期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 干细胞培养技术

干细胞培养技术精品(七篇)

时间:2023-06-30 15:46:05

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇干细胞培养技术范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

干细胞培养技术

篇(1)

达情况,着重观察单个细胞培养形成细胞克隆的形态与时间。结果 以有限稀释法获取192个Tca8113M1舌癌单个细胞,在96孔板中进行体外培养,获取12个细胞亚系(获取比例为6.25%),均有高成瘤性。癌干细胞相关标志CD44

与ESA均为高水平表达,而CD184表达则在12个细胞系之间有差异。在单个细胞培养中,形成完全克隆、部分克隆与旁克隆3种形态,12个细胞亚系均源于单个细胞形成的完全克隆,均可进行连续传代与扩增,而部分克隆与旁克隆则在后续培养中逐渐衰老与消亡。结论 Tca8113M1细胞系中可能存在癌干细胞,而单细胞培养可形成完全克隆并建立细胞亚系,是进行舌癌干细胞后续研究重要的细胞培养模式。

[关键词] 单细胞; 有限稀释法; 舌癌干细胞; 完全克隆

[中图分类号] Q 21 [文献标志码] A [doi] 10.7518/hxkq.2013.01.021 癌干细胞是癌组织中一小群具有干细胞特性的细胞,具有自我复制与更新的能力,而且增殖与分裂能力极强,少量细胞即可形成体外移植瘤[1]。近年

有关肿瘤发生、转移、耐药与复发等诸多难题均从癌干细胞的角度进行研究。这种研究的基础和前提是明确癌干细胞的标志或分离出癌干细胞,以提供研究的靶细胞。目前已发现多种永生性癌细胞系中存在有癌干细胞,Tca8113M1舌癌细胞系同样可能存在有癌干细胞,可以作为舌癌干细胞的研究对象。鉴于癌干细胞独特的自我复制与更新能力,本研究以Tca8113M1舌癌细胞系为研究对象,采用有限稀释法分离出单个舌癌细胞进行体外培养,利用癌干细胞的自我复制能力进行分裂增殖,形成预期的单细胞克隆,进一步形成细胞亚系,以此证明Tca8113M1

舌癌细胞系中存在癌干细胞的可能性,同时检测细胞亚系癌干细胞标志的表达情况,观察不同细胞亚系的生物学特性,并且动态观察单细胞培养中细胞克隆形成的规律,为从Tca8113M1细胞系中分离舌癌干细胞提供前期实验依据。

1 材料和方法

1.1 舌癌细胞系来源

人舌癌细胞系Tca8113由上海交通大学医学院附属第九人民医院口腔颌面外科肿瘤生物实验室建系,四川大学华西口腔医院赠送。右江民族医学院肿瘤分子生物学实验室在此基础上建立了转移人舌癌细胞系Tca8113M1[2]。

1.2 主要试剂和仪器

胎牛血清(Hyclone公司,美国),RPMI1640培

养基(Gibco公司,美国);PE标记抗人CD44抗体,异硫氰酸荧光素(fluorescein isothiocyanate,FITC)标记的抗人细胞外可溶性抗原(extracellular soluble anti-

gen,ESA)抗体,PE/cy5标记抗人CD184抗体,同

型对照抗体分别为大鼠IgG2bκ2、小鼠IgG1与小鼠IgG2aκ4。CO2培养箱(日本三洋公司),流式细胞仪(BD公司,美国),倒置显微镜(Olympus公司,日

本)。

1.3 体外单细胞培养、建系及细胞克隆生长的动态

观察

采用有限稀释法进行体外单细胞培养与建系。Tca8113M1细胞经复苏后,使用含10%胎牛血清的RPMI1640培养基在37 ℃、5%CO2培养箱中培养。用0.25%胰蛋白酶消化细胞制备细胞悬液,转移至96孔板,采用有限稀释法保证每个孔有1个细胞,在倒置显微镜下观察其生长和增殖情况,待其生长成多个细胞克隆后,用0.25%胰蛋白酶消化转移至6孔板扩增培养后,在培养瓶中反复传代建立细胞亚系。此外,在此培养过程中动态观察单个细胞形成细胞克隆的形态与生长情况,观察时点分别为3 d和1、2、3周。

1.4 舌癌细胞亚系成瘤性检测

建立裸鼠皮下移植瘤模型。体外培养Tca8113、Tca8113M1、Tca8113M1舌癌细胞亚系细胞,选取形态良好的生长期细胞,在生长旺盛时接种。具体步骤如下:消化收集舌癌细胞,800 r・min-1离心3~

5 min,弃上清液,计数细胞总量,以含10%胎牛血清的DMEM培养液按每毫升1×107个细胞的密度稀释细胞;消毒裸鼠右腋窝的皮肤,将细胞接种于皮下,以皮下结节直径超过1.0 cm为成瘤标准。共接种裸鼠45只,具体分组如下:1)Tca8113M1舌癌细胞亚系组,共12个亚系,每组3只,共36只;2)Tca8113M1舌癌细胞组,6只,为母系细胞系对照组;3)Tca8113舌癌细胞组,3只,为来源细胞系对照组。

1.5 流式细胞术检测舌癌细胞亚系癌干细胞相关标

志CD44、CD184、ESA的表达情况

将舌癌细胞(密度为每毫升1×106个)消化以后,800 r・min-1离心5 min,弃上清液,加入D-hanks液重悬,尽量将细胞吹散,将细胞悬液分别移入试管中(每管体积为500 μL),设置对照管和样本管。在对照管中加入同型对照抗体(分别是大鼠IgG2bκ2、小鼠

IgG1与小鼠IgG2aκ4)各5 μL,在样本管中加入荧光抗体(PE标记抗人CD44、FITC标记抗人ESA、PE/cy5

标记抗人CD184)各5 μL,置于避光环境下室温孵育30 min,然后于流式细胞仪上检测CD44、CD184、ESA的表达情况。

2 结果

2.1 Tca8113M1细胞体外单细胞建系培养

Tca8113M1单细胞培养12 h后,细胞贴壁;24 h后部分细胞出现变大变薄、空泡样变等老化现象;3 d后,有7个孔的细胞出现增殖分裂现象;7~10 d后有12个孔的细胞开始增殖为单个或数个完全细胞克隆(克隆形成过程见图l)。

培养4~6周后,细胞基本达到稳定生长并增殖的状态,以癌细胞的克隆样生长为主,细胞呈铺路石状,可见巨核、多核细胞,核分裂象多见。待培养孔接近80%铺满时,将细胞转移至6孔板上扩增培养,1~2周后转移至培养瓶中继续传代培养,稳定传代30代后冻存。本研究以有限稀释法获取192个Tca8113M1舌癌单细胞,并在96孔板中进行体外传代建系培养,获取12个细胞亚系,比例为6.25%,分别命名为Tca8113-S1~Tca8113-S12。

2.2 Tca8113M1细胞体外单细胞培养形成细胞克隆

的动态观察

以3 d和1、2、3周为观察时点,发现单个细胞形成细胞克隆的形态主要有3种:完全克隆、部分克隆、旁克隆。Tca8113-S1~Tca8113-S12细胞亚系的细胞均源于单个细胞形成的完全克隆,均可以进行连续传代与细胞培养扩增,而其他单个细胞培养形成的部分克隆与旁克隆则在后续培养中逐渐衰老与消亡,未能连续传代进行细胞扩增。3种克隆在培养过程中的变化情况如下。1)完全克隆:细胞之间紧凑密集成型,增殖速度快,其中1~2周为典型的完全克隆状,3周时在细胞克隆中央出现细胞重叠生长现象(图2中A1~A4);2)部分克隆:克隆形态界于旁克隆与完全克隆之间,细胞间较疏松,其中1~2周为典型的部分克隆状,但第3周细胞克隆疏松,形状消散,

有转变为旁克隆的趋势(图2中B1~B4);3)旁克隆:

细胞间疏松不成型,第1周较典型,第2、3周后细胞老化(图2中C1~C4)。

2.3 Tca8113M1舌癌细胞亚系成瘤情况

将舌癌细胞亚系Tca8113-S1~Tca8113-S12接种于裸鼠皮下后,1周后可触及皮下结节,表面光滑、质硬、可活动;2周后可见皮下结节生长迅速;3~4周后皮下结节最大直径达1.0 cm以上。含对照组在内的45只裸鼠均接种成瘤,成瘤率为100%。

2.4 流式细胞术检测细胞亚系癌干细胞相关标志

CD44、CD184、ESA表达情况

流式细胞术检测结果见表1:除了Tca8113-S1、Tca8113-S6与Tca8113-S10的ESA阳性表达率分别为60.7%±3.6%、74.1%±1.5%与65.3%±2.8%外,其余细胞亚系ESA的阳性表达率均在80%以上;各亚系CD44阳性表达率均很高,除了Tca8113-S7为68.9%±2.4%外,其余亚系的阳性率均在90%以上;12个亚系的CD184表达存在差异,阳性率在14.8%±3.5%至74.4%±1.5%之间波动。

3 讨论

本研究利用有限稀释法等经典的细胞培养技术,以舌癌Tca8113M1细胞系为研究对象,随机选取192个舌癌细胞,在96孔板中进行单细胞培养,经过长期传代培养,共建立12个舌癌Tca8113细胞亚系,比例为6.25%,而且都具备很强的成瘤性。进一步检测12个Tca8113细胞亚系的癌干细胞相关标志,结果发现:CD44与ESA均为高水平表达,阳性表达率多在90%左右,而CD184的阳性表达率则各有不同。据此结果可以结合癌干细胞的生物学特性对本实验获得的细胞系进行分析。

本研究发现:舌癌Tca8113M1细胞系中有6.25%的单个细胞可以进行自我分裂、增殖,形成细胞亚系。还有研究[3]发现:Tca8113细胞连续经过两次单细胞培养实验,其中具备分裂增殖活性的细胞比例为5.09%~10.85%。这提示即使在永生化细胞系中,具备持续增殖能力的细胞占整个群体的比例都较少。根据目前的文献[4]报道,在癌细胞群或组织中,癌干

细胞比例为0.01%~5%;体外培养的永生化癌干细胞系中,癌干细胞的比例可能偏高一些。本研究采用经典的有限稀释法获取单个细胞,这种细胞表现出强大的增殖与分裂活力,而且还形成了成瘤性很强的细胞亚系。这些单个培养的细胞是否就是癌干细胞尚需进行单细胞水平的鉴定,但可以大胆推测的是,其中应该包含有癌干细胞。肿瘤干细胞的概念于20世纪60年代提出,并据此建立了肿瘤细胞克隆实验。本研究在单个细胞培养中也发现,单细胞的增殖方式是克隆样增殖,即形成一个细胞克隆后扩大生长,并且在周围形成小的细胞克隆,最后融合成片,但究其细胞来源就是一个癌细胞而已,所有后续的细胞克隆与癌细胞就是源于它,所以可以认为该细胞具有癌干细胞的潜质,可以考虑从癌细胞系中筛选癌干细胞。

在12个Tca8113细胞亚系中,为明确其癌干细胞相关标志的表达情况,为后续舌癌干细胞的筛选提供前期实验数据,本研究综合文献报道,选取了CD44、ESA与CD184等癌干细胞相关标志进行检测。CD44是乳腺癌、头颈部肿瘤、结肠癌等上皮组织的癌干细胞的相关标志,CD184是胰腺癌干细胞的相关标志;ESA则是上皮来源的癌干细胞标志,而且属于细胞黏附分子[5-6]。在本研究建立的12个细胞亚系中,

CD44与ESA均处于高水平表达,而CD184的表达则高低不一,其中亚系间均数差值最大者接近60%。从这3个指标的表达情况来分析,可以进行如下推测:1)CD44与ESA是不同细胞亚系共有的标志,提示这些细胞亚系可能具有共同的组织起源;2)CD184的差异性表达提示Tca8113细胞系中存在细胞异质性,但从其比例来看,大致有3个等级,即15%、30%、50%以上,提示其生物学特性可能有明显的差别,但可作为舌癌干细胞研究的候选细胞群体进行研究。

此外,在单个细胞培养基础上建立细胞亚系的过程中,笔者发现单个细胞形成细胞克隆的形态与细胞最后成系关系密切。在单个细胞形成完全克隆、部分克隆以及旁克隆等3种克隆形式中,只有完全克隆能够形成细胞亚系,而且这些细胞亚系表现出肿瘤的异质性与成瘤性,而部分克隆以及旁克隆则在传代与扩增培养过程中逐渐老化或消亡。这一结果可进行逆向推理:将最初形成完全克隆的12个细胞确定为舌癌干细胞,而其形成的完全克隆则是癌干细胞自我更新与增殖的结果,其中可能富含癌干细胞。这一观点也为前列腺癌、小鼠肉瘤、胰腺癌以及神经胶质瘤等相关研究[7-12]所证实。这些研究发现完全克隆细胞可以高表达癌干细胞标志;接种1 000个完全克隆前列腺癌细胞就可形成移植瘤;通过悬浮球培养的癌细胞球在消化后进行单细胞培养,可以形成高比例的完全克隆。有学者[13]进一步在头颈肿瘤细胞系中发现,CD133与CD44阳性表达的癌细胞多形成完全克隆,而CD133与CD44阴性的癌细胞则多趋向于形成部分克隆或旁克隆,从而认为CD133与CD44是头颈肿瘤癌干细胞的标志。由此可见,完全克隆为癌干细胞的自我更新方式与富集、纯化癌

干细胞及癌干细胞标志的研究提供了新的途径,近年在癌干细胞研究中逐渐被应用和关注[11]。此外,针对完全克隆的研究切入时间与方式也需要注意。在本研究中,典型的完全克隆在单个细胞培养1~2周时形成,最好不要超过3周;扩增培养后,可使癌干细胞比例减少或分化细胞比例增加,从而影响对癌干细胞行为学的观察。

本研究属于寻找舌癌干细胞的前期性和阶段性实验,但是结果很有意义,这12个细胞亚系表明了Tca8113M1细胞系中有存在舌癌干细胞的可能性,而其最初的来源细胞系Tca8113也应存在癌干细胞。结合细胞克隆形态分析的单个癌细胞培养模式可为深入研究舌癌干细胞提供细胞研究平台。

[参考文献]

[1] Tan BT, Park CY, Ailles LE, et al. The cancer stem cell hypo-

thesis: A work in progress[J]. Lab Invest, 2006, 86(12):1203-

1207.

[2] 姚金光, 邝晓聪, 温冠媚, 等. 舌鳞状细胞癌淋巴道转移裸鼠模

型建立的实验研究[J]. 右江医学, 2006, 34(6):581-583.

Yao Jinguang, Kuang Xiaocong, Wen Guanmei, et al. Establish-

ment of the tongue squamous cell carcinoma lymphatic metastasis

model of the nude mouse[J]. Youjiang Medical J, 2006, 34(6):

581-583.

[3] 王开, 康非吾, 闵睿, 等. Tca8113细胞系单细胞体外增殖的实

验观察[J]. 口腔颌面外科杂志, 2008, 18(6):398-401.

Wang Kai, Kang Feiwu, Min Rui, et al. Proliferation potentials of

Tca8113 cell line in human tongue squamous carcinoma[J]. J Oral

Maxillofac Surg, 2008, 18(6):398-401.

[4] Jordan CT, Guzman ML, Noble M. Cancer stem cells[J]. N Engl

J Med, 2006, 355(12):1253-1261.

[5] Woodward WA, Sulman EP. Cancer stem cells: Markers or bio-

markers[J]. Cancer Metastasis Rev, 2008, 27(3):459-470.

[6] Hermann PC, Huber SL, Herrler T, et al. Distinct populations of

cancer stem cells determine tumor growth and metastatic activity

in human pancreatic cancer[J]. Cell Stem Cell, 2007, 1(3):313-

323.

[7] Locke M, Heywood M, Fawell S, et al. Retention of intrinsic stem

cell hierarchies in carcinoma-derived cell lines[J]. Cancer Res,

2005, 65(19):8944-8950.

[8] Biddle A, Liang X, Gammon L, et al. Cancer stem cells in squa-

mous cell carcinoma switch between two distinct phenotypes that

are preferentially migratory or proliferative[J]. Cancer Res, 2011,

71(15):5317-5326.

[9] Miloszewska J, Gos M, Przybyszewska M, et al. Mouse sarcoma

L1 cell line holoclones have a stemness signature[J]. Cell Prolif,

2010, 43(3):229-234.

[10] Pfeiffer MJ, Schalken JA. Stem cell characteristics in prostate can-

cer cell lines[J]. Eur Urol, 2010, 57(2):246-254.

[11] Zhou ZH, Ping YF, Yu SC, et al. A novel approach to the iden-

tification and enrichment of cancer stem cells from a cultured hu-

man glioma cell line[J]. Cancer Lett, 2009, 281(1):92-99.

[12] Li H, Chen X, Calhoun-Davis T, et al. PC3 human prostate car-

cinoma cell holoclones contain self-renewing tumor-initiating cells

[J]. Cancer Res, 2008, 68(6):1820-1825.

[13] Zhang S, Balch C, Chan MW, et al. Identification and charac-

篇(2)

关键词: 植物 干细胞 教学应用

干细胞是指具有自我更新能力和增殖分化能力的一类细胞,目前学习者对动物干细胞的理论和应用知识掌握较多。由于植物细胞的全能型,长期以来很多学习者误认为植物中不存在干细胞,再加上教师对干细胞这部分内容的讲授不透彻,造成学习者对植物干细胞、动物干细胞及植物愈伤组织细胞的概念往往混淆不清,存在植物干细胞认知上的错误,因此很有必要对植物干细胞的相关知识进行总结。

1.植物干细胞

1.1植物干细胞的概念和特征。植物干细胞是位于植物分生组织中固有的未分化细胞,具有自我更新和再生能力。植物干细胞具有很强的自我更新能力,并且可以分化为特化的细胞类型,这些特化的细胞产生新的植物器官(根、茎、叶和花等)。这些细胞表型的变化是由影响植物功能的基因表达变化引起的,受到内源性和外源性的信号共同调节[1]。植物干细胞的特征包括:能够形成所有分化细胞的类型;具有自我更新的能力,维持干细胞的数量;位于分生组织。

1.2植物干细胞与动物干细胞的比较。在动物中,通常将干细胞分为胚胎干细胞和成体干细胞。胚胎干细胞具有全能性,它可以分化形成所有的成体组织细胞,甚至发育成为完整的个体;成体干细胞(如造血干细胞、神经干细胞、间充质干细胞、皮肤干细胞等)大多为多能干细胞,它们具有多向分化的潜能,可以分化形成除自身组织细胞外的其他组织细胞,真正具有全能性的细胞是受精卵和其分裂产生的子细胞。与此相比,许多植物干细胞具有旺盛的再生能力,在干细胞的整个生活周期中能使植物生长并且产生新的器官(如植物茎端分生组织中的干细胞和根端分生组织中的干细胞)[2]。

1.3植物干细胞与植物愈伤组织细胞的比较。植物愈伤组织细胞是由成体细胞经过脱分化而形成的具有分化能力的细胞,虽然愈伤组织的分化能力与植物干细胞相似,但它们在来源、细胞分化和增值能力等方面是不同的。植物愈伤组织细胞来源于异质性的体细胞,它是体细胞对损伤的暂时响应,是一个临时获得刺激的细胞,尽管愈伤组织具有干细胞样属性,但愈伤组织不易维持稳定的细胞分裂[3]。而植物干细胞来源于植物分生组织的同质性细胞,它们在植物的整个生命周期可以产生并形成新的组织和器官。

2.植物干细胞的类别与调控

根据分生组织的种类,植物干细胞可分为茎尖分生组织中的干细胞和根尖分生组织中的干细胞。

2.1茎尖分生组织中的干细胞。茎尖分生组织包括中心区和中心区下方的带状区。中心区包括上部干细胞区和下部的组织中心(即干细胞区下部靠近带状区的小细胞群)。干细胞分裂时上部的干细胞分裂成两部分子细胞,一部分干细胞后裔留在中心区并保持多能性;另一部分细胞则离开茎尖分生组织的中心区,但保持较快的分裂速度,最终分化为叶或者花原基器官,为侧生器官的生长和分化提供保证[4]。目前已知的位于干细胞周围“组织中心”的WUS(WUSCHEL)是保持茎尖干细胞特征的必要信号分子,它参与对茎尖干细胞的稳态调控,使整个植物茎尖干细胞保持连续不断的自我更新和分化。

2.2根尖分生组织中的干细胞。静止中心位于根尖分生组织中心,干细胞则围绕在静止中心细胞周围。静止中心作为组织中心维持周围干细胞的稳定和功能,静止中心周围的干细胞分布于中柱鞘外侧,维管干细胞形成维管组织、皮层/内皮层干细胞,进而形成皮层、内皮层与根冠干细胞,然后形成根冠细胞。目前已知的WOX5(WUS-RELATED HOMEOBOX 5)作为最主要的干细胞决定因子,特异的表达于根端分生组织的静止中心,参与对根端干细胞的稳态调控,使整个植物的根尖干细胞保持连续不断的自我更新和分化[4]。

3.植物干细胞的应用

3.1生产天然产物,开发药品或者化妆品。传统的植物细胞培养存在细胞生长缓慢、生产成本高等问题,而植物干细胞培养具有遗传稳定、细胞生长率和生长模式稳定、凝集程度低等优点,可以用来大量生产有用的植物天然产物,并用于药品、功能性食品、化妆品中。如悬浮培养紫杉干细胞可以生产松香烷型三环二萜、美丽红豆杉素A和美丽红豆杉素B等产物,以达到抑制肿瘤血管的生成和抗癌作用,而且其产值远大于传统细胞培养的产值,具有很好的开发前景[5]。

3.2植物细胞系库的建立和利用。一般的植物细胞冻存后存活率低,恢复生长能力慢,因此限制其在植物细胞培养中的应用。植物干细胞系在低温储藏方面有很大的优势,不仅有高的存活率,而且在低温储藏前后遗传物质没有变异,是植物细胞系库建立的很好材料。细胞系库的建立不仅会使研究材料的供应得到满足,而且使植物细胞系的研究周期缩短,并在植物种子资源的保存和利用方面发挥重要作用[6]。除了以上应用外,利用植物干细胞还可以进行植物干细胞的分子调控机制和分子设计育种等方面的研究。

4.结语

植物干细胞是位于植物分生组织中固有的未分化细胞,它们具有自我更新和再生能力。根据目前学习者对植物干细胞认识不足的实际,本文对植物干细胞、动物干细胞及植物愈伤组织细胞的概念进行了辨析,并对植物干细胞的分类及应用进行了论述。学习者清楚植物干细胞、植物愈伤组织细胞和动物干细胞的概念后,在学习植物干细胞的理论和应用等方面时才能正确理解相关的知识点。

参考文献:

[1]于荣敏,周良彬.食品与药品[J].2012,14(01):52-55.

[2]李宝钧.哺乳动物干细胞的研究进展[J].畜牧业,2008,234(10):24-27.

[3]游云,蒋超,黄璐琦.试析植物干细胞与动物干细胞的异同[J].中国中药杂志.2014,39(2):343-345.

[4]田奇琳,赖钟雄.植物干细胞研究进展[J].园艺与种苗,2013(8):56-62.

篇(3)

放免法检测胰岛素分泌量。结果: 在大鼠β细胞素浓度为20~30 mg/L时, 大鼠胰腺干细胞转分化为胰岛样细胞团的数量明显高于对照组; 其胰岛素分泌量明显高于对照组(P

【关键词】 β细胞素; 糖尿病 胰腺干细胞

胰岛移植是治疗糖尿病的一个热点, 但供体的缺乏和存在免疫排斥反应限制了其应用。胰腺干细胞能定向分化成胰岛细胞, 这为胰岛移植提供了新的材料来源[1]。细胞生长因子在干细胞的发育和分化中发挥了重要作用。研究表明, β细胞素(betacellulin, BTC)属于表皮细

胞生长因子家族中的一个成员, 具有多种生物学功能, 胰腺BTC mRNA的高水平表达, 提示BTC可能在胰腺组织的发育中发挥重要的生理作用[2, 3]。本研究中通过建立稳定的胰腺干细胞体外培养方法, 将β细胞素用于胰腺干细胞的体外培养, 观察其是否能促进胰腺干细胞转分化为成熟的胰岛, 为克服胰岛移植时的供体短缺提供新的胰岛来源。

1 材料和方法

1.1 材料

SD大鼠(体质量250 g, 雌雄不限, 饲养于清洁级动物房自由饮水和进食, 手术前1 d禁饮食)由第四军医大学动物中心提供, Ⅴ型胶原酶、 Histopaque(1.119 kg/L)、Histopaque(1.098)(kg/L)、 Histopaque(1.077 kg/L)、 碱性成纤维细胞生长因子2(basic fibroblast growth factor 2, bFGF2)、 角朊细胞生长因子(keratinocyte growth factor, KGF)、 ITS(insulintransferin selenium)购自Sigma公司; 牛血清白蛋白(BSA) 购自杭州四季青生物制品公司; 双硫腙(dithizone, DTZ)、 二甲基亚砜(DMSO)、 烟碱购

于华美公司; 兔抗小鼠的PDX1和CK19抗体购自北京中山生物工程有限公司; 免疫组化SP检测试剂盒购自福州迈新生物技术开发有限公司; CMRL1066、 DMEM/F12 购于Gibco公司; 胰岛素放射免疫分析试剂盒购于北京北方生物技术研究所; 大鼠β细胞素由本研究室采用基因工程方法获得[4]。

1.2 方法

1.2.1 大鼠胰腺干细胞的分离、 培养

采用宋振顺等[5]的方法, 首先以Ⅴ型胶原酶消化成年SD大鼠胰腺组织, 然后采用非连续密度梯度离

心法纯化消化后的胰腺细胞, 去除胰岛细胞后, 收集外分泌部细胞进行培养。所获的细胞培养在含100 mL/L胎牛血清的CMRL1066培养液中, 其中添加100 U/mL青霉素、 100 g/L链霉素、 500 μg/L二性霉素B。第3天将培养液改为DMEM/F12, 其中加入ITS(5 mU/L胰岛素+5 mg/L转铁蛋白+5 mg/L硒)500 μg/L二性霉素B, 2 g/L牛血清白蛋白、 10 mmol /L烟碱, 0.01 ng/L KGF等。此后每2~3 d换液1次。于相差显微镜下观察细胞生长状况和克隆形成情况。

1.2.2 胰腺干细胞免疫组织化学染色

分别取培养3、 7、 14 d后的细胞爬片, 0.4 g/L多聚甲醛(PFA)固定后, PBS缓冲液冲洗玻片, 分别与兔抗小鼠PDX1、 CK19 抗体4℃反应过夜, 二抗及呈色反应参照SP试剂盒说明。二氨基联苯胺(DAB)显色, 显微镜观察, 自来水冲洗, 苏木精复染, 中性树胶封固。阴性对照用PBS代替一抗。

1.2.3 双硫腙染色与计数

双硫腙(DTZ)为螯合剂, 可与铅、 铜、 锌等螯合, 人和动物(豚鼠除外)的胰岛β细胞因含有锌, 双硫腙染色呈猩红色, 其他胰岛细胞不着色。配制及染色方法: 用二甲基亚砜(DMSO)配制: DTZ 10 mg溶于10 mL DMSO, 用Hanks(pH7.8)1∶100稀释, 0.22 μm滤膜过滤, DTZ与胰腺干细胞培养后转分化形成的克隆混合, 室温5~10 min后做镜检。按胰岛的直径>50 μm计数染色的胰岛样细胞团,

1.2.4 胰岛素检测

胰腺干细胞转分化后形成的胰岛克隆对葡萄糖刺激有胰岛素分泌反应。显微镜下挑取100个胰岛样细胞团克隆, 培养于24孔培养板, 先用含低糖(5.5 mmol/L)的DMEM/F12培养液在37℃下孵育1 h后, 更换为含高糖(16.7 mmol/L)加烟碱(10 mmol/L)的DMEM/F12培养液在37℃下孵育2 h后, 取培养液上清, 采用放免法测定胰岛素含量。

1.2.5 实验分组

按照实验方法1.2.1中胰腺干细胞的培养方法培养大鼠胰腺干细胞, 并将其设为正常对照组, 各实验组中分别加入不同浓度的大鼠β细胞素, 依次为10、 20、 30、 40、 50 mg/L, 共设立5个实验组。

1.2.6 统计学处理

采用Student t检验方法, 应用SPSS10.0统计软件完成统计学分析。

2 结果

2.1 成人胰腺导管上皮细胞光镜下形态学变化

收获的非胰岛细胞于24~48 h内部分黏着于培养瓶底。在第1~3天换液时, 大量漂浮于培养液中的外分泌细胞和胰岛被弃除。培养5 d内, 单个贴壁细胞迅速扩增为鹅卵石样小细胞片进而分裂增殖成单层细胞。培养第3天改用无血清培养液及加入霍乱毒素, 可明显地促进导管上皮细胞的生长和抑制成纤维细胞的污染。细胞培养第7天胰岛样细胞芽团开始从细胞片或单层细胞的中央或边缘出现, 同时鹅卵石样细胞片迅速扩大。此后大量胰岛样细胞芽团和囊状细胞团出现。双硫腙染色呈弱阳性。第21~27天, 大量较成熟的胰岛样结构出现,双硫腙染色强阳性(图1)。

2.2 免疫组织化学

(1)CK19染色: 细胞培养第1天, 4孔板中的部分细胞呈CK19抗体染色强阳性。此时的细胞多为贴壁的单个或小细胞片, 亦可见较多阴性反应的细胞碎片。培养3 d后, 细胞片不断扩大, 第7天起, 可见胰岛样细胞芽团出现并逐渐增多, 绝大多数细胞集落和胰岛样细胞芽团均为CK19强阳性(图2)。(2)PDX1染色: 培养第1天, 4孔玻板中的细胞大部呈PDX1抗体染色阳性。但在同一细胞片中细胞染色程度不一, 部分呈强阳性, 部分呈弱阳性, 少数细胞为阴性。第7天起, 可见胰岛样细胞芽团逐渐增多; 第11~27天, 胰岛样细胞芽团不断增大, PDX1抗体染色呈强阳性(图3)。

2.3 BTC对胰腺干细胞转分化为胰岛样细胞团的影响

在正常对照组中, 胰岛克隆为(139±8.5)个/g胰腺, 各实验组培养液中加入不同浓度的大鼠β细胞素后, 胰岛克隆的数量明显增加, 在大鼠β细胞素的浓度为20~30 mg/L时, 培养液中胰岛样细胞团克隆的数量增加最为明显

(P

2.4 胰岛素分泌量的检测

各实验组分别挑取100个胰岛样细胞团(直径>50 μm), 培养于24孔培养板中, 胰岛素分泌试验结果表明, 在正常对照组中, 培养液上清中胰岛素含量为(3.0±0.4)μU/100胰岛。各实验组培养液中加入不同浓度的大鼠β细胞素后, 培养液中胰岛素的分泌量也有明显增加, 在大鼠β细胞素的浓度为20~30 mg/L时, 培养液中胰岛素的分泌量增加最为明显(P

3 讨论

由于胰岛素产生细胞的缺陷或缺乏导致的Ⅰ型糖尿病不仅对患者及其亲属, 而且对社会均带来了严重的负担。开发胰岛素产生细胞新的来源诸如猪的胰腺、 人体胰腺导管上皮细胞、 胎儿胰腺干细胞和胚胎干细胞成为目前研究的热点。其中最有前景的是由人胰腺导管上皮细胞转

分化为胰岛β细胞。

本实验观察到胰腺导管上皮细胞在培养第1天, 绝大多数贴壁生长的细胞为单个细胞或很小的细胞团。这些单个细胞和小细胞片在7 d 内迅速生长扩增为鹅卵石样细胞片和大面积单层细胞片。胰岛样细胞芽团于培养第7天出现, 部分细胞PDX1 的表达及CK19 染色阳性从培养

第1天即开始。PDX1基因是一种在胰岛细胞发育、成熟过程中有高表达的基因, 而CK19是胰腺导管上皮细胞向干细胞转化的标志, 部分细胞PDX1的表达及CK19 染色阳性说明培养的细胞自第一天起即开始转分化,这与Gmyr等[6]所报告的结果相似。

近年的研究表明, 一种肽类表皮细胞生长因子β细胞素(BTC)在活体动物体内能有效的促进糖尿病鼠及90%胰腺切除鼠胰岛细胞的再生和成熟[7], 将大鼠胰腺切除90%后, 立即给大鼠尾静脉注射BTC(0.5 μg/g体质量), 10 d后大鼠糖尿病状态有所缓解, BTC治疗组大鼠血

糖水平显著低于对照组, 而血浆胰岛素水平明显高于非治疗组, 持续时间长达4周, 治疗30 d后病理学检查证实BTC组大鼠胰岛β细胞团较对照组的大, 胰岛样细胞团的数目明显增多, 糖耐量试验表明BTC治疗的大鼠对糖刺激有很好的反应性[8]; 用链脲霉素制成的糖尿病小鼠注射BTC

后, 也取得了同样的效果[9], Cho等[10]研究发现, BTC能促进人类胚胎干细胞向胰腺β细胞的分化由此可以推断, BTC可能促进了β细胞的增殖或者是促进了胰腺干细胞增殖分化为β细胞, 分泌胰岛素达到降低血糖的作用。

本研究中我们首先按照宋振顺等的胰腺干细胞培养方法培养出大鼠胰腺干细胞, 并对其转分化为胰岛的情况做了初步研究。然后以该培养条件为对照, 在培养液中加入不同浓度的大鼠BTC, 结果发现, 在20~30 mg/L的条件下大鼠β细胞素能有效促进胰腺干细胞的增殖, 促进胰腺干细胞转分化为胰岛样细胞, 为进一步研究糖尿病疾病的病因, 发病机制, 预防及治疗等提供了一定的实验依据。在本研究中, 当进一步增加β细胞素的剂量后, 胰腺干细胞转分化为胰岛样细胞团受抑制的原因, 我们认为是由于本实验室在进行β细胞素的分子克隆中, 我们的蛋白质纯化和复性工艺存在局限性, 因此, β细胞素的制剂中可能存在较多的无机盐或其他杂质, 当增加β细胞素的剂量后, 可能对胰腺干细胞产生毒性作用, 在今后的工作中需要进一步改善蛋白质纯化和复性工艺, 提高β细胞素的纯度。关于β细胞素在体外促进胰腺干细胞转分化为胰岛样细胞团的分子机制, 目前尚不明确, 值得进一步研究。

参考文献

[1]Soria B, Skoudy A, Martin F. From stem cell to beta cells: new strategies in cell therapy of diabetes mellitus[J]. Diabetologia, 2001, 44(4): 407-415.

[2]Dunbar AJ, Goddard C. Structurefunction and biological role of betacellulin[J]. Int J Biochem Cell Biol, 2000, 32(8): 805-815.

[3]Miura K, Doura H, Aizawa T, et al. Solution structure of betacellulin, a new member of EGFfamily ligands[J]. Biochem Biophys Res Commun, 2002, 294(5): 1040-1046.

[4]安家泽, 宋振顺, 窦科峰, 等. 大鼠β细胞素蛋白的表达、 纯化及生物学活性鉴定[J]. 细胞与分子免疫学杂志, 2005, 21(3): 284-286.

[5]宋振顺, 顾克菊. 成人胰腺干细胞转分化为胰岛细胞过程中的形态学观察[J]. 外科理论与实践, 2002, 7(3): 196-199.

[6]Gmyr V, Kerr2Conte J, Belaich S, et al. Adult human cytokeratin 19positive cells reexpress insulin promoter factor 1 in vitro: further evidence for pluripotent pancreatic stem cells in humans[J]. Diabetes, 2000, 49(10): 1671-1680.

[7]Li L, Seno M, Yamada H, et al. Promotion of betacell regeneration by betacellulin in ninety percentpancreatectomized rats[J]. Endocrinology, 2001, 142(12): 5379-5385.

篇(4)

关键词:天然气;催化燃烧;细胞;培养

中图分类号:F407文献标识码: A

随着我国大气污染的日益严重,雾霾天气区域性频发,环境问题已变成当前棘手的问题[1]。天然气催化燃烧能从源头上防治污染和保护生态环境,有助于形成低投入“低消耗”低排放和高效率的节约型增长方式,有利于对消耗高“污染重”技术落后的工艺和产品实施淘汰,降低污染物排放总量,加强资源综合利用,加强污染防治[2]。

天然气属于清洁能源,天然气催化燃烧能达到CO和NOx均小于5ppm的近零污染物排放,是一种节能环保的燃烧方式。天然气燃烧温度在1000℃以上,燃烧后的烟气无菌洁净[3-4],对环境无污染,可将烟气与空气和CO2按照一定比例配比,配比后的气体达到干细胞所需要的气体成分,[5-7],由于高温烟气与空气和CO2混合的,所以混合后的气体洁净无菌[4],可将其经过过滤和降温通入无菌箱或超净工作台使工作区域洁净无菌,也可将气体通入到CO2培养箱中,应用到干细胞培养。

1.天然气催化燃烧烟气分析

中国计量科学研究院对天然气催化燃烧烟气检测报告结果如表1所示:

表1 天然气催化燃烧各组分气体浓度

天然气催化燃烧,燃料燃烧充分,并且其燃烧温度在1100摄氏度左右,基本上全部转为CO2和H2O,CO 和 NOx均小于5ppm,基本为零,由于天然气中掺加极少量的H2S,燃烧产物为SO2和SO3,但其含量小于5ppm,几乎为零,所以天然气催化燃烧效率高,燃烧产物洁净无菌,可将其用到无菌箱中。

2.干细胞培养所需气体环境

除了满足营养的需要以外,培养环境还必须具备细胞生存并繁殖的生理学能接受限度内的物理化学特性,包括温度、气相及PH等。

2.1温度

体外培养的细胞需在保持一定恒温的环境中才能生长,其适宜的温度与取材的动物种类有关。

2.2气相及pH

体外培养细胞需要理想的气体环境。包括O2及CO2,但其量则须恰当。多数细胞需要在有O2条件下才能生长,氧张力通常维持在略低于大气状态,若O2分压超过大气中氧的含量可能对有些细胞有害。体外培养细胞采用开放培养时,其气体环境一般应为5%CO2+95%空气的混合气体。大多数细胞适于在pH7.2~7.4条件下生长,低于pH6.8或高于pH7.6可能对细胞有害,甚至退变或死亡。

3.3 无污染及无毒

体外培养的细胞必须生长于无污染及无毒的环境。无毒是培养细胞的必需条件 [5]。

3. 催化燃烧烟气在细胞培养上的应用

无菌箱或超净工作台是细胞培养中要使用的,催化燃烧烟气作为洁净无毒无污染的烟气可作为无菌气体持续不断地通入无菌箱,可使无菌箱持续保持无菌的状态[4],燃烧的烟气与空气、CO2按照一定比例混合后经过过滤降温通入无菌箱可以持续的保持无菌箱的无菌状态,我们将在无菌箱中对细胞操作完之后,将处理后的细胞放入CO2培养箱,传统形式下需要一个5%的CO2瓶专门向CO2箱通入所需气体,现在我们只需要将通入无菌箱的气体通入CO2培养箱即可。

4. 实验装置

天然气催化燃烧V型炉烟气分析系统如图1所示,本次实验采用了两块独石并排的催化燃烧V型燃烧器,所用独石为堇青石蜂窝陶瓷,独石内表面上镀着钯(Pd)和铑(Rh)催化剂,独石采用正方形截面尺寸为150mm×150mm,厚度为20mm,独石孔道尺寸1mm×1mm,壁厚0.18mm,软化温度为1380℃。

图1. 天然气催化燃烧V型炉系统图

反应气体天然气和空气分别通过量程为0~50 L/min 型号为GMS005 0BSRN200000的流量计和量程为0~80m3/h 型号为CMG400A080100000的空气流量计进行调节,这两个有稳流稳压器提供电流。在催化燃烧器点火前需要对燃烧器内部的混合腔利用风机进行吹扫5 分钟左右,来保证内部无残留的燃气。点火过程中,先将过量空气系数调整到1.3左右进行气相燃烧从而达到预热的目的,期间观察催化剂独石表面待表面火焰基本消失且内部变为红色时,将空气量调大使过量空气系数达到2.0左右,此状态为催化燃烧的稳定燃烧状态。此时,通过烟气分析仪测量排放的烟气,NO-NO2-NOx分析仪测量烟气含量,待数据稳定后进行记录。在箱体出口处插入热电偶测量烟气温度。

5. 实验结果分析

5.1 实验结果

我们做了四组实验分别是燃气流量为6.1L/min 、7、8、9,相应的空气流量为7.3m3/h、7.8、9.2、10.3,对应的空气系数是2.09、1.94、2、2。图2为记录的烟气成分CO、CO2、NOx浓度以及烟气温度。

图2.不同燃气流量下烟气各成分浓度图 3.不同燃气流量下烟气温度

从图2可以看出,NOx体积分数都在1ppm以下,CO体积分数在5ppm以下,接近于0,污染物含量极低,燃烧效果较好,CO2含量在5.7%上下,略高于细胞培养要求的5%,若将其应用到细胞培养必须改变CO2含量。从图3可以看出,排烟温度在300℃以上,接近400℃,与细胞培养要求的37℃相差甚远,必须降温。因此需要考虑将烟气中通入某种气体或者某几种气体将CO2和O2含量调节到细胞培养要求的含量。下面具体分析烟气的主要成分。

5.2 天然气组分说明

表 3-2 为通过气相色谱仪所测得的实验过程中所使用的天然气组分及各组分的体积含量。

表1.天然气各组分体积分数

5.21由于天然气的主要成分是甲烷,所以天然气燃烧的化学反应方程式如下[8]:

实验用到的天然气中甲烷占燃料总体积的 93%以上,所以实验中是以甲烷的不完全燃烧情况进行了计算。所有含碳燃料在燃烧过程中都会产生CO这一中间产物。根据上述反应方程式可知,反应前后C原子个数是守恒的,反应后CO和CO2的总体积与反应前CH4的体积相等,即 。因为含量微乎其微,可以忽略不计,所以可以认为和燃烧前的含量相等,即;产生水蒸气的量为,需要氧气量,需要空气量

烟气总体积:

5.22 过量空气系数为时,过量空气相当于多出未参加燃料反应的那部分空气产生的和水蒸气的量不变,即,

过量空气相当于多出未参加燃料反应的那部分空气,烟气中氧气的体积:

烟气的总体积:

干烟气的总体积:

二氧化碳的体积分数:

氧气的体积分数:

干烟气中二氧化碳的体积分数:

氧气的体积分数:

催化燃烧空气的空气系数是2,当过量空气系数为2时,带入上式

二氧化碳体积分数(烟气中有水蒸气):

氧气体积分数(烟气中有水蒸气):

二氧化碳体积分数(烟气中没有水蒸气):

氧气体积分数(烟气中没有水蒸气):

5.23 烟气分析仪使用塑料管将气体通入分析仪分析烟气成分,在管道中烟气降温到室温,水蒸气冷凝,所以可以近似认为烟气分析仪分析的气体为干烟气,数据计算CO2含量5.5%与实验相当接近。

由于需要将烟气中通气体,虽然向湿烟气中通气体调节,但通入细胞培养仪器时的温度为37℃,中间水蒸气还会冷凝,所以调节气体的体积分数时仍然需要按照干烟气的计算调节。

对比烟气成分含量与要求的成分含量可以看出,需要降低CO2含量,提高氧气含量。因为氧气提高到略低于21%所以可以通入空气,即能提高O2含量又能降低CO2。假定烟气总体积为V,通入空气体积为Vx,则CO2体积为5.541,O2为11.082。

通过计算通入空气后CO2含量会低于要求的含量,因此还需通入CO2,通入CO2体积为VY

将,,,

解得,

当烟气的体积为V(不含水蒸气)时,通入的燃气量为0.0554V,空气量为1.0554V,所以只要通入体积,燃气量:空气量:CO2量=0.0554:155;0.0523=1:2797:0.944时,输出的烟气的成分即为,。

6. 结论

天然气属于清洁能源,天然气催化燃烧烟气洁净无菌,将燃烧废气收集重新利用通入CO2培养箱进行干细胞培养,此种方法使用即可以将烟气充分利用,减少CO2排放,并且操作简单,只需要向燃烧完的高温烟气中通入定量的空气和CO2即可,而且从通入气体的比例来看,生成需要的气体向烟气中通入的空气很多,通入的CO2确很少,比较经济,因此天然气催化燃烧烟气应用到细胞培养是种经济环保的方式。

致谢

本资金由北京市供热供燃气通风及空调工程重点实验室提供,项目编号cxy2012019。

参考文献

[1] 王淑兰,柴发合,高健. 我国中长期PM2.5污染控制战略及对策[J]. 环境与可持续发展,2013,4:10-12

[2] 张世红,Dupont Valerie,Williams Alan,Rickett Gavin. 硫化合物存在时天然气催化燃烧机理与应用[M]. 科学出版社,2010:1-2

[3] 李宁. 化燃烧冷凝锅炉热效率及节能特性研究[D]. 北京建筑工程学院硕士学位论文,2011.03:1-3

[4] L. F. Yan, M. Xiao, S. H. Zhang Exploration of exhaust gas of natural gas[A]. Advanced Materials Research Vols. 581-582, (2012) pp.1172-1175

[5] 司徒镇强,吴军正. 细胞培养[M]. 世界图书出版公司,2006:15-20

[6] 彭阳红. 改良的气体环境对体外骨髓间充质干细胞培养影响的实验研究[D]. 第四军医大学博士学位论文,2008,05:2-4

篇(5)

据英国媒体报道,英国研究人员首次用3D打印机打印出胚胎干细胞,干细胞鲜活且保有发展为其他类型细胞的能力。我们知道,胚胎干细胞存在于胚胎发育早期的囊胚中,可发育为不同的细胞,是所有细胞最初期的形态。胚胎干细胞是万能的,意味着它们可以发育成为身体内200多种细胞类型中的任何一种。研究人员说,这种技术或可制造人体组织以测试药物,制造器官,乃至直接在人体内打印细胞。

胚胎干细胞3D打印机配备两个“生物墨盒”,一个装着浸在细胞培养基中的人体胚胎干细胞,另一个只有培养基。计算机控制微调阀喷出“墨水”,其速度可通过改变喷口直径实现精确控制。

打印机上有显微镜,可以观察细胞打印情况。两种“墨水”一层一层间隔喷洒,形成不同浓度细胞飞沫,最小飞沫体积仅2纳升,包含大约5个细胞。飞沫被喷入有诸多凹孔的培养皿中,翻转培养皿,飞沫形成悬液,在各凹孔内“抱成团”。打印机可精确控制飞沫大小,使干细胞达到分化的最佳状态。

研究人员在《生物制造》杂志说,检测结果显示,打印24小时后,95%以上细胞仍然存活,打印过程未杀死细胞;打印3天后,超过89%细胞存活,而且仍然维持多能性,即分化出多种细胞组织的潜能。

研究人员已经用3D打印的干细胞制造出骨髓和皮肤。他们认为,最终能借助这种方法制造器官,从而无需器官捐献,同时还可以解决器官移植中的免疫抑制等问题。

篇(6)

[关键词]毛囊干细胞;鉴定;分离培养

[中图分类号]R329.2 [文献标志码]A [文章编号]1008-6455(2015)19-0077-04

The cultivation and identification of hair follicle stem cells

XIAO Feng1,TAN Jun2

(Department of Plastic and Laser Aesthetic Surgery,People's Hospital of Hunan Province,Changsha 410000,Hunan,China)

Abstract: Hair follicle stem cells are the ideal seed cells for skin tissue engineering,which has become a hot research topic in recent years.Isolation and identification is the basis of the research. The author will analyze and summarize several methods of isolation and culture of hair follicle stem cells in recent years.It will provide a solid foundation for the further study of hair follicle stem cells.

Key words:hair follicle stem cells;identification;cultivation

干细胞是一类具有自我复制能力的多潜能细胞,存在于胚胎及成体内。在一定条件下,干细胞可以无限增殖而保持未分化状态,也可以分化成多种功能细胞。20世纪,Cotsarelis、Taylor等[1]通过相关研究发现,在毛囊上部由外根鞘形成的明显突起,即隆突区域也有干细胞的存在,这些干细胞被定义为毛囊干细胞。毛囊干细胞与其他成体干细胞一样拥有强大的增殖能力及多向分化潜能[2]。毛囊干细胞能通过自身的分裂增殖产生各种机体所需的细胞,以补充脱落和缺失的细胞;毛囊干细胞不仅能够向下转移到毛囊根部生成毛囊,而且还能从毛囊外根鞘向上迁移,生成表皮和皮脂腺,并且能分化形成骨及脂肪[3-4]。近年来,毛囊干细胞的研究备受关注,已成为研究热点之一。目前,存在多种毛囊干细胞的分离培养及鉴定方法,为毛囊干细胞的深入研究提供了坚实的基础,作者就毛囊干细胞常用的分离培养及鉴定作一简要综述。

1 毛囊干细胞的分离纯化

此前,已有许多研究者采用不同的方法来分离毛囊干细胞,并成功地进行传代培养,进行后续更深入的研究。目前对毛囊干细胞分离纯化常用的有以下几种方法:

1.1 组织块培养法

取含有毛囊的皮肤样本,清洁干净,酒精消毒后用PBS液冲洗,将皮肤切成小块,表皮朝上贴于加入适量培养基的培养器皿中,置于5%CO2培养箱中,37℃,饱和湿度条件下培养。组织块培养法分离的干细胞能持续保持增殖趋势,没有明显的平台期,并且随着不断传代纯化,此方法获得的毛囊干细胞纯度明显增加。但是组织块培养法分离获取毛囊干细胞的效率较低。史明艳等[5]使用该方法成功获得毛囊干细胞,并分析指出该方法的优势在于组织块培养时从组织块中迁移出来其他细胞为毛囊干细胞创造了一个类似于体内的微环境,使毛囊干细胞能最大程度地保留增殖分化能力。

1.2 显微分离技术

取含有毛囊的皮肤样本,清洁干净,除去皮下脂肪,酒精消毒后,使用含高浓度青、链霉素的PBS液反复冲洗3次;在超净工作台内,显微镜下显微镊钝性分离单个毛囊组织,收集形态完好且处于生长期的毛囊。收集滤液离心(1 500r/min)10min,弃去上清,加入含培养基培养皿,于37℃、5%CO2孵箱中培养。显微分离技术能从样本直接选取毛囊干细胞相对富集区域,有利于后续进一步的纯化[6]。王祝迁等[7]使用此方法成功分离出大鼠毛囊干细胞,但单纯应用显微分离技术获取高纯度的毛囊干细胞需花费大量的时间和精力,效率偏低。

1.3 酶消化法

取含有待培养毛囊的皮肤样本,清洁干净,酒精消毒后用含双抗PBS液冲洗,将皮肤样本剪成小块,置于中性蛋白酶Ⅱ(0.25g/l)中,37℃摇床消化2h。取出组织用PBS冲洗3遍,置于胰蛋白酶(质量浓度为2.5g/l)和乙二胺四乙酸(0.2g/l)1∶1消化液37℃摇床消化1h后,过200目钢网。收集滤液离心(1 500r/min)10min,弃去上清,加入细胞培养液培养。此方法获得的毛囊干细胞克隆形成能力强,获取效率高。郑宣等[8]用此法获得较纯的毛囊干细胞,但获得的毛囊干细胞经历增殖期后生长速度逐渐减慢,且细胞存活率下降,可能与酶消化法破坏了毛囊干细胞生长微环境有关。

1.4 差数贴壁法

将收集的细胞接种于Ⅳ型胶原包被的培养皿中,静置20min后,收集上层未贴附角质形成细胞和毛囊真皮成纤维细胞于另一培养皿中,贴附皿底的毛囊干细胞,置于体积分数为5%CO2、37℃孵箱中培养,每3d换液一次。与单纯使用某种毛囊干细胞分离方法相比较,联合差数贴壁法将更进一步纯化,获得纯度更高的毛囊干细胞。彭等[9]使用酶消化法联合差数贴壁法获得了形态典型且均匀一致的毛囊干细胞。目前此方法已被广泛使用。

1.5 免疫磁珠法

免疫磁珠法主要用来纯化分离培养获得的毛囊隆突区细胞中某种标记物阳性的细胞。首先制作细胞悬液,并加入FITC标记的某种标记物单抗,室温孵育30min,离心后弃上清中未结合的抗体,加入磁珠分选缓冲液重悬细胞,再次离心后弃上清,PBS缓冲液清洗2次,取重悬后细胞与免疫磁珠混合,室温反应30min。磁珠分离器分离8min,去除未与磁珠结合的细胞。将结合了靶细胞的免疫磁珠用磁珠分选缓冲液洗5次。体积分数为5%CO2、37℃孵箱培养48h,使细胞与磁珠分离,即可获得较纯的毛囊干细胞。谭挺等[10]用此法获得高纯度毛囊干细胞,他们指出此方法与显微分离技术连用有单次操作分离细胞数量大且纯度较高、能与细胞培养、流式细胞术、荧光显微镜等分子生物学技术兼容等特点。黄恩毅等[11]用此法有效分离并成功培养CD34+毛囊干细胞,发现分选后的细胞仍具有较好的活性,且增殖速度快,增殖期长。卢葳等[6]通过实验证实,免疫磁珠分选后毛囊干细胞活力较好,分离获得的毛囊干细胞适合用于细胞培养、诱导等后续试验。

1.6 流式细胞仪分选法

通过毛囊干细胞表达的某些特异性标记物,利用流式细胞仪可以将目的活细胞从异质性细胞群中分离出来,获得较高纯度的特异性细胞。常用的是荧光激活细胞分选器。卢葳等[6]使用流式细胞仪分选CD34+毛囊干细胞,获得的毛囊干细胞纯度很高、污染机会小,但是分选过程费时,细胞分选后活力稍差。此方法适合于需要做免疫组化,蛋白质组织学等对细胞纯度要求高的实验。

2 毛囊干细胞的鉴定

干细胞的鉴定一直是干细胞研究的难点,常用干细胞的标记物辅助方法进行鉴定。毛囊干细胞有多种明确的分子标记物,如CD34、K15、K19 [12]。

2.1 角蛋白家族

角蛋白是外胚层细胞的结构蛋白,广泛存在于生物体的组织结构中。在表皮细胞中,它们以微丝的状态在细胞内形成广泛的网状结构。在上皮组织中有20多种不同种类的角蛋白表达。在表皮细胞中,随着分化程度的不同其所表达的角蛋白也不相同,因此角蛋白常作为毛囊干细胞的鉴定手段。1998年,lyle等[13]通过表达克隆发现K15是毛囊干细胞表面标记之一,此后K15一直被当做较为公认的毛囊干细胞标记物。20世纪末,有研究者通过实验发现滞留细胞所在的毛囊隆突部细强表达K19[14];同时有实验发现毛囊隆突部K19高表达细胞缺乏特异性分化标志,进一步证实 K19高表达细胞为毛囊干细胞,因此,认为K19也可作为毛囊干细胞表面标记物[15]。在毛囊干细胞分化过程中,K15表达减弱较K19早,K19表达阳性而K15阴性的细胞仍有可能为处于早期阶段的增殖细胞,因此推测,检测毛囊干细胞时K15更准确[13]。

2.2 钙黏蛋白家族

钙黏蛋白是一种同亲型结合、Ca2+依赖的细胞黏着糖蛋白,对胚胎发育中的细胞识别、迁移和组织分化以及成体组织器官构成具有重要作用。不同细胞及发育不同阶段其细胞表面的钙黏蛋白的种类与数量均有所不同,目前已经发现几十种钙黏蛋白。CD34抗原是钙黏蛋白中的一种,是一种高度糖基化Ⅰ型跨膜蛋白,为阶段特异性白细胞分化抗原,CD34表达于人类造血干细胞,CD34是目前公认的造血干细胞标志物。Ohyama等[16]通过对鼠毛囊的研究,发现鼠毛囊中CD34阳性细胞与毛囊隆突部滞留细胞和K15阳性细胞在毛囊处位置一致,提示CD34可能也是可靠的毛囊干细胞标记物。Trempus等[17]通过动物实验首次证实了CD34表达于小鼠毛囊干细胞。但CD34在人毛囊干细胞不表达,Shu Jiang等[18] 通过对人头皮进行原位免疫组化和多色免疫荧光标记,发现CD34特异性表达于毛囊间表皮基底部。

2.3 整合素家族

整合素是机体重要的黏附分子,是广泛存在于动植物细胞表面的一类细胞跨膜蛋白,在细胞与细胞外基质间及细胞与细胞间起黏附作用,整合素是由α和β两个亚单位组成的异源二聚体,它们按不同的组合构成20余种整合素。目前,整合素也被广泛用于毛囊干细胞的鉴定,常用的整合素为整合素β1。1995年,Jones等[19]根据表皮细胞表达整合素β1的水平将其进行分组培养,结果发现整合素β1高表达的表皮细胞比低表达者具有更高的增殖及克隆形成能力。1998年,Watt等[20]发现,富含整合素β1的皮肤基底细胞比整合素β1含量少的皮肤基底细胞能更快速的黏附细胞外基质蛋白,并具有更高的克隆形成能力,上述发现均为整合素β1作为毛囊干细胞特异性表面标记物提供有力支持。

3 结论

综上,目前常用的分离培养方法主要包括:组织块培养法、显微分离技术、酶消化法、差数贴壁法、免疫磁珠法、流式细胞仪分选法,每种方法均有各自的优势及缺陷;组织块培养法简单,但是分离纯度不高,分离效率低下;显微分离技术相对其他方法而言,分离纯度高,但是分离过程比较费时费力;酶消化法效率高,但是酶消化过程同时会破坏细胞微环境,影响细胞存活率;差数贴壁法一般联合其他分离纯化方法,能进一步纯化所获毛囊干细胞;免疫磁珠法获得的毛囊干细胞纯度高、活性强,但是分离方法较复杂;流式细胞仪分选法所获得毛囊干细胞纯度高,但细胞活性低。因此,在选择毛囊干细胞分离培养方法时一定要根据实验的特殊要求及实验条件选择合适的方法。毛囊干细胞的鉴定方法常用的包括:角蛋白家族、钙黏蛋白家族、整合素家族;实验条件允许的情况下,同时检测两种以上的标记物来鉴定毛囊干细胞是较为准确的一种方法。

毛囊干细胞具有其他干细胞的共同特征,具有多向分化潜能。目前,已有实验证实毛囊干细胞能用于尿道缺损、神经损伤的修复;能够分化成为脂肪细胞和成骨细胞[1,21-22];能有效促进创面愈合,将其作为工程皮肤中的种子细胞,有利于表皮细胞及汗腺、毛囊等附属器官的形成。另外,最新研究表明毛囊干细胞有利于瘢痕的修复,但该研究仍处于起步阶段,相信经过研究者们的不懈努力,其必将为瘢痕治疗这一世界性难题提供一种有效的新方法。

[参考文献]

[1]赵奎,贾宗菲,弓慧敏,等.毛囊干细胞的分离方法及应用[J]. 中国畜牧兽医,2010,37(12):82-85.

[2]Wu JC,Yang TT,Xu X,et al.Research on differentiation of human bone marrow-derived mesenchymal stem cells into chondrocytes invitro[J].J Med Postgra,2010,23(2):128-132.

[3]原璐,王春生,安铁洙,等.毛囊干细胞研究进展[J].中国生物杂志,2009,29(1):75-79.

[4]Jaks V,Barker N,Kasper M,et al.Igr5 marks cycling, yet long-lived,hair follicle stem cells[J].Nat Genet,2008,40(11):1291-1299.

[5]史明艳,杨学义,窦忠英.山羊毛囊干细胞分离培养方法研究[J].畜牧兽医学报,2006,37(5):436-440.

[6]卢葳,陈瑾,李惠.两种纯化大鼠毛囊干细胞方法的比较[J]. 重庆医科大学学报,2010,35(1):124-126.

[7]王祝迁,木拉提・热夏提,李佳,等.大鼠触须毛囊干细胞的分离培养和鉴定[J]. 中国组织工程研究与临床康复,2011,15(27):5031-5034.

[8]郑宣,许世超,全仁夫.大鼠毛囊干细胞的体外培养及相关检测的实验研究[J].中国中医骨伤科杂志,2014,22(2):8-14.

[9]彭,王玉杰,李佳,等.不同体积分数富血小板血浆与大鼠毛囊干细胞的增殖[J]. 中国组织工程研究,2012,16(45):8501-8505.

[10]谭挺,胡志奇,周洪军.显微分离培养与免疫磁珠法分离纯化人毛囊干细胞[J].中国修复重建外科杂志,2008,22(2):202-205.

[11]黄恩毅,杨恬,陈伟,等.毛囊干细胞的纯化培养鉴定及其生物学特性[J].第三军医大学学报,2008,30(1):39-42.

[12]Tsai SY,Clavel C,Kim S,et al.Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells[J].Stem Cells,2010,28(2):221-228.

[13]Lyle S,Christofidou-Solomidou M,Iiu Y,et al.The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the 10- 8 cation of human hair follicle stem cells[J].J Cell Sci,1998,111:3179-3188.

[14]Michel M,Torok N,Godbout MJ,et al.Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially 10 calized in function of anatomic sites,and their number varies with donor age and culture stage[J].J Cell Sci,1996,109:1017-1028.

[15]Reynolds AJ,Jahoda CA.Hair follicle stem cells A distinct germinative epidermal cell population is active in vitro by the presence of hair dermal papillar cells[J].J Cell Sci,1991,99:373-385.

[16]Ohyama M,Terunuma A,Tock CL,et al.Characterization and isolation of stem cell-enriched human hair follicle bulge cells[J].J Clin Invest,2006,116(1):249- 260.

[17]Trempus CS,Morris RJ,Bortner CD,et al.Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34[J].J Invest Dermatol,2003,120(4):501-511.

[18]Shu Jiang,Longmei Zhao,Bhamini Purandare,et al. Differential expression of stem cell markers in human follicular bulge and interfollicular epidermal compartments[J]. Histochem Cell Biol, 2010,133:455-465.

[19]Jones PH,Harper S,Watt FM. Stem cell patterning and fate in human epidermis[J].Cell,1995,80(1):83-93.

[20]Watt FM.Epidermal stem cells:markers,patterning and the control of stem cell fate[J].Philos Trans R Soc Lond B Biol Sci,1998,353(1370):831-837.

[21]蔡霞.人毛囊干细胞的分离培养鉴定与生物学特性的初步研究[J].四川医学,2014,35(1):1-3.

篇(7)

目的: 利用简化无血清培养基和连续传代法,从成体小鼠肠管分离培养肠神经嵴干细胞(GNCSCs),观察细胞体外培养过程中增殖、分化的特点. 用p75, GFAP,Peripherin,αActin作为特异性标志来鉴定GNCSCs及其分化的细胞系. 方法: 将新生1, 5 d的小鼠肠管制成单细胞悬液,接种于无血清DMEM/F12完全培养基中贴壁培养,连续传代培养并观察克隆球的形成过程. 将克隆球接种于含血清的DMEM/F12完全培养基中,观察其分化现象. 用免疫细胞化学和免疫荧光法检测克隆球及其分化细胞系特异性标志物的表达. 结果: 成体小鼠肠管中有少数细胞在无血清培养基中存活且增殖形成克隆球. 免疫染色表明克隆球是GNCSCs并且在血清诱导下可分化为神经元、神经胶质细胞、平滑肌细胞. 结论: 成体肠管中存在具有自我更新和多向分化能力的GNCSCs,在体外GNCSCs可分化为肠神经系统所必须的细胞类型.

【关键词】 肠神经嵴干细胞 小鼠 细胞培养技术 细胞分化 Hirschsprung病

0引言

应用神经干细胞治疗某些神经系统的损伤和退行性疾病,经过较长时间的实践已被证明是行之有效的[1]. 肠神经嵴干细胞(gut neural crest stem cells, GNCSCs)起源于神经管背侧,具有干细胞特性[2],将其用于治疗先天性巨结肠症及肠神经系统干细胞疾病的研究已引起人们的关注,本实验着重进行GNCSCs的基础研究,为临床应用建立理论基础.

1材料和方法

1.1材料新生1,5 d昆明小白鼠,15只,体质量不拘,西安交通大学医学实验动物中心提供. ① DMEM/F12完全培养基(Gibco)组成:B27添加剂(Gibco),N2添加剂(Gibco),重组人碱性成纤维细胞生长因子(bFGF, vitrogen), β巯基乙醇(Sigma),青霉素和链霉素(华北制药). ② 促分化培养基组成:DMEM/F12完全培养基除bFGF外再添加100 mL/L肽牛血清. ③ 其他:胰蛋白酶、Ⅳ胶原酶(Sigma),左旋多聚赖氨酸(Sigma). 一抗:兔抗小鼠NGFRp75(武汉博士德)、兔抗Peripherin多克隆抗体(Chemicon),兔抗GFAP多克隆抗体(DAKO),鼠抗小鼠αActin单克隆抗体(Sigma)SABC试剂盒、DAB显色试剂盒(博士得生物工程有限公司). 二抗为TRITC标记山羊抗小鼠IgG(北京中杉).

1.2方法

1.2.1取材、克隆球的培养颈椎脱臼法处死2组小鼠,将其肠管放入Hanks,清洗,机械分散肠管组织,胰蛋白酶和Ⅳ胶原酶分别消化肠管组织30 min,10 min,终止消化后反复吹打制成单细胞悬液,用200目,400目的滤网过滤,以800 r/min 离心 5 min,弃上清,用预先配置的无血清完全培养基重悬细胞,台盼蓝染色计数活细胞,以 6×108个/L接种到25 mL培养瓶中,添加培养基至4 mL. 在37 ℃, 50 mL/ L CO2,饱和湿度培养箱中水平放置,贴壁培养. 原代孵育24 h后弃去漂浮的死细胞,以2/3量换液,孵育3 d后进行传代,以6×108个/L接种到25 mL培养瓶中,继续孵育40~48 h后再次传代,如有细胞团块形成则以1代/1~2 d的速度传代,3代之后可形成圆形的克隆球.

1.2.2克隆球的分化用含100 mL/L胎牛血清的完全培养基重悬传代5次后的克隆球,接种于放置有预先包被左旋多聚赖氨酸盖玻片的35 mm培养皿内,每皿2 mL,动态观察克隆球的分化情况.

1.2.3克隆球及其分化细胞特异性标志物的染色应用p75NTR, GFAP, Peripherin,αActin抗体分别检测克隆球及其分化细胞系的性质,封片后分别用光学显微镜和激光共焦显微镜取图.

转贴于

2结果

2.1克隆球的生长状况接种初期,倒置显微镜下观察到单细胞和一些呈半球状或不规则的细胞团. 孵育24 h后,贴壁细胞胞呈圆形,胞体小,折光性好,部分贴壁细胞胞体增大,折光性增强,出现分裂相,形成2~5个细胞的细胞团,另一部分呈聚集生长. 3 d后形成十几或数十个细胞构成的克隆球(图1A),克隆球增大的同时向周围伸出放射状的细胞索,形成较小的次级克隆,这些克隆球形态完整,折光性减弱,周边界线清晰,但其中心密集,界限不清,无法观察到完整的细胞结构 (图1B). 重新传代培养,可观察到细胞胞体增大,出现分裂相的克隆球数量逐渐增多,杂质细胞减少,在连续传代过程中克隆球逐渐纯化.

2.2克隆球的分化接种含血清培养基12 h后,可见有细胞从克隆球中迁出,迁出的细胞贴壁生长;24 h后克隆球变扁,迁移出的细胞增多,相差显微镜下难以分别形态;48 h后贴壁细胞数量明显增加,逐渐形成单细胞层且细胞形态多元化.

2.3克隆球及其分化细胞系的免疫染色免疫细胞化学方法进行p75, Peripherin, GFAP, αActin免疫染色(图1C,图2, 3).

3讨论

许多研究表明GNCSCs在ENS的发生和发育起关键作用[3-4]. 目前HSCR的病因与RET等8种基因密切相关[4-5],在RET等基因缺失模型中, GNCSCs的生存、增殖、迁徙及分化等功能发生障碍,受累肠道的相应神经节出现缺失,表明先天性巨结肠可能是一种干细胞疾病. 由于HSCR及肠神经系统干细胞性疾病在手术治疗后仍遗留有严重的并发症,因此用干细胞来进行临床治疗已成为研究的热点和重点. 鉴于胚胎干细胞的来源限制及免疫排斥问题,成体GNCSCs的研究将为今后的移植试验提供新契机.

GNCSCs的培养方法建立在中枢神经干细胞的基础上. 依据神经干细胞经典的培养方法,再结合GNCSCs“收获率”低、难以分离纯化的特点,联合应用简化的特殊培养剂和神经干细胞培养方法进行体外培养. 连续传10代后,GNCSCs的相对比例明显增加,这种体外培养的方法能有效地分离和纯化GNCSCs,但并不能完全消除其他细胞. 如果继续传代,其纯化程度越高,后续的试验效果将更佳. 连续传代不仅纯化了GNCSCs,还证实了干细胞的自我更新特性. 在体外培养干细胞时,培养条件稍有变化可导致分化机制的启动,因此采用血清促分化法诱导GNCSCs分化既简单又可靠. 通过免疫染色,证实了GNCSCs分化细胞的类型,同时显示了分化的亚型神经元及神经胶质细胞的形态,并表明了成体干细胞的多向分化能力.

参考文献

[1] 杨帆,杨树源. 神经干细胞研究进展及临床应用前景[J].医学综述, 2002;8(8):491-493.

[2] Newgreen D, Young HM. Enteric Nervous System: development and developmental disturbancespart2[J]. Pediatr Dev Pathol,2002, 5(4): 329-349.

[3] Natarajan D, Grigoriou M, MarcosGutierrez CV, et al. Multipotential progenitors of the mammalian enteric nervous system capable of colonizing aganglionic bowel in organ culture[J]. Development 1999, 126(1):157-168.

相关文章