还并不存在,是假想的。
总体包含的观察单位通常是大量的甚至是无限的,在实际工作中,一般不可能或不必要对每个观察单位逐一进行研究。我们只能从中抽取一部分观察单位加以实际观察或调查研究,根据对这一部分观察单位的观察研究结果,再去推论和估计总体情况。如上述某新药治疗流感例子,试验治疗的只是少数有限的病人,而结论却要推广到全体,得出一个该药对所有流感患者之疗效的规律性的认识。所以说,观察样本的目的在于推论总体,这就是样本与总体的辩证关系。
为了使样本能够正确反映总体情况,对总体要有明确的规定;总体内所有观察单位必须是同质的;在抽取样本的过程中,必须遵守随机化原则;样本的观察单位还要有足够的数量。
二、概率
又称机率,是用以描述某事件发生的可能性大小的一个数值。
在自然界和人类社会中,存在着两类不同的现象:①在一定条件下,肯定发生的事件叫做必然事件,肯定不发生的事件叫做不可能事件。如在适当温度湿度下经一定时间孵化,正常受精鸡蛋必然会孵出小鸡来,而石头是不可能孵出小鸡来的。必然事件与不可能事件虽然形式相反,但两者在发生某种结果与否都是确定的,故统称确定性现象。②在基本条件不变的情况下,可能发生的结果有多种,究竟发生哪种结果,事先不能肯定,这类现象叫做随机现象。随机现象的表现结果称为随机事件。如任意抛掷一枚硬币,可能徽花向上也可能币值向上,抛掷前不能肯定,这是一个随机现象,而结果出现“徵花向上”则是一个随机事件。
(一)古典概率 是最简单的随机现象的概率计算。这类随机现象具有两个特征:①在观察或试验中它的全部可能结果只有有限个,譬如为n个,记为E1,E2,…,En,而且这些事件是两两互不相容的,即任何两个事件不能同时发生;②事件E1,E2,…,En的发生或出现是等可能的,即它们发生的概率都一样。古典概率的大部分问题都能形象地用摸球模型来描述。有利于直观地理解概率论的许多基本概念;而且它有着多方面的重要应用,例如工业产品的抽样检查等。
(二)统计概率 上述“事件”是指不能再进行分解或不能由其它事件构成的基本事件。在实际工作中,基本事件的发生并不总是等可能的,而且有时为无穷多个。这样就有必要把古典概率的定义加以推广,从事后经验的角度来理解概率的意义。实践证明,虽然个别随机事件在某次试验或观察中可以出现也可以不出现,但在大量重复试验中它却呈现出明显的规律性。假设在相同条件下,独立地重复做n次试验,某随机事件A在n次试验中出现了m次,则比值m/n称为随机事件A在n次试验中出现的频率。当试验重复很多次时,随机事件A的频率m/n就会在某个固定的常数P附近摆动,而且n愈大摆动的幅度愈小。这种规律性称之为统计规律性。频率的稳定性说明随机事件发生的可能性大小是随机事件本身固有的、不随人们意志为转移的客观属性,所以在医学科研中,当n充分大时,就以频率作为概率的近似值,记住P(A)即
由此可见,频率是就样本而言的,而概率总是从总体的意义上说的。这样,概率就为预计某一事件发生的可能性大小,提供了衡量的尺度。
例如:某病患者40名,用某疗法治疗后,其中35人痊愈,治愈者占治疗人数的35/40,这是频率。因为数量少,这个频率可能波动较大。假如经过长期的大量观察,比如数百、数千例,得到治愈率为70%,我们就可以说,该疗法治愈某病的概率近似值为70%。
又如:某院妇产科在一个月内出生婴儿30名,其中男婴18名,占新生儿数的18/30,这叫频率。大量统计表明,人口中男女的比例基本上是1:1。这是个较稳定的常数,即概率的近似值。于是,在婴儿分娩前,我们就可用它作为尺度,预计是男的概率为1/2(0.5或50%),是女的概率也为1/2(0.5或50%)。
通过以上讨论,可以知道:如果某事件是必然事件,则有m=n,所以必然事件的概率等于1;如果某事件是不可能事件,则有m=0,所以不可能事件的概率等于0;如果某事件是随机事件,则有0
三、随机变量
简单地说,是指随机事件的数量表现。例如一批注入某种毒物的动物,在一定时间内死亡的只数;某地若干名男性健康成人中,每人血红蛋白量的测定值;等等。另有一些现象并不直接表现为数量,例如人口的男女性别、试验结果的阳性或阴性等,但我们可以规定男性为1,女性为0,则非数量标志也可以用数量来表示。这些例子中所提到的量,尽管它们的具体内容是各式各样的,但从数学观点来看,它们表现了同一种情况,这就是每个变量都可以随机地取得不同的数值,而在进行试验或测量之前,我们要预言这个变量将取得某个确定的数值是不可能的。
按照随机变量可能取得的值,可以把它们分为两种基本类型:①离散型随机变量,即在一定区间内变量取值为有限个,或数值可以一一列举出来。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。②连续型随机变量,即在一定区间内变量取值有无限人’或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。
四、误差
误差是指实际观察值与客观真值之差、样本指标与总体指标之差。误差可分为系统误差和随机误差。
(一)系统误差 在实际观测过程中,由于仪器未校正、测量者感官的某种障碍、医生掌握疗效标准偏高或偏低等原因,使观察值不是分散在真值两侧,而是有方向性、系统性或周期性地偏离真值。这类误差可以通过实验设计和技术措施来消除或使之减弱,但不能靠概率统计办法来消除或减弱。
(二)随机误差 或称偶然误差,是指排除了系统误差后尚存的误差。它受多种因素的影响,使观察值不按方向性和系统性而随机地变化。随机误差服从正态分布,可以用概率统计方法处理。
在随机误差中,最重要的是抽样误差。我们从同一总体中随机抽取若干个大小相同的样本,各样本平均数(或率)之间会有所不同。这些样本间的差异,同时反映了样本与总体间的差异。它是由于从总体中抽取样本才出现的误差,统计上称为抽样误差(或抽样波动)。抽样误差在医学生物实验中最主要的来源是个体的变异。所以这是一种难以控制的、不可避免的误差。但抽样误差是有一定规律的。研究和运用抽样误差的规律’是根据样本估计总体时所必须领会的基本概念之一,也是医学统计学的重要内容之一。
随机误差中还包括重复误差。它是由于对同一受试对象或检样采用同一方法重复测定时所出现的误差。如用天平称同一个烧杯的重量,重复测定多次,其结果会有某些波动。控制重复误差的手段主要是改进测定方法,提高操作者的熟练程度。重复是摸清实验误差大小的手段,以便分析和减少实验误差。
五、假设检验
亦称显著性检验,其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。
医学检验技术专业对从业者的《卫生统计学》知识有较高要求,不仅包括常用统计图表的绘制,常用统计原理、统计方法的理解,还包括检测结果的质量控制和部分多因素分析等。因此《,卫生统计学》是医学检验专业一门重要的必修课。
2高职医学检验专业《卫生统计学》教学改革初探
2.1改革教学内容
2.1.1结合职业岗位需求,精选授课内容:不同的职业岗位对《卫生统计学》知识的需求存在较大差异,教师要对专业岗位需求有清晰的认识,认真研读该专业的人才培养方案,明确该专业对《卫生统计学》知识的整体需求和知识结构。高职医学检验技术专业对《卫生统计学》专业知识的需求主要包括常用统计图表的制作、常用资料的统计描述和统计推断、相关与回归分析等,很少用到多元回归分析、医学科研设计等统计方法。因此,教师要结合专业特点对教材内容进行合理的梳理和筛选。
2.1.2强调对基本原理、概念的理解,形成统计思维,避免死记硬背:五年高职学生普遍存在逻辑思维能力差、喜欢死记硬背概念、生搬硬套公式等情况,课前不预习、课后不及时复习,很容易把各种统计分析方法张冠李戴。作为教师,应在讲清《卫生统计学》基本原理和基本概念的基础上,讲清、讲透几种最基本的统计分析方法,逐步培养学生的逻辑思维和统计思维能力。引导学生把学习重点放在掌握统计方法的基本概念和有关公式的应用条件上,让学生对统计内容进行对比、归纳,建立统计知识的整体观。课后让学生及时复习,以满足将来职业岗位的需要。
2.1.3结合统计软件,淡化公式的数理推导和记忆《:卫生统计学》具有理论深奥、概念抽象、数据枯燥的特点,但它不是数学,不像数学那样着重公式的推导、证明、记忆,并通过大量的习题运算来强化公式《。卫生统计学》的主要特点是逻辑性和实践应用性强,最终的教学目的是让学生在理解统计学的基本原理和方法的基础上学会分析问题、解决问题。合适的统计软件能使复杂的统计过程简单化,更容易激起学生学好《卫生统计学》的兴趣。利用统计分析软件,如SPSS等,使学生在学习统计学时不再拘泥于繁杂的计算过程,而是更加注重统计方法的实际应用,让学生能根据资料的类型,利用软件选择合适的统计分析方法,熟练地进行数据分析,同时也培养了学生对统计软件的操作使用能力。
2.2改革教学方法
2.2.1密切结合医学实例,强调应用能力的培养《:卫生统计学》是一门教师难教、学生难学的应用型学科,多数同学由于对医学检验技术专业的认识不够,不能深刻认识《卫生统计学》的重要性,导致缺乏学习兴趣。传统的教学方法多以教师讲授为主,辅以实习、案例讨论。课堂上教师先讲解基本概念、原理、公式和计算等,然后让学生采用手工法计算相应的统计指标,结果是繁琐的计算使学生对统计学这门课程越来越不感兴趣,对所学的内容似懂非懂,遇到具体问题时无所适从《。卫生统计学》授课时应采用多种教学方法,如PBL教学法、实践教学法、应用教学法等,通过应用统计软件、分析案例避开繁琐的运算,着重培养学生使用统计学这一工具分析问题、解决问题的能力。采用多种教学方法不仅课堂气氛活跃,师生交流多,学生印象深刻,还能充分调动学生学习的积极性、主动性和创造性。
2.2.2适当拓展课本知识:适当拓展对数据量较大的资料的整理和分析能力训练,如不同数据库之间的数据如何相互转换、导入,不同形式录入的数据如何整理分析,如何选用正确的统计分析方法等。只有通过具体的资料分析、统计方法的应用训练,才能让学生充分掌握理论知识,形成统计思维。
2.3改革教学评价的方式
2.3.1注重从结果性评价到过程性评价:高等职业教育的目的主要体现在应用性和操作性上,为了全面考查学生的知识和能力,务必摒弃简单的以期中或期末考试作为终结性评价的做法。应做到全面评价学生的学习过程和结果,调整考试结构,从基础知识和基本能力两个维度进行测试。基本能力的评价要覆盖课堂考核、课后考核、课前预习、知识掌握、灵活应用程度等方面,以全面考查学生对《卫生统计学》基础概念、基本原理和基本方法的掌握程度,以及对具体案例的统计分析能力。
2.3.2从知识评价的单一体系向知识、能力、应用分析等多元评价转变:目前,多数《卫生统计学》教材和各院校开设的《卫生统计学》课程依然使用传统的教学模式,注重理论知识、公式的推导、运算,很多时间花费在讲解基本原理和具体公式上,导致最终的考核评价主要侧重于理论知识的掌握程度,而较少侧重对于统计思维的养成、具体案例分析能力的考核。为此,对于《卫生统计学》考核的具体评价应该包括课堂知识的掌握、课后的总结归纳、统计软件的应用、具体的案例分析等多元评价。
2.3.3注重学生对老师的评价,反馈于教学(多元评价主体,多元评价客体):评价主体应多元化,不仅教师对学生进行评价,而且应该包括学生对教师授课内容、授课方法、授课过程中的亮点与不足等进行的定期评价,以期对教师改进教学方法、提高教学效果起到推动作用。
3结语
【关键词】实例教学;临床医学专科生;医学统计学
医学统计学是运用统计学的原理和方法研究医学问题的一门学科 。该学科是以概率论与数理统计为理论基础,以医学理论为指导的一门应用性学科。这就决定了该学科具有一些有别于其它医学课程的特点:概念多,公式多,内容的逻辑性强,与数学的联系密切,对学生的数学基础要求较高。然而对临床医学专科生来讲,由于入学分数较低,高等数学基础较差,且掌握得较粗浅。因此要学好医学统计学对学生来讲,具有较大的难度。而且医学生所学的大部分医学课程主要是对形象思维和识记能力的训练,所以学生在接触到医学统计学的学习后,一时难以适应。大部分学生对医学统计学抽象的原理和繁多的公式,以及大量的数字运算感到头痛,甚至产生畏难情绪。另一方面,临床医学专科学生由于学制短,所以课程负担较重,让学生抽出时间去补习相关的数学知识显然是不可行的;临床医学专科生开设医学统计学的学时数较少,总学时一般在20学时左右,在这样短的时间内要完成该课程教学大纲的要求,时间是非常紧张的,所以在课堂时间内教师也不可能深入细致地为学生补习相关的数学知识。这些都是现实存在的问题。在教学过程中我们不得不考虑学生的实际情况而采取一定的补救措施以改善教学效果,使学生学有所精,学有所用。结合自己从事临床医学专科生教学的实践体会,本人认为从实例入手来介绍统计学的有关内容是一个行之有效的好办法。
从实例入手是指在教学过程中,在介绍某个概念或方法时,以实例为切人点,通过实例引出问题,让学生先对问题进行思考,所提出的问题可以是待介绍的概念,方法适用的情形,也可以是某方法的应用步骤或应用方法时的注意事项,让学生结合实例给出自己的看法和解决思路,教师适当加以引导和启发,并及时对学生的说法进行总结,最后再给出科学的定义和完整的表述。这里所说的实例,可以是教材中现有的例题或练习题,可以是医疗工作中经常碰到的实际问题,也可以是模拟的一场实验或现场调查,有时为了使所讲述的内容变得生动一些,也可以拿日常生活中的某一现象作为实例。学生的思维经过这样一个由感性到理性,由具体到抽象的认识过程,减轻了
接受抽象概念和方法的难度,加深了对书本内容的理解,同时调动了学生学习的积极性,对提高教学效果大有帮助。具体表现如下:
1 有助于提高学生对该课程的重视程度。减轻学生理解的难度
从实例入手介绍统计学的有关内容,会使学生觉得统计学与他们的生活和工作密切相关,是他们今后从事医疗工作和科研活动必不可少的,从而提高学生对学习该课程的重视程度,改变临床医学专业学生对学习医学统计学不够重视的现状。通过实例会把一些深奥的问题变得浅显,抽象的问题变得直观,把难理解的内容变得容易理解。如果直接从概念或公式讲起,容易使学生觉得抽象,难理解,甚至是枯燥。而从实例讲起,结合实例会使学生觉得统计学的内容是实实在在的,它存在于我们每个人的身边,我们甚至每天都在和统计学打交道,在有意、无意地运用着统计学中所讲述的原理和方法,统计学只是将有关数据的收集、表达和分析的学问系统化而形成的科学,它不是凭空想象出来的,统计学的思维过程是符合一般科学思维规律的。学生有了这样一个认识之后,在学习过程当中就不会有意无意地把一些本来简单的问题复杂化,更不会把医学统计学完全当成数学课来学,这是学生初学该课程时普遍存在的一个误区。通过具体实例,先使学生对所要解决的问题及解决思路有一个具体直观的领会,然后再给出科学、完整的表述,这样会使原本抽象的内容变得不再抽象、不再难以捉摸,从而减轻学生接受和理解知识的难度,增强他们学好该课程的信心。如果是从日常生活中的事例讲起,会在一定程度上起到活跃课堂气氛,增加教学内容生动性的作用,有利于激发学生学习的兴趣和热情。
2 有助于学生把握学习重点,启发学生积极思维
从实例讲起,会引导学生把注意力更多地放在如何正确运用方法上,而不至于出现对方法的误用。这正是学习这门课的目标之所在,也是学生学习该课程的重心之所在。统计学中的概念和公式非常多,如果把课堂时间过多地放在对统计方法的数学推导和具体统计演算上,容易使学生陷入公式推导和大量计算的“泥淖”中,弄得焦头烂额,即使勉强掌握了推导过程却已无暇顾及其它,这样的结果往往导致学生忽视各种统计方法的使用条件、方法所适用资料的特点及对结果的合理解释,这显然有悖于学习该课程的初衷。统计学中的公式都是由实际问题引申出来的,一般都有其实际意义 ,过分追究公式的数学含义及推导过程对学生来讲是不必要的;随着计算机和统计分析软件的广泛使用,大量复杂的统计计算可由计算机代为完成而不必手工计算,让学生在具体计算上花太多时间是不划算的。
从实例讲起,有助于启发学生的积极思维。通过实例,把问题先摆出来,让学生考虑一下该如何去解决这个问题,并加以适当引导和点化,会使学生有一个积极的思维过程,而不只是被动地接受。学生带着问题会有自己的想法或意见,在教师的引导下,有时会自然而然地引出所要介绍的概念或方法;即使学生想得不对或有异议,对照着正确的说法,剖析问题之所在,会加深学生对所介绍内容的理解。比如在给学生讲解变异系数(CV)这个指标时,我们举例:有两名成年人,体重分别为70kg和71kg,二人的体重相差lkg,另有两名新生儿,体重分别为2kg和3kg,体重也相差lkg,都是相差lkg,那么两名成年
人体重之间的差别与两名新生儿体重之间的差别比较起来,差别一样大?还是两成年人体重之间的差别大?或是两新生儿体重之间的差别大?学生会说,两新生儿体重之间的差别大。若问学生为什么?学生会说,虽然都是相差1kg,但两成年人的体重可以说是非常接近,而两新生儿,一个是正常体重,一个则是低体重。这时可以适当对学生的意见进行总结:当两组数据均数相差悬殊时,直接比较两组差别大小,没有实际意义,通常还需要结合两组数据各自的大小来看。也就是说,这种情况下,要比较两组数据差别的大小,不仅要看两组数据本身相差的情况,还与两组数据各自的大小有关,这样就引入了变异系数的概念:CV=S/X×100% ,这也是变异系数所适用的两种情形之一。学生的这种积极思维过程,有助于培养学生分析问题、解决问题的能力,使学生学以致用。同时从实例人手,围绕某一问题思考解决方案,有助于集中学生的注意力,提高思维活动的效率,改善听课效果。
3 有助于提高学生综合运用知识的能力
从实例入手来复习回顾已学过内容,常可以把多个概念贯穿于一个实例中,有助于学生正确理解各个概念的内涵而不至于把概念混淆到一起;如果把不同章节的内容溶人到一个实例中,则可帮助学生理顺所学知识的脉络,增加对统计学内容连贯性的理解。比如在复习统计学的主要内容时,可以模拟一项调查研究:欲调查保山市农村地区成年未孕妇女的贫血患病情况。针对这项调查,我们可以解决一系列的问题:本研究选择的变量是什么?研究的总体是什么?如果实施过程中采用了抽样研究方法,则样本如何确定?如何获得样本数据?所得样本数据的类型?如何对样本数据进行整理?如何对样本数据进行描述?统计推断选用什么方法?如何选择统计检验方法等。通过这样的复习,会使学生对统计学的主要内容有一个系统的把握,有助于提高学生综合运用知识的能力。
从实例入手来介绍统计学的有关内容,需注意的一点是,在介绍新方法时,所选用的实例应尽可能简单、常见,最好是学生所熟悉的资料。因为有时学生难以理解和接受的不只是方法本身,还与介绍方法所用的资料对学生来讲非常陌生,非常不典型有关。这样无形中增加了学生理解和接受方法的难度。比如在给学生介绍直线回归的有关内容时,如果所举的实例是儿童年龄与身高,身高与体重,年龄与血压,大鼠进食量与体重增量等这样的一些较常见、典型的资料时,因为学生对资料非常熟悉,就会较多地把注意力集中到对方法的理解上,使方法得以很快被学生接受,等到把方法掌握熟练了以后,再用所学方法去处理那些不常见,不典型,甚至是复杂的资料,问题也就会变得容易解决。
参考文献
University, USA
William D. Johnson Louisiana State
University,USA
Basic Biostatistics for
Geneticists and
Epidemiologists
A Practical Approach
2009, 373pp.
Hardcover
ISBN 9780470024898
John Wiley
R.C.爱尔通等著
任何从事遗传学或流行病学研究的专业人员阅读专业文献时都不可避免地要面对许多统计数据和统计方法,这就要求他们对生物统计学的概念和基本方法能准确地理解。本书两位作者基于科研、教学的经验曾成功地撰写了专著Essentials of Biostatistics(《生物统计学精义》),本书是其新版本,作了增补和修订。本书以遗传学和流行病学方面的科研人员为基本对象,着重讲述专业所需要的统计方法,注意通过实例给出有关背景材料,阐述基本概念,包含必要的计算但不涉及较复杂的推演。是一本入门读物。
全书由13章组成。1.引论,强调统计方法对于专业研究的重要性和必要性;2-3.给出群体、样本等基本概念,阐述了描述性统计学的思想及作用;4-5.包含了稍难的一些材料,即概率、随机变量和分布的概念,其中涉及的计算以能保证应用为限;6-9.用简易的方式讲述极大似然估计、最小二乘法、假设检验、χ2检验等基本统计方法;10-11.讨论相关和回归、方差分析和线性模型;12.重点讲述目前广泛应用于专业研究中的一些统计技术,如转换检验、自助再抽样等;13.关于对专业报告进行评价的一些指导。
与其它同类统计学的入门书籍比较,本书更具有针对性、专业性和实用性,并且讲述浅显,通俗易懂。还包含大量选择题形式的习题(附答案),有利于读者加深对概念的理解和自学。本书可供有关专业大学生和科研人员阅读。
朱尧辰,研究员
(中国科学院应用数学研究所)
【论文摘要】所谓统计思想,就是在统计实际工作、统计学理论的应用研究中,必须遵循的基本理念和指导思想。统计思想主要包括均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想等思想。文章通过对统计思想的阐释,提出关于统计思想认识的三点思考。
【论文关键词】统计学;统计思想;认识
1关于统计学
统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。
2统计学中的几种统计思想
2.1统计思想的形成
统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。
2.2比较常用的几种统计思想
所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:
2.2.1均值思想
均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。
2.2.2变异思想
统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。
2.2.3估计思想
估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。
2.2.4相关思想
事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。
2.2.5拟合思想
拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。
2.2.6检验思想
统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。
2.3统计思想的特点
作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。
3对统计思想的一些思考
3.1要更正当前存在的一些不正确的思想认识
英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。
3.2要不断拓展统计思维方式
统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。
3.3深化对数据分析的认识
任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。
参考文献:
[1]陈福贵.统计思想雏议[J]北京统计,2004,(05).
[2]庞有贵.统计工作及统计思想[J]科技情报开发与经济,2004,(03).
【摘要】所谓统计思想,就是在统计实际工作、统计学理论的应用研究中,必须遵循的基本理念和指导思想。统计思想主要包括均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想等思想。文章通过对统计思想的阐释,提出关于统计思想认识的三点思考。
一、关于统计学
统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。
二、统计学中的几种统计思想
1统计思想的形成
统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。
2比较常用的几种统计思想
所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述
2.1均值思想
均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。
2.2变异思想
统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。
2.3估计思想
估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。
2.4相关思想
事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。
2.5拟合思想
拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。
2.6检验思想
统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。
3统计思想的特点
作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。
三、对统计思想的一些思考
1要更正当前存在的一些不正确的思想认识
英国着名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。
2要不断拓展统计思维方式
统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。
3深化对数据分析的认识
任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。
参考文献:
陈福贵.统计思想雏议[J]北京统计,2004,(05).
庞有贵.统计工作及统计思想[J]科技情报开发与经济,2004,(03).
【论文摘要】所谓统计思想,就是在统计实际工作、统计学理论的应用研究中,必须遵循的基本理念和指导思想。统计思想主要包括均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想等思想。文章通过对统计思想的阐释,提出关于统计思想认识的三点思考。
1关于统计学
统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。
2 统计学中的几种统计思想
2.1 统计思想的形成
统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。
2.2 比较常用的几种统计思想
所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:
2.2.1 均值思想
均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。
2.2.2 变异思想
统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。
2.2.3 估计思想
估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。
2.2.4 相关思想
事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。
2.2.5 拟合思想
拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。
2.2.6 检验思想
统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。
2.3 统计思想的特点
作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。
3 对统计思想的一些思考
3.1 要更正当前存在的一些不正确的思想认识
英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如gnp、人口增长率等等,均是凯特勒及其弟子们的遗产。
3.2要不断拓展统计思维方式
统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。
3.3深化对数据分析的认识
任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(dda)、推断性数据分析(ida)和探索性数据分析(eda)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。
参考文献:
[1] 陈福贵.统计思想雏议[j]北京统计, 2004,(05) .
[2] 庞有贵.统计工作及统计思想[j]科技情报开发与经济, 2004,(03) .