期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 化学研究的范畴

化学研究的范畴精品(七篇)

时间:2023-07-30 10:09:09

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇化学研究的范畴范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

化学研究的范畴

篇(1)

关键词:认知模型;构建;化学问题解决

文章编号:1008-0546(2014)01-0055-02 中图分类号:G632.41 文献标识码:B

doi:10.3969/j.issn.1008-0546.2014.01.021

一、认知模型构建的理论依据

1. 原型范畴理论[1]

原型范畴理论(prototype theory,亦称类典型理论)是认知语言学中的重要观点,是认知语言学的理论基础和核心。20世纪50年代,维特根斯坦在哲学研究中通过“语言游戏”说论证了范畴边界的模糊性,提出了著名的“家族相似性”(Family Resemblances)理论,此后逐渐发展成原型范畴理论。对于原型范畴理论贡献很大的是心理学家罗施(Rosch, 1975)。罗施认为,概念主要是以原型(proptotype)—即它的最佳实例表征出来的,我们主要是从能最好地说明一个概念的实例来理解概念的。因此,她认为一个概念总会有它的原型,原型就是在一个范畴中最好的、最典型的、最能用来代表这一范畴的最称职的个体。同时她还指出,人们不是通过正式的一组标准特征来指派一个客体给一个范畴,而是把那个客体与范畴的原型相比较,原型是最好的标本,是一把尺度,人们一般把原型和有关的范畴联系起来。而安德森(J.R.Anderson)则定义为“原型是关于范畴的最典型的样例的设想”。

原型范畴理论在解释认知心理时,认为人们首先是通过原型认识事物,然后将一些与原型具有差异的事物归类认识,这就是所谓的“家族相似性”,在一个家族中的成员不一定完全相似,但在一些本质上是相似的。原型范畴理论的实质就是人们在解释某种现象时,将属于这类现象的某个个体视为原型,并在对这个原型总体特征认识不变的情况下,把握这类现象的其他个体。

认知心理学中使用的“原型”概念,一般具有两个方面的含义:其一是侧重于文化心理和集体无意识范畴的“原型”(Prototype),其二是侧重于认知过程和创造心理方面的“原型”(Prototype)。学习是认知过程,因此prororype才是教学中最重要的,也是最有意义的。

化学科学教育的最基本模式与原型范畴理论十分吻合,利用原型范畴理论能揭示化学教学原理,是建立化学认知模型的前提。

2. 模型理论[2]

模型一词起源于拉丁文的“modulus”,其初始含义是样本、标准和尺度,中文原意即规范。模型是科学认识的一种独特形式,也可以把它看做一种重要的科学操作与科学思维方法。

认知科学实验证明,结构化的知识便于学生记忆、概括和理解,有助于解决问题。化学模型这一认知工具恰好把化学问题或知识高度浓缩,使知识或问题以结构或形象表达的形式存在于人脑中。奥苏贝尔的学习理论认为,采用建模思想,将化学问题中次要的、非本质的信息舍去,可使本质的知识变得清晰,更容易纳入学习者已有的知识框架中,使学生在解决化学问题时,迁移更容易。

3. 化学问题解决理论[3]

化学问题解决是从已有的条件出发,达成目标任务的高级智力活动。问题解决一般由四个环节组成:认知问题、问题表征、联想与匹配、反思与评价。影响问题解决的因素主要有:知识总量、知识的储存方式、认知策略、动机、情绪等一系列非智力因素、问题情境。

研究表明,专家之所以能够快速地解决一些常见的问题,主要是因为他们原型丰富,匹配迅速,已达到自动化的程度,而新手则相反。

教学实践表明,高中生在解决化学问题时,使用频率最高的解决策略是模型匹配策略。利用这种策略解决化学问题时,其过程大致经历以下几个阶段:问题表征、模型构建、模型检验、模型应用。解决问题过程可用图1表示。

分析问题是化学问题解决活动中至关重要的环节,是根据问题的特点和要求把发现的问题明确化,这是解决问题的前提。在这个前提下,运用科学的方法并结合所学的知识进行模型搜索。如果学生有这样的模型,接着就会进行模型匹配,从而解决问题;但如果学生自身没有已知的模型适合此题,那就要进入模型构建环节,并在进一步检验之后解决问题。[2]

二、认知模型的构建过程

1. 构建原型

根据原型范畴理论,原型的选择应遵循以下一些原则:①要选择最能体现概念、原理内涵的“原型”。认知心理学中“原型理论”认为在范畴的图式结构中,原型成员和非原型成员的地位并不相等。就某一个具体的范畴而言,其原型成员具备范畴的理想值,处于范畴中心,有明显的类属特征和较高的清晰度。因此,范畴内的其他成员是不宜用于构建概念、原理的。②“原型”应该是学生所熟悉的。学生不熟悉的原型很难让学生从某一教学需要的认知角度去认识。

根据这样的原则,在教《原电池》一节时,我们可选择Zn∣H2SO4(稀)∣Cu为原型,学生几乎都非常熟悉这个反应原理而且基本上具备了原电池的所有特征。①正、负极的判断:负极 Zn(0价)Zn2+(+2价);正极2H+(+1价)H2(0价)。②电极反应的书写:负极 Zn-2e-=Zn2+;正极 2H++2e-=H2。③电子流向:负极正极;离子流向:H+正极,SO42-负极。

2. 构建模型

以某种程度的类似再现另一个系统(原型)的系统,并且在认识过程中以它代替原物,以至对模型的研究能够得到关于原物的信息,依据其表现出来的某些本质特征,进行归纳,抽取其实质特征,建立相应该原理的模型,并在认知系统中进行归类,其抽象程度越高,该模型的适应性就越广。例如我们在上述原型的基础上,原电池的原理模型可以归纳为以下三点:①找出发生的氧化还原反应,不管这个反应是否熟悉,只要学生能标出化合价的变化,找出氧化反应和还原反应就行。负极一定发生氧化反应,正极一定发生还原反应,只要将自发进行的氧化还原反应一分为二,对号入座即可。不管装置如何,只要能找出两极,有电解质溶液、能形成闭合回路的,都可以恢复成如图2所示这种经典原电池模型。

②书写电解反应时,不但要知道两极发生氧化还原反应后生成了什么粒子,还要考虑到两极生成的粒子和电解质溶液有无后续反应,若有则要合并在一起书写。③原电池电解质溶液中离子的移动只有两种作用,一是为了反应,而是为了中和电性。学生根据两极的电极反应,自然会知道两溶液中离子的变化情况。

学生有了这样的模型,不管遇到怎样陌生的情景,只要将复杂的反应、陌生的装置与模型中的要素一一对应,就能很好的解决这类问题。

3. 解决化学问题的过程

化学问题的设计总是依托一定的化学原理,很多学生在解答化学问题时思路不清、无从下手,究其原因还是不懂化学本源知识,不理解化学原理所致。在教学中,教师可以有意引导学生,在认识原型知识的时候,分析涉及的核心知识,指导学生构建相应的原理模型,再应用到其他具体问题中。经过这样的反复训练,让学生体验到构建原理模型能达到举一反三、触类旁通的作用。例如我们在建立原电池原理模型基础上,以高铁电池为例,进行化学问题解决。[4]其总反应为:

3Zn+2K2FeO4+8H2O=3Zn(OH)2+3Fe(OH)3+4KOH

① 标注电极。按反应前后元素的化合价变化的趋势,标示在相应元素的上方,电子转移的方向即为外电路电子流向,流出电子的一极为负极,流入电子的一极为正极。②写出相关的电极方程式。依据上面的原电池模型,可逐渐完善电极方程式:负极的基本关系为3Zn—6e-3Zn(OH)2 ,反应中Zn失去电子以后的产物是Zn(OH)2,因而反应物需要补充OH-,3Zn+6OH-—6e-3Zn(OH)2 ;正极的基本关系为2FeO4+6e-2Fe(OH)3,因产物中多出H元素,反应物中需补充H2O(当然也可来源于O2-+H2O=2OH-反应的启示),这样完整的正极反应为2FeO4+8H2O +6e-2Fe(OH)3 +10OH-。③电解质溶液中的离子迁移。由电极反应方程式可知,正极持续产生2OH-,而负极则不停消耗2OH-,可以判断溶液中将因OH-的溶度梯度以及反应的需求,而导致OH-从正极向负极迁移。

这样,我们在解决高铁电池相关问题时,就可以原电池模型为样板,进行快速有效的匹配,顺利地进行问题解决。

总之,利用原型范畴理论指导学生进行认知模型的构建,在此基础上进行化学问题的快速有效地解决,对于化学教学是很有意义的。合理的化学建模能积极地启发学生的创造思维,开启学生的心智,提升学生的正迁移能力。

参考文献

[1] 谢祥林等. 原型范畴理论在化学教学中的应用 [J]. 中学化学教学参考, 2012,(12):3-4

[2] 陈群 董军. 高三化学复习中建模思想渗透的实践与研究[J]. 中学化学教学参考, 2013,(4):37-39

篇(2)

关键词:创新型;师生关系;知识范畴

初中化学作为初中教育教学的重要学科之一,其课堂教学应顺应新课改的发展趋势,全方位实施创新,即教师应以学生和社会发展实际为基准点,充分发挥化学学科优势,调动学生自主参与的积极性、强化学生创新意识的培养等等,提升初中化学课堂教学质量。在此,笔者结合自己多年的教学经验,粗略地谈一下创新型初中化学课堂教学的构建。

一、建立平等、和谐、民主的师生关系

在初中化学课堂教学过程中涉及两大人员因素,即教师和学生。新课改一直倡导课堂教学中学生与教师地位的平等性。我们知道,教师本身与学生之间的关系就是为了共同的目标而扮演的两种角色。心理学家研究表明:学生在自由、自主的空间中能够最大限度地发挥自我。而传统的课堂教学中大都是教师主宰一切,学生被动接受。因此,笔者认为,教师想要构建创新型的课堂教学,首先需要做的就是建立平等、和谐、民主的师生关系,以生为主,利用化学学科自身的优势来改善教师和学生之间的关系,给予学生自,让学生感受教师与自己之间的平等,真正地了解教师与学生的融合性。如:笔者在教学中,将验证性的化学实验教学都创新改编成为学生探究性的实验,进而为师生之间的交流提供平台和机会。

二、创造自由、开放的化学课堂教学

教学本身是动态的过程。新课程标准一直强调课堂教学要以学生为主,教师的作用即是引导和组织。从某些角度来说,这是对教师和学生两个人员因素范畴的创新和拓展,注重了对学生自主探究知识、学习方式的创新培养。因此,笔者认为教师应创造自由、开放的化学课堂教学,让学生有时间和空间来发散、创新自己的思维。笔者在教学中采取教学目标师生共同制定、化学活动师生共同设计等形式来让学生切身感受到责任感和教学中的自我的价值和存在的意义,从而促使创新型课堂教学的形成。如:在学习“质量守恒定律”的探究实验时,笔者倡导学生共同参与实验活动的假设、问题分析、实践探究等各个环节,强化化学课堂的创新。

三、拓宽化学知识范畴

新课改的纵深发展带动了教材的创新改编,新教材的实际相对来说较为注重学生自主探究。对此,笔者认为教师可以运用化学教材本身的特点来创新使用教材,以教材为基准点挖掘化学相关知识,打破书本的局限性,拓宽学生的视野,强化学生的独立思考意识,增强学生的创新精神和能力,深化创新型化学课堂教学的构建。如:在学习“对蜡烛及其燃烧的探究”实验时,笔者引导学生探究书本外的新问题,诸如:蜡烛灭后的那种白烟的成分是什么?蜡烛加上燃烧过程中对人身体有害的成分有哪些?等等,诱发学生创新思维,凸显化学创新教学。

总之,创新型课堂教学的构建是初中化学新课改的目标,作为教师应结合学生的实际情况以及化学学科特点实施创新教学,确保学生在创新道路上的可持续发展。

篇(3)

1.何为高分子化学

顾名思义,高分子就是相对分子质量很高的分子,它是高分子化合物的简称。高分子化合物,又称聚合物或高聚物,是结构上由重复单元(低分子化合物—单体)连接而成的高相对分子质量化合物。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干个原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。

2.高相对分子质量与高强度

相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。

3.高分子科学的主要内容

既然高分子化学是制造和研究大分子的科学,对大分子的反应和方法的研究,显然是高分子化学最基本的研究内容。高分子科学不仅是研究化学问题,也是一门系统的科学。高分子科学的主要内容有:如何将低分子化合物连

接成高分子化合物,即聚合反应的研究。高分子化合物的结构与性质关系。不同性质的高分子,其结构必然是不同的。为了得到不同性质的高分子,就要去合成具有特殊结构的高分子。

二、高分子材料化学的应用

材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。

第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。

第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。

第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。

第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。三、高分子化学与高科技的结合

当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。

随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。

第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹材料,如热塑性弹性体等。

第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。

第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。

可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。

四、高分子化学的可持续发展

研究高分子合成材料的环境同化,增加循环使用和再生使用,减少对环境的污染乃至用高分子合成材料治理环境污染,也是21世纪中高分子材料能否得到长足发展的关键问题之一。比如利用植物或微生物进行有实用价值的高分子的合成,在环境友好的水或二氧化碳等化学介质中进行化学合成,探索用前面提到的化学或物理合成的方法合成新概念上的可生物降解高分子,以及用合成高分子来处理污水和毒物,研究合成高分子与生态的相互作用,达到高分子材料与生态环境的和谐等。显然这些都是属于21世纪应当开展的绿色化学过程和材料的研究范畴。

参考文献:

[1]冯新德.展望21世纪的高分子化学与工业[J].科学中国人,1997,(11)

篇(4)

“计算”是一个无人不知无人不晓的数学概念。无论是人们的日常生活,还是平常的生产实践和科学研究,都离不开计算。同时,“计算”也是一个历史悠久的数学概念,它几乎是伴随着人类文明的起源和发展而起源和发展的。但是,真正能够回答计算的本质是什么的人恐怕不会太多。应该说,在20世纪30年代以前,还没有人能够说得清计算的本质是什么,以及什么是可计算、什么是不可计算的等问题。30年代中,由于哥德尔、丘奇、图灵等数学家的工作,人们终于弄清楚了计算的本质,以及什么是可计算的和什么是不可计算的等根本性问题。由此也就形成了一个专门的数学分支——递归论或可计算性理论。在此我们就是以这一理论为背景,概括出计算的本质,并阐明其他一些根本性问题。

计算首先指的就是数的加减乘除,其次则为函数的微分、积分、方程的求解等等;另外还包括定理的证明推导。抽象地说,所谓计算就是从一个符号串f变换成另一个符号串g。比如说从符号串12+3变换成15,这就是一个加法计算。如果符号串f是xx,而符号串g是2x,从f到g的计算就是微分。定理证明也如此,令f表示一组公理和推导规则,令g是一个定理,那么从f到g的一系列变换就是定理g的证明。从这个角度看,文字翻译也是计算,如f代表一个英文句子(由英文字母及标点符号组成的符号串),而g为含义相同的中文句子,那么从f到g就是把英文翻译成中文。这些变换间有什么共同点?为什么把它们都叫做计算?

为了回答究竟什么是计算、什么是可计算性等问题,人们采取的是建立计算模型的方法。从30年代到40年代,数理逻辑学家相继提出了四种模型,它们是递归函数、λ演算、图灵机和波斯特系统。这种种模型各不相同,表面上看区别很大,它们完全是从不同的角度探究计算过程或证明过程的。但事实上,这几种模型却是等价的,即它们完全具有一样的计算能力。在这一事实基础上,最终形成了如今著名的丘奇—图灵论点:凡是可计算的函数都是一般递归函数(或都是图灵机可计算的,或都是λ演算可计算的,或都是波斯特系统可计算的)。这就确立了计算与可计算性的数学含义。这一表述过于抽象,下面我们给出一个比较直观的说法:所谓计算,就是从已知符号串开始,一步一步地改变符号串,经过有限步骤,最后得到一个满足预先规定的符号串的变换过程。现已证明:凡是可以从某些初始符号串开始而在有限步骤内计算的函数与一般递归函数是等价的。这就是说,所有可计算的函数都是通过符号串的变换来实现其计算过程的,即计算就是符号(串)的变换。(1)

与计算具有同等地位和意义的基本概念是算法。从算法的角度讲,一个问题是不是可计算的,与该问题是不是具有一个相应的算法是完全一致的。一般而言,算法就是求解某类问题的通用法则或方法。也就是一系列计算规则或程序,即符号串变换的规则。

正是这样一个原本只是数学中的基本概念,如今却成为各门科学研究的一种基本视角、观念和方法,上升为一种具有世界观和方法论特征的哲学范畴。

我们认为,人类最早把计算作为一种哲学性观念和方法而不仅是一种数学观念和方法,并自觉运用到有关领域的研究中,是一些人工智能的专家们做出的,尤其是在后来的认知科学研究中很明显地表现出这一倾向。由于纽威尔、西蒙、福多、明斯基等一大批学者的努力,物理符号系统假说、心灵的表达计算理论,心脑层次假说等相继提出。这些理论的一个共同主题就是:思维就是计算(认知就是计算)。他们明确主张:思维是一种信息加工过程,亦即计算过程,这种计算就是指某种符号操作或加工,指在能对其提供语义解释的符号代码的形式表达式上所进行的受规则制约的变换,如问题求解这种思维活动就是通过一定的算法对初始态空间进行操作,直达到目标态空间。有人更进一步主张:心灵有一套程序或一组规则,类似于控制计算机的程序,思维是一种包括对单词在内的符号的操作。(2)

除了思维、认知可看作是一种计算,一些研究视觉认知理论的学者把视觉也看作是一种计算。这主要是来自马尔的《视觉计算理论》。这一理论认为,在计算理论层次上,视觉信息处理过程由三种内部表象表征:描述图像光强度与局部几何结构的要素图;描述以观察者为中心的物体可见表面的朝向、轮廓线、深度及其他性质的二维半图;识别和理解物体的三维表象。这个理论把视觉过程理解为功能模块(像元空间、图像空间、景物空间)的变换。这意味着视觉计算的基本单位是符号表象。3在此基础之上,后来人们又提出了视觉拓扑计算理论等各种视觉计算理论。其共同点是均认为视觉过程就是一种计算过程,但是对它是一种什么样的计算还存有较大分歧。

在对认识、思维、视觉等内容进行计算主义研究的同时,人们确立了大脑就是一台计算机的信念:大脑的生物结构是其硬件,大脑的运作规律是其软件,大脑的(广义)思维过程就是其计算过程。20多年前的“计算机能否思维”的问题已经演化为当今的“人脑是否计算”的问题。更重要的是,“思维就是计算”这已不仅仅是一个哲学性的命题,而且已成为科学方法论意义上的一个科学假设。人们早已从科学意义上探究思维的计算本质,计算已成为当前认知科学中占主导地位的一种基础观念和研究方法,人们试图从计算的角度揭示出思维、意识以及整个大脑的全部奥秘。

把计算作为哲学性观念和方法运用到具体学科研究中的另一个范例是与生命科学相关的一些研究。这主要体现在20世纪80年代以来,人工生命科学、遗传算法理论和DNA计算机等新型学科的相继涌现。这些学科或理论的共同之处就在于都是以计算作为自己研究的观念和方法,主张生命就是一种算法,一个程序,一个能够实现自我复制、自我构造和自我进化的算法。人工生命的基本信条是:生命的特征并不存在于单个物质之中,而存在于物质的组合之中。生命的规律是一种动力形式的规律,这种规律独立于45亿年前地球上形成的任何特定的碳化物细节之外。即生物体的“生命力”存在于分子的组织(软件)之中,而不是存在于分子本身。人工生命就在于用计算或算法的观念与方法探索生物学领域中的奥秘。把生命与计算机类比,似乎是19世纪机械论在当今的延续,看起来有背于时展的潮流。但人工生命的奠基者朗顿认为,答案就在于进一步的伟大洞见之中:生命系统这台计算机具有与通常意义上的机器全然不同的组织形式,有生命的系统几乎总是自下而上的,从大量及其简单的系统群中突现出来,而不是工程师自上而下设计的那种机器。朗顿强调说:“最为惊人的认识是:复杂的行为并非出自复杂的基本结构。确实,极为有趣的复杂行为是从极为简单的元素中突现出来的”。4这就是说,生命包含着某种能够超越纯物质的能力,不是因为有生命的系统里被某种物理和化学之外的一种生命本质所驱动,而是因为一群遵循简单的互动规则的简单物体能够产生永远令人吃惊的行为效果。生命就是这样一种生化机器,只要启动这台机器,而不是把生命注入这台机器,即将这台机器的各个部分组织起来,让它们产生互动,从而便具有了“生命”。生命就是这样一种算法。算法对于生命的意义,就在于以过程或程序描述代替对生物的状态或结构描述,将生命表达为一种算法的逻辑,把对生命的研究转换成对算法的研究,特别是把对真实生命的研究转换成对人工生命的研究。 1994年11月美国科学家阿德勒曼在《科学》上公布的DNA计算机理论,更是从另一个角度揭示了生命就是算法,进化就是计算的观念。5DNA是生命的基石,任何生命类型的所有特征都以严格的规则编码在其DNA序列上,不管是生命的结构,还是生命的过程,在这个意义上它是一个信息库或数据库。另外,DNA所有的行为都是以程序化、模块化的形式表现,在这个意义上它又是一个程序库。无论它是作为信息库还是程序库,DNA都具有基本的计算特征。而生物体中所有现象的基本形式都是DNA的复制、切割、粘贴,这一事实深刻表明,生命本身就是由一系列复杂的计算或算法组成的。生命系统就是一台以分子算法为组织法则的多层次生物计算机,DNA计算机就是对生命这种自然计算机的一种表征。从前,分子算法,如自复制自动机、胞格自动机、遗传算法、人工生命等全都是在电子计算机上实现的,DNA计算机概念的出现是分子算法的化学实现的开端。这种立足于可控的生物化学反应或反应系统,无疑更加有力地直接地表明了生物现象与过程的计算特征。正如有人所言:DNA计算宣称数学处于生命的核心。

运用计算、算法观念和方法研究认知问题和生命系统,有着深刻而普适的科学方法论意义,它们是人们运用算法观念和方法研究其他自然现象或自然系统的两个有益的重要范例。如今,计算或算法的观念与方法已经深入到宇宙学、物理学、化学乃至经济学、社会学等诸多领域。计算、算法已经成为人们认识事物、研究问题的一种基本的普适的观念和方法,人们的科学实践,已经使计算、算法上升到哲学性的观念和方法。在这一现实背景之下,我们以为,把计算、算法作为一种哲学范畴正式提出并引入哲学已是十分必要的。这不仅是因为已经有了一些成功的范例,而且还有着更深层的学理:生命、大脑是最复杂的自然现象之一,是自然界进化的最高代表。因此,我们完全有理由猜测:整个自然界也是按算法构成的,是按算法演化的。现实世界之万事万物只不过是算法的复杂程度的多样性。从虚无到存在、从非生命到生命、从感觉到意识、思维,或许整个世界的进化过程就是一个计算复杂性不断增长的过程。这就是说,自然界就是一台巨型计算机(硬件),任何一种自然过程都是自然规律(软件)作用于一定条件下的物理或信息过程(计算过程),其本质上都体现了一种严格的计算和算法特征。生命系统作为自然界中最复杂最有特色的系统,它也就是形形的自然计算机中的一种。这或许就是人工生命与DNA计算理论所蕴含的最重要的哲学道理。

把计算、算法作为一个哲学范畴,还有着哲学史上的渊源关系。也许人们还没有忘记,在2500多年前,一位名叫毕达哥拉斯的古希腊人曾向世人宣称:万物皆数。今天,我们何以不能说:万物皆算法。严格地说,当年毕达哥拉斯率先提出的“数”这个重要范畴,并不是一个纯粹哲学性范畴,而是一个从数的角度寻求世界万物之本原,考察事物生成演化过程,由自然科学思维方式与哲学思维方式相互融合的过渡性范畴。这种观念在近代和现代科学与哲学中得到了充分的继承和发扬。这说明,哲学范畴在其生成、演化和发展的过程之中,总要受到各个历史时期数学发展程度、数学思维方式的影响和规定。这或许可以称为哲学范畴的数学规定,正因为如此,当今计算机科学的发展,使得我们完全可以把毕达哥拉斯的“数”向前推一大步。毕达哥拉斯哲学在当代有了更深刻更丰富的内含。

最后我们要指出的是,已经泛化到整个科学领域中的计算、算法这个概念,完全具有哲学范畴的基本特征。众所周知,哲学范畴是反映事物本质属性和普遍联系的基本概念,人类理性思维的逻辑形式。它是人类在一定历史时论思维发展水平的标示器,是帮助人们认识和把握自然现象和社会现象之网的网上扭结;是对自然、社会和思维发展过程最本质、最普遍的联系的表征。哲学范畴对各门具体科学都具有普适的哲学方法论意义。如今,人们在各方面都开始用算法的观念来看待问题、用计算的方法来解决问题,不正表明计算与算法的一种范畴性吗?历史上每次重大的科技进步,都要改变当时的哲学范畴,有时甚至是直接把科学中的基本概念移植到哲学中。当今计算机科技对哲学的影响也不例外。这正是有人所说的哲学范畴的科技命运。因此,及时总结和概括当代科技成果,把最为精华的人类理念上升为一种哲学范畴,不仅是哲学范畴自身发展之所需,更是各门科学文化进一步发展所必须。只有渗透着时代最主要、最有效的观念和方法的科学与文化,才能真正体现时代之精神,成为时代之主流。

参考文献

(1) 莫绍揆.递归论.科学出版社,1987年。

(2) 邱仁宗.当代思维研究新论.中国社会科学出版社,1993年。

(3) (美)D.马尔.视觉计算理论.科学出版社,1988年。

篇(5)

两者各有所长。

环境工程:环境科学的一个分支,主要研究如何保护和合理利用自然资源,利用科学的手段解决日益严重的环境问题、改善环境质量、促进环境保护与社会发展。是研究和从事防治环境污染和提高环境质量的科学技术。环境工程同生物学中的生态学、医学中的环境卫生学和环境医学,以及环境物理学和环境化学有关。由于环境工程处在初创阶段,学科的领域还在发展,但其核心是环境污染源的治理。

市政工程:指市政设施建设工程。在我国,市政设施是指在城市区、镇乡规划建设范围内设置、基于政府责任和义务为居民提供有偿或无偿公共产品和服务的各种建筑物、构筑物、设备等。城市生活配套的各种公共基础设施建设都属于市政工程范畴,比如常见的城市道路,桥梁,地铁,比如与生活紧密相关的各种管线:雨水,污水,上水,中水,电力,电信,热力,燃气等,还有广场,城市绿化等的建设,都属于市政工程范畴。

(来源:文章屋网 )

篇(6)

英文名称:Occupation and Health

主管单位:天津市卫生局

主办单位:天津市卫生防病中心;中华预防医学会

出版周期:半月

出版地址:天津市

种:中文

本:大16开

国际刊号:1004-1257

国内刊号:12-1133/R

邮发代号:6-124

发行范围:国内外统一发行

创刊时间:1985

期刊收录:

CA 化学文摘(美)(2009)

核心期刊:

期刊荣誉:

联系方式

期刊简介

篇(7)

[关键词]化学分析检验;质量控制;有效性;可靠性

中图分类号:O657 文献标识码:A 文章编号:1009-914X(2015)20-0361-01

现代社会中化学分析检验,对材料的使用与研究,有着极为重要的作用。为此必须保证化学分析检验的内在质量。本文尝试从分析检验的整个流程切入,作出如下阐述:

一、用好三个标准,保证检测数据质量

对于化学分析检测数据的质量,要求符全以下三方面的评估标准。

其一、是否具有代表性。这一点取决于参与分析检验的工作人员的技术能力、职业责任以及样品的采收、归类、保存和运输中的技术手段。如果采集的样品,缺乏代表性,不具有真实性或者采集样品不能够保证样品的质量,则无法通过第一评估标准。

其二、必须符合可靠性。所谓可靠性是指检验人员必须具有专业的分析处理业务水平,实验室的仪器等须具备高度的精确度和灵敏性。这几方面必须提供,才能保证通过可靠准确的试验方法,得出正确的数据。

其三、必须约定可比较性的范畴。可比较性,是指因为时间和事件的不同,检验结果所呈现的符合程度有一定的差。可比性要求其数据的差别应该在国家和国际关于化学分析检测的质量水平标准之内。

这样,可以建立、健全化学分析检验研究工作当中对于质量的体制,从双确保检验结果达到公正性、完整性、及可比性等高水平质量标准。

二、精心准备,确保质量

检验前要认真筹备各项目标条件,以使得质量得以保证。

1、预案科学,参数准确。必须制定合理的预案,来保证试验条件、检测项目和指标参数都已经进行了充分地准备和核对。

2、查阅资料,编制细则。相关的查阅工作和相关的系列资料都要有详尽的准备和注解,并且编制具体的细则办法。

3、制定标准,避免误差。准备工作均须按照国家和国际的标准来进行。如果的确无相应标准的必须知道其验证鉴定指标和审批要求,以免在工作当中出现误差。同时,对于标准设计也要提前配置好,按照相关的技术标准,绘制相应的标准曲线和设计的标定工作。

4、检验未动,设备先行。对仪器设备也要先检查好,确保正常运行,其说明书必须一一对照检查。

可见,要确保有充分的操作条件、最好的技术水平、过硬的仪器设备,充分做好检验前的筹备工作。

三、细化管理检验过程,做实检测中的质量控制工作

1、复查样品,妥善登记,专人管理。

化学分析检验的工作进行过程中,需要采集的各种样品至关重要,为了确保其具有公正性、真实性、代表性等特点,必须对采集的数量、种类均进行复查,以求符合检验标准。

送件过程中必须做好妥善的登记,而且样品必须专人保管,分类标注,放在特定的环境当中,进行科学化保存,再由专门人员进行运输、管理和配送。

2、确保实验配备,提高技术水平。

主要包括试验环境、人员技术能力、仪器设备容量、器皿选择、标的物质的使用方法、测试质量的监控和相关技术培训之类。

必须强调以下几点:其一,必须定期对实验仪器设备进行相关检查,以使基础条件符合要求。其二,检验用水、器皿、溶液的配置和标注、相关化学试剂的使用都必须在试验过程中妥善管理。其三,对于实验需用的技术性材料,应合理运用,以保证将分析化验的误差控制在允许的范畴之内,使结果能够达到高度的准确性,提供有效的质量保证。

3、严格遵循标准操作规范。

在检验的过程中,还必须严格遵循标准的试验操作规范,按程序小心地运行,不得随意更改预案中的内容。具体如下:其一,对回收的样品和加标的样品必须认真做好登记和分类,要求其浓度误差参数符合操作标准。其二,标准性溶液必须按“取接近”的原则,对样品的浓度,从上限和下限两个方面进行检测。建议采用容量法、重量法结合的方式,以保证在滴定管和分析天平时,达到最小误差。

其三,在标准试剂和空白溶液需要用到纯水时,应该以稀释或溶解的方法,进行配置以保证纯水指数与样品高度一致。

4、及时记录,方便质量追踪。

检验过程中,还应当重视原始记录登记的时效性。因为如果有不完整或者错误的记录出现,不及时纠正的话就没有办法使检验报告准确可信。

5、签名要做细,责任要落实。

分析检测及出报告过程中,必须要求相关的人员认真签名,署上日期,以保证过程的有效性。

具体来说就是要求签发人员、查人员、检测人员、记录人员均能按照标准要求签名和填写,以保证工作的准确性和复查的方便性。

特别在标注中,必须标明相应的湿度、日期、温度、样品的号码、项目进行的过程及相关人员的完整信息。

四、善始善终,做好后续工作的质量控制。

还必须重视化学分析检验工作在后续阶段的有效质量控制工作。也就是在将各项工作基本完成之后,还必须严格要求,综合性的对检验的结果做反复地检查核对,以便及时的发现在检测报告之中出现的一些问题,并予以纠正。

严禁在没有正式形成报告书之前,将检测结果随意外传的行为出现。

要不断提升专业人员的技术水平及高度的责任意识,对化学分析检验后期的质量控制工作,进行评估和考核,落实奖惩工作并进行书面总结。

对于后续性问题,要立即组织人员进行分析,以便在下一次检验时合理地调整和改进,达到优化化学分析检验技术的目的,提高质量标准。

五、未雨绸缪,强化对突发事件的处理能力。

必须要强调的是,化学分析检验工作也会因为各种因素的干扰,而产生一些事故。此时工作人员要在培训中学会采用合理的应急办法,有效应对,避免事态恶化。重大事件应如实向上级机关汇报,要求在三天之内,写出事故问题分析报告书。对此类资料,必须移交质量监测部门,进行分类存档,以提高应对能力和进一步优化化学分析检验工作,力求避免安全问题再次发生。

六、结束语

伴随时代的进步,先进技术愈来愈多地使用在化学分析当中,为卫生评估工作、监督工作以及相关研究提供了许多可靠的试验数据。

希望本课题的探讨能够促使的更多高水平人才、技术和设备更好地运用到化学分析检测工作当中,实现检测水平和质量的有效提升,以保证现代化社会的进展,为时代进步尽到自己的一份绵薄之力。

参考文献

[1] 王菊芳.程剑,化学分析检验工作的质量控制[J]医学信息,2009,(12):33一35.