时间:2023-06-28 16:51:02
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇防雷建筑标准范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
关键词:高层建筑;防侧击雷;滚球法;GB50057-2010
中图分类号: TU208 文献标识码: A
1 绪言
随着国内经济的飞速增长,各地高层建筑日益增多,高层建筑采取合适的侧击雷防护也显得尤为重要和迫切。下文将对《建筑物防雷设计规范》的现行版本GB50057-2010在建筑物的侧击雷防护方面进行较为详细的分析。
2 GB50057-2010关于防侧击的规定及其与其他相关规范的异同
对于第一类防雷建筑物的侧击雷防护,相比GB50057-94(2000年版),GB50057-2010在4.2.4条中增加了“当建筑物高度超过30m时,首先应沿屋顶周边敷设接闪带,接闪带应设在外墙外表面或屋檐边垂面上,也可设在外墙外表面或屋檐边垂面外”的要求。此外,GB50057-2010在本条第7款沿用了GB50057-94(2000年版)第3.2.4条第七款的内容:“当建筑物高于30m时,尚应采取下列防侧击的措施:1)应从30m起每隔不大于6m沿建筑物四周设水平接闪带并应与引下线相连。2)30m及以上外墙上的栏杆、门窗等较大的金属物应与防雷装置连接。”
对第二类防雷建筑物而言,GB50057-2010在4.3.1条中也增加了“当建筑物高度超过45m时,首先应沿屋顶周边敷设接闪带,接闪带应设在外墙外表面或屋檐边垂面上,也可设在外墙外表面或屋檐边垂面外”的规定。与第一类防雷建筑物不同的是,GB50057-2010在规定侧击雷防护的4.3.9条中引用了IEC62305-3:2010 Protection against lightning - Part 3: Physical damage to structure and life hazard的相关内容并做了本地化修改,从而与GB50057-94(2000年版)的第3.3.10条有了较大的区别。本条第1款规定:“对水平突出外墙的物体,当滚球半径45m球体丛屋顶周边接闪带外向地面垂直下降接触到突出外墙的物体时,应采取相应的防雷措施”。第2款又规定:“高于60m的建筑物,其上部占高度20%并超过60m的部位应防侧击,防侧击应符合下列规定:1)在建筑物上部占高度20%并超过60m的部位,各表面上的尖物、墙角、边缘、设备以及显著突出的物体,应按屋顶上的保护措施处理。2)在建筑物上部占高度20%并超过60m的部位,布置接闪器应符合对本类防雷建筑物的要求,接闪器应重点布置在墙角、边缘和显著突出的物体上。3)外部金属物,当其最小尺寸符合本规范第5.2.7条第2款的规定时,可利用其作为接闪器,还可利用布置在建筑物垂直边缘处的外部引下线作为接闪器。4)符合本规范第4.3.5条规定的钢筋混凝土内钢筋和符合本规范第5.3.5条规定的建筑物金属框架,当作为引下线或与引下线连接时,均可利用其作为接闪器。”第3款 的内容“外墙内、外竖直敷设的金属管道及金属物的顶端和底端,应与防雷装置等电位连接”,与GB50057-94(2000年版)第3.3.10条第四款大致相同。GB50057-2010删去了GB50057-94(2000年版)第3.3.10条前三款的内容。而国家建筑标准设计图集02D501-2《等电位联结安装》第43页和44页依据其中第三款“应将45m及以上外墙上的栏杆、门窗等较大的金属物与防雷装置连接。”对金属门窗的等电位联结的具体做法做了规定:外墙外侧的栏杆、门窗等较大的金属物通过材料规格合适的连接导体与上、下圈梁或柱内的预埋件作等电位联结。
至于第三类防雷建筑,GB50057-2010在4.4.1条及4.4.8条中,将滚球半径由45m改为60m,其余内容基本与4.3.1条及4.3.9条相同。
3 以图示法来分析GB50057-2010防侧击的规定
图1 空旷地区某孤立高层建筑侧击雷防护的滚球法示意图
图1所示即为一个简单的范例。图中左侧建筑为第二类防雷建筑物,高度120m。依据GB GB50057-2010的说明,半径为45m的球体从空中沿接闪器A外侧下降,会接触到B处,故该处应设相应的接闪器;但不会接触到C、D处,故该两处无需设接闪器。然而,因B、C、D处均位于滚球半径以上,根据滚球法的原理,B处设置如图示的接闪器后,只能降低该接闪器附近的建筑结构遭雷击的可能性,并不能完全保护B处露台的外墙面,更不能保护C处与D处。因而,B、C、D处在任何时候都存在遭受雷电侧击的可能性。而若根据废止的GB50057-94(2000年版)第3.3.10条第三款的要求,按图集02D501-2的做法将45m以上的金属门窗与上、下圈梁或柱内的预埋件作等电位联结,将会降低侧击雷的危害。另外,位于45m到60m之间的G处,若按照4.3.9条第1款的规定,半径为45m的球体从空中沿接闪器A外侧下降,接触到B处后继续下降,将会接触G处,故该处应设相应的接闪器;但若根据4.3.9条第2款及其第1项、第2项的规定,因此处高度低于60m且在建筑物上部其高度的20%(96m)以下,并未要求布置接闪器以防侧击。此时,针对该建筑的情况,45m以上的突出外墙的物体,在未处于已设置于其他突出物上的接闪器保护范围内时,均需采取合适的措施以防侧击。
图2距离较近的两座高层建筑侧击雷防护的滚球法示意图
图2即为另一个简单范例。图中左右两侧各有一座高120m的相似建筑,均为第二类防雷建筑物,两建筑间隔为60m,建筑顶部周边均已敷设接闪带。根据4.3.9条第1款的规定,半径为45m的球体从空中沿接闪器A外侧下降,不会接触到B处,故该处无需设接闪器;而若按照4.3.9条第2款及其第1项、第2项的规定,因此处位于建筑物上部占其高度的20%并超过60m的部位,故应防侧击,并应将各表面上的尖物、墙角、边缘、设备以及显著突出的物体,按屋顶上的保护措施处理;布置接闪器应符合对本类防雷建筑物的要求,接闪器应重点布置在墙角、边缘和显著突出的物体上。此时,B处究竟应不应该设置接闪器以防侧击呢?从滚球法来判断,B处位于两座建筑构成的直击雷保护范围内,但笔者认为B处宜设置接闪器。目前国内外通行的防雷技术规范普遍采用相对科学的滚球法,而滚球法的滚球半径是根据雷电流的大小人为规定的。这就存在一个绕击问题,即比所规定的雷电流小的电流仍有可能穿越接闪器的保护范围而击在物体上的可能性。B处设置接闪器后,能更大程度的保护B处的露台及下方的C、D等处。至于C、D等处需不需要装设接闪器,则应综合平衡损害的容忍值和防雷投入的经济性而定。
4 结束语
《建筑物防雷设计规范》现行版本GB50057-2010在建筑物防侧击雷的规定中引用了IEC62305-3:2010《雷电防护.第3部分:建筑物的物理损害和生命危险》的条文,这体现了国家鼓励采用国际标准和国外先进标准的原则。然而,由于现行标准的配套图集尚未编制完成,项目具体情况的多样性和国外标准可能存在的局限性,对高层建筑的侧击雷防护,应该本着具体问题具体分析的原则,采用作图等方法进行处理,得出科学合理的结论。
参考文献
[1]《建筑物防雷设计规范》GB50057-2010
[2] 国家建筑标准设计图集02D501-2《等电位联结安装》
【关键词】高层建筑物 防雷检测 共用接地
引言:随着国民经济不断增长,人们的生活水平不断提高,城市化人口加剧,住房使用面积不断缩小,因而现代化建筑物高层建筑群体蜂拥而起,建筑物向高层发展,向智能化、舒适性发展,以满足人们日常便捷的生活需求。但同时也带来了负面影响,高层化建筑及智能化的高集成电子产品等给人们带来了较多的雷击安全隐患,一旦发生雷击事故,将可能造成重大经济损失和人员伤亡,因此现代化防雷对高层建筑物防雷的工作显得十分重要。而对高层建筑物防雷设施检测是防雷工作中的一个重要环节,可以进一步确保建筑物施工中防雷装置质量,提高建筑物投入使用后的防雷效益,以及对使用中高层建筑物防雷设施检测降低雷击安全隐患,确保住户生命财产安全有重要作用。但由于我国未出台防雷设施检测的标准操作规程,同时由于各检测机构的技术人员综合技能水平参差不齐,可能影响防雷检测工作的高质高效性。作者根据自己工作经验,对高层建筑物防雷设施检测中的关键问题进行分析,希望对增强我们防雷意识,提高防雷效益有一定帮助。
1.高层建筑物防雷系统设计构成
目前,对高层建筑物的防雷已经由传统的外部防雷转变为现代综合防雷系统,整个系统由外部防雷系统和内部防雷系统两部分组成,其中外部防雷系统包括引下线、预留端子、均压环、接闪器、共用接地等一系列防护措施,起到引流作用,将雷电流直接协放到大地;内部防雷系统主要包括等电位连接、屏蔽、分流、接地极合理布线等多种防护系统,起到保护室内电气设备和人身安全的作用,拦截感应雷和雷电脉冲,保障室内安全。两者必须相互结合,才能确保高层建筑物的整体防雷效益。在整个防雷系统的设计和施工中,主要使用的防雷装置有避雷带或避雷针,通过导线将避雷带或避雷针上的雷电流引入大地泄放。因此在高层建筑物设计和施工中,一般利用建筑物基础做接地体,利用墙内主筋做防雷引下线,且每根导线不少于两根主筋与接地体连接,并将主筋逐层焊接串联至顶层与避雷装置连接,确保工艺和装置质量,避免影响散流效果。所
2.检测前准备及检测方法
2.1检测前准备
为确保防雷设施检测工作的顺利进行,要做好检测前各项准备工作。首先由现场检测技术人员制定检测计划并执行相关环节的检测,并由项目熟悉技术人员组织检测人员做各个项目检测技术指标说明;由土建施工方落实防雷施工项目,检测人员落实检测责任,并准备一套从开始到竣工的检测表格。另外在检测前要制定详细的检测方案,熟悉被检测建筑物的地址、规模、性质、周围环境等全面信息,安排相应特长的专业检测技术人员,掌握并熟知防雷检测相关国家和地方行规标准,确保检测仪器设备齐全,质量可靠。
现场检测根据检测对象评估风险,合理安置检测仪器,并遵循先外后内的检测原则进行全面检测,检测完毕后对检测结果进行复核和确认签字。根据检测报告发放相关检测文件,对不合格的发放整改通知,并对后期整改复检,直至合格。
2.2检测方法
检测方法包括包括查阅资料法,对隐蔽等重要相关图纸资料的查看,核对;检查观感质量法,对各种防雷外部感质量进行检查,是否符合要求,并记录;测量技术参数法,运用各种仪器、设备对防雷装置的技术参数进行测量、读数、记录。分析处理法,根据所得相关参数做出计算分析,判断是否符合要求。
3.高层建筑物防雷设施检测中关键问题
3.1接地装置检测
对于高层建筑物的防雷接地体一般采用条形框或板形为基础的钢筋结构,对于建筑物防雷设施的导线或接地装置则采用建筑物自身基础桩或内梁钢筋结构,利用建筑物的基础桩、内梁钢筋作为引下线和接地装置的这种防雷设计具有经济性、美观性,且利于雷电散流,延长其使用寿命。接地装置的完整系统是将建筑物桩筋、地梁内主筋及柱内主筋焊接,组成一个闭合回路。这种接地装置与地面接触面大,且接地电阻低,降低钢筋在混凝土中的腐蚀性。若接地阻止不能满足设计要求时,可实施辅助地网增设。检测高层建筑物的防雷设施要以接地装置的准确性为基础。
3.2引下线的检测
引下线在高层建筑物防雷中的作用是将避雷针或避雷带与接地装置连接,从而疏散雷电流。高层建筑物的引下线一般采用内柱或剪力墙主筋,要求主筋不少于两根,且横截面直径不小于16mm。这种引下线设计同样具有经济、美观,且便于操作维护性,降低腐蚀危害。检测时还要根据《建筑物防雷设计规范》中对防雷类别引下线间距要求内容的执行,一类防雷建筑物引下线间距小于12m,二类防雷建筑小于18m,三类防雷建筑小于25m。柱主筋利用系数是引线下根数与柱主筋数的比值,越接近1越好。二类防雷建筑中,每根引下线在0.5m 处钢筋总面积不得小于0.82m?,三类防雷建筑不得小于0.37m?。如果遇到转换层,上述项目需逐项重复检测。
3.3均压环检测
对于高层建筑物,均压环的作用除了防止侧击雷,还使接闪的雷电流在所有引下线上得到泄放,对均压环检测应应按不同的防雷类别来检测均压环的起始高度、间距、敷设方式、材料规格和引下线的焊接搭接长度等各方面是否符合设计要求。二类防雷建筑从45m 起设置均压环,超过45米以上每隔两层绕外墙做均压环,并与引下线连接,用回路电阻测试仪实测均压环环阻值不应大于0.05Ω;均压环是否采用不小于Φ8mm的镀锌圆钢,或不小于40mm×4mm的镀锌扁钢;以及均压环敷设是否在最外群并与各引下线连接,搭接长度是否符合规范规定等项目全面检测。
3.4电源防雷设施检测
由于雷电电磁脉冲易通过电源线等各种信号传输线路入侵到室内,因此要对电源部分做好防雷保护。对其检测时首先对电源系统检测,查看总配电及各层配电箱等相关设施安装是否安装设计要求,安装SPD的规格、参数及数量、位置是否符合防雷技术要求。同样检测高层建筑物内的计算机网络系统、监控系统等多种智能系统安装的SPD是否符合要求。对弱电机房进行防雷接地装置检测,配电系统安装的避雷器、设备金属外壳等需要与总接地母排连接,并对建筑物内各金属设施做等地位连接;室内电气接地、防雷接地及保护接地等接地系统必须共用一个接地。
参考文献
[1] 建筑物防雷装置检测 2010-09
[2] 高层建筑物防雷检测要点
[3] 浅析高层建筑物防雷设施检测的几个要点2012-03
【关键词】:工程建设;防雷工程;问题分析
中图分类号: TU856 文献标识码: A 文章编号:
引言
随着科学技术的进步,工程建设的防雷水平也得到了大幅度提高,从而使得建筑的安全性能也有所提高。然而就我国建筑工程防雷的实际情况而言,其中还存在着一定的问题,这些问题不仅影响到建筑工程防雷的水平,甚至还可能威胁到人们的生命财产安全。因此,为了提高建筑工程防雷水平,加大对其的分析研究力度不仅意义重大,而且迫在眉睫。
一、雷电的形成及其危害;
雷电是一种大气放电现象。当太阳把地面晒得很热时,地面的热空气携带大量的水汽不断地上升到高空,形成大范围的积雨云,积雨云的不同部位聚集着大量的正电荷或负电荷,形成雷雨云,而地面因受到近地面雷雨云的电荷感应,也会带上与云底相反极性的电荷。当云层里的电荷越积越多,达到一定强度时,就会把空气击穿,打开一条狭窄的通道强行放电。闪电的高温会使空气急剧膨胀,同时也会使水滴汽化膨胀,从而产生冲击波,这种强烈的冲击波活动形成了雷声。
雷云放电时,引起很大的雷电流,可达几百千安,从而产生极大的破坏作用。雷电流通过被雷击物体时,产生大量的热量,使物体燃烧。被击物体内的水分由于突然受热,急骤膨胀,还可能使被击物劈裂。所以当雷云向地面放电时,常常发生建筑物损坏或者引起火灾,发生人畜伤亡。雷云在建筑物和架空线路上空形成很强的电场,在建筑物和架空线路上便会感应出与雷云电荷相反的电荷。在雷云向其他地方放电后,云与大地之间的电场突然消失,但聚集在建筑物的顶部或架空线路上的电荷不能很快全部泄入大地,残留下来的大量电荷,相互排斥而产生强大的能量使建筑物震裂。同时,残留电荷形成的高电位,往往造成屋内电线、金属管道和大型金属设备放电,击穿电气绝缘层或引起火灾、爆炸。
二、防雷工程及防雷技术在我国的现状
随着我国社会主义现代化建设工作的不断落实,对建筑物的防雷效力要求的愈来愈高,要求我们防雷工程的专业性要求也愈来愈高。在整个建筑工程结构的日趋大型化、复杂化的形势底下,其防雷工程在开展的过程中任何一个要点一旦出现问题,都会严重滞碍了整个防雷工程的进度,影响建筑物使用安全,甚至引生大型的雷击事故,给人们生命财产造成损失。防雷工程与传统防雷工作的根本性区别就在于防雷工程还实现了防雷工程的系统化建设,这给建筑物带来了更大的安全保障。
然而,由于各方面的原因,与之配套的防雷技术在我国的应用则未能得到全方位的落实,这就使得我国的防雷工程的实效得不到有效保障了:防雷技术的应用是将防雷技术联合防雷工程,加快我国防雷工程建设工作的一项重要工作。根据本人从事工程建设多年的经验,工程建设防雷应从,图纸设计,图纸审查,施工过程管理,工程验收的施工全程做好细致的工作,而这些过程中都容易出现问题。严格执行规范标准,加强过程监督检查,认真做好工程验收,确保工程建设安全。
三、建筑防雷措施;
1、外部防雷装置与内部防雷装置;
国际电工委员会编制的标准,将建筑物的防雷装置分为外部防雷装置和内部防雷装置。外部防雷装置由接闪器、引下线和接地装置三部分组成。接闪器是指避雷针、避雷带和避雷网,它位于建筑物的顶部,其作用是引雷或叫截获闪电,即把雷电流引下。引下线,上与接闪器连接,下与接地装置连接,它的作用是把接闪器截获的雷电流引至接地装置。接地装置位于地下一定深度之处,它的作用是使雷电流顺利流散到大地中去。内部防雷装置的作用是减少建筑物内的雷电流和所产生的电磁效应以及防止反击、接触电压、跨步电压等二次雷害。除外部防雷装置外,所有为达到此目的所采用的设施、手段和措施均为内部防雷装置,它包括等电位连接设施(物)、屏蔽设施、加装的避雷器以及合理布线和良好接地等措施。;
2、防雷电感应和雷电波侵入;
雷电放电时,在附近导体上产生的静电感应和电磁感应,它可能使金属部件之间产生火花。因此被保护建筑物内的金属物接地,是防雷电感应的主要措施。首先,是做好等电位联结。按照GB50057-2010有关规定对一、二类防雷建筑物内平行或交叉敷设的金属管道,其净距小于100mm时,应采用金属线跨接,是防止电磁感应所造成的电位差能将小空隙击穿,而产生电火花,每隔≤30m做好接地。
由于雷电对架空线或金属管道的作用,雷电波可能沿着这些管线侵入屋内,危及人身安全或损坏设备。因此,做好进线端的防雷保护,做好均压环及防侧击雷是防雷电波侵入的主要措施。;一、二类防雷建筑低压进线全线采用直埋地引入,将线路架空引入户内时不少于15m的一段应换电缆(金属铠装电缆直埋地,护套电缆穿钢管)进户,并在架空与电缆换接处做好避雷保护。二类防雷建筑当架空线直接引入时,除在入户处加装避雷器,并将进户装置铁件做好接地外,靠近建筑物的两根电杆上的铁件也应做好接地,且冲击接地电阻≤30Ω,所有弱电进线的保护应同强电进线。防雷建筑要做好均压环及防侧击雷保护。均压环从三层开始,环间垂直距离≤12m,所有引下线、建筑物的金属结构和金属设备均与环可靠连接,均压环可利用结构圈梁内的钢筋(钢筋必须贯通成环路)。一类防雷建筑30m以上,二类防雷建筑45m以上,三类防雷建筑60m以上,要做好防侧击雷保护,沿建筑物外墙做一周水平避雷带,带与带间垂直距离≤6m,外墙上所有金属栏杆,门窗均与避雷带可靠连接,避雷带再与引下线可靠连接。竖直敷设的金属管道及金属物的顶端和底端与防雷装置可靠连接,目的是在于等电位,并且由于两端连接使其与引下线形成并联线路,使雷电流更讯速的入地。
3、防雷电流经引下线和接地装置时产生高电位对金属设备或电气线路反击的措施;
目前建筑物内大多采用共同接地装置,当雷直击于本建筑物防雷装置时,假设流经靠近低压电气装置处接地装置的雷电流为20KA,当冲击接地电阻=1Ω时,接地装置上电位升高为20KV,而一般室内低压装置的耐冲击电压最高为8KV。其结果就使低压电气装置绝缘较弱处可能被击穿而造成短路,发生火灾、损坏设备,这是非常危险的。
4、必须有一个完整的技术协调链
[关键词]建筑物防雷设施装置间距跨步电压埋地深度接地电阻
一、前言
在建筑物防雷设计中,设计人员对一、二级防雷建筑物的防雷设计比较重视,疏漏差错很少,但对大量的三级防雷建筑物的防雷设计却常有忽视。由于设计质量管理规定:对于一般工程的电气设计允许可以不要计算书,因此许多设计人员对三级防雷建筑物的防雷设计,不再进行设计计算,仅凭经验而设计。对于防雷设施的是否设置及防雷设施的各种安全间距未进行计算、验算,因此造成大量的三级防雷的建筑物的防雷设计、施工存在较大的的盲目性,使有些工程提高了防雷级别,增加了工程造价,而有些工程却未按规范设计、施工,造成漏错,带来很大隐患和不应有的损失。
二、建筑物防雷规范的概述及比较
现今建筑物防雷标准有1993年8月1日起实施的《民用建筑电气设计规范》?JGJ/T16-92?推荐性行业标准,1994年11月1日起实施的《建筑物防雷设计规范》?GB50057-94?强制性国家标准。GB50057-94使建筑物的防雷设计、施工逐步与国际电工委员会?IEC?防雷标准接轨,设计施工更加规范化、标准化。
GB50057-94将民用建筑分为两类,而JCJ/T16-92将民用建筑防雷设计分为三级,分得更加具体、细致、避免造成使某些民用建筑物失去应有的安全,而有些建筑物可能出现不必要的浪费。为更好的掌握IEC、GB50057-94、JCJ/T16-92三者的实质,特择其主要条款列于表1。且后面的分析、计算均引自JCJ/T16-92中的规定。
三、预计的年雷击次数确定设置防雷设施
除少量的一、二级防雷建筑物外,数量众多的还是三级防雷及等级以外的建筑物防雷,而对此类建筑物大多设计人员不计算年预计雷击次数N,使许多不需设计防雷的建筑物而设计了防雷措施,设计保守,浪费了人、材、物。现计算举例说明:
例1:在地势平坦的住宅小区内部设计一栋住宅楼:6层高?层数不含地下室,地下室高2.2m?,三个单元,其中:长L=60m,宽W=13m,高H=20m,当地年平均雷暴日Td=33.2d/a,由于住宅楼处在小区内部,则校正系数K=1。
据JCJ/T16-92中公式?D?2-1?、?D?2-2?、?D?2-3?、?D?2-4?得:与建筑物截收相同雷击次数的等效面积?km2?:Ae=?L?W+2?L+W?H?200-H?+πH?200-H??×10-6=?60×13+2(60+13)20(200-20)+3.14×20(200-20)?×10-6=0.02084?km2?
建筑物所处当地的雷击大地的年平均密度:
Ng=0.024Td1.3=0.024×33.21.3=2.28次/?km2?a?
建筑物年预计雷击次数:
N=KNgAe=1×2.28×0.02084=0.0475?次/a?
据JCJ/T16-92第12.3.1条,只有在N≥0.05?GB50057-94中:N≥0.06?才设置三级防雷,而本例中:N=0.0475<0.05,且该住宅楼在住宅楼群中不是最高的也不在楼群边缘,故该住宅楼不需做防雷设施。
根据以上计算步骤,现以L=60m,W=13m,分别以H=7m、10m、15m、20m四种不同的高度,K值分别取1,1.5,1.7,2,Ng=2.28?km2?a?进行计算N值,计算结果见表2。
从表2中的数据可知,在本区内:①当K=1时,举例中的建筑物均N<0.05,不需设置防雷设施。②当K=1.5时,即建筑物在河边、湖边、山坡下或山地中土壤电阻率较小处、地下水露头处、土山顶部、山谷风口等处的或特别潮湿的建筑物,在高度达15m或以上者,必须设置三级防雷措施。③当K=1.7时,即金属的砖木结构的建筑物,高度达7m及以上者,必须设置三级防雷措施。④当K=2时,即建筑物位于旷野孤立的位置,高度达7m?两层以上者,均设置三级防雷措施。
可见,有的建筑物在20m的高度,却不需设置防雷措施,而有的建筑物高度在7m,就必须设置三级防雷措施。关键因素在于建筑所处的地理位置、环境、土质和雷电活动情况所决定。
同时在峻工的工程中,我们也看到,例1中的民用建筑物,有许多类似的工程不该设置防雷却按三级防雷设计施工了,施工后的防雷接地装置如图1所示。
其中8组引下线均利用结构中的构造柱的4?12主筋,水平环路接地体埋深1m,距楼外墙1m。以上钢材均为镀锌件,则共需镀锌钢材0.192t,人工费2950元,定额预算工程直接费约0.75万元。类似这种三级防雷以外的住宅楼、办公楼及其他民用建筑,在我们地区1998年约竣工600~800栋,仅增设的防雷设施其工程直接费约为450~600万元。以此类推,在全省、全国因提高防雷等级而提高工程造价?浪费?的数字是巨大的。因此,设计人员对民用建筑物的防雷设计必须对建筑物年预计雷击次数进行计算,根据计算结果,结合具体条件,确定是否设置防雷设施。
四、防雷设施与人、金属管道等的安全距离
1.雷电流反击电压与引下线间距的关系
当建筑物遭受雷击时,雷击电流通过敷设在楼顶的避雷网,经接地引下线至接地装置流入地下,在接地装置上升高的电位等于电流与电阻的乘积,在接地引下线上某点?离地面的高度为h?的对地电位则为
Uo=UR+UL=IkRq+L?1?
式中Ik―雷电流幅值?kA?
Rq―防雷装置的接地电阻?Ω?
L―避雷引下线上某点?离地面的高度的为h?到接地装置的电感?μH?
雷电流的波头陡度?kA/μH?
?1?式中右边第一项?UR即IkRq?为电位的电阻分量,第二项?UL?即?为电位的电感分量,据GB50057-94有关规定,三类?级?防雷建筑物中,可取雷电流Ik=100kA,波头形状为斜角形,波头长度为10μs,则雷电流波头陡度==10kA/μs,取引下线单位长度电感Lo=1.4μH/m,则由?1?式可得出
Uo=100Rq+1.4×h×10=100Rq+14h?kV??2?
根据?2?式,在不同的接地电阻Rq及高度h时,可求出相应的Uo值,但引下线数量不同,则Uo的数值有较大差异。下面以例1中引下线分别为4、8根?假定每根引下线均流过相同幅度的雷击电流,且忽略雷电流在水平避雷上的电阻及电感压降?,计算出的UR/UL值列于表3。
由表3中可知,接地电阻?Rq?即使为零,在不同高度的接地引下线由于电感产生的电位?电感分量?也是相当高的,同样会产生反击闪络。
2.引下线与人体之间的安全间距
雷击电流流过引下线及接地体上产生的雷击电压,其电阻分量存在于雷电波的持续时间?数十μs?内,而电感分量只存在于波头时间5μs内,因此两者对空气绝缘作用有所不同,可取空气击穿强度:电感UL=700kV/m,电阻ER=500kV/m。混凝土墙的击穿强度等于空气击穿强度,砖墙的击穿强度为空气击穿强度的一半。
据表3计算的数据,下面计算引下线与人体之间的安全距离。因每组引下线利用构造柱中的4?12钢筋,可以认为引下线与人体、金属管道、金属物体之间为空气间隔,且认为引下线与空气之间间隔层为抹灰层,可忽略不计。
?1?当引下线为4组时,人站在一层,h1=3m,Rq=30Ω,则URI=750kV?UL1=10.5kV?人体与引下线之间安全距离L安全1>
?方可产生的反击。人站在5层,h2=15m,Rq=30Ω,则:UR2=750kV?U12=52.5kV?则安全距离L安全2>
1.575m<1.83m。在上述两个房间内,保持如此的距离是很难做到的,因此存在很危险的雷电压反击。
(2)当引下线为8组时,当站在一层房间内,h1=3m,Rq=30Ω,则UL1=5.25kV?UR1=3.75kV?则安全间距L安全1>
0.757m。人站在5层时,h2=15m?则UL2=26.25kV?UR2=375kV?则安全间距L安全2>
可见,引下线数量增加一倍,安全间距则减小一半。因此设置了防雷设施后,应严格按照规范设置引下线的数量及间距。同时建议可缩短规范内规定的引下线间距,多设一定数量的引下线,可减少雷电压反击现象。这样处理,对增加工程造价微乎其微。
3.引下线与室内金属管道、金属物体的距离
?1?当防雷接地装置未与金属管道的埋地部分连接时,按例一中数据:楼顶的引下线高度h=Lx=20m,Rq=30Ω时,据JCJ/T16-92第12.5.7条规定,Lx<5Rq=5×30=150m,则
Sal≥0.2Kc?Ri+0.1Lx?
式中Kc―分流系数,因多根引下线,取0.44
Ri―防雷接地装置的冲击电阻,因是环路接地体,Ri=Rq=30Ω
Sal―引下线与金属物体之间的安全距离/m
则
Sal≥0.2×0.44×?30+0.1×20?=2.816m。
?2?当防雷接地体与金属管道的埋地部分连接时,按式?12.3.6-3?,Sa2≥0.075KcLx=0.075×0.44×20=0.66
由以上计算的Sal≥2.816m,Sa2≥0.66m,在实际施工时,均很难保证以上距离,因为金属管道靠墙0.1m左右安装,又由于Sa2≤Sal,因此可将防雷接地装置与金属管道的埋地部分连接起来,同时,在楼层内应将引下线与金属管道?物体?连接起来,防止雷电反击。
4.引下线接地装置与地下多种金属管道及其它接地装置的距离Sed
据JCJ/T16-92第12.5.7条及公式?12.3.6-4?:Sed≥0.3KcRi=0.3×0.4×30=3.96m,而在实际施工中,地下水暖管道交错纵横,先于防雷及电气接地装置施工,等施工后者时,已经很难保证Sed≥3.96m了,也难于保证不应小于2m的规定,因此可将防雷接地装置与各种接地装置共用,即实行一栋建筑一个接地体。将接地装置与地下进出建筑物的各种金属管道连接起来,实行总等电位联结。
综上所述,在实行一栋建筑一个总带电位联结、一个共用接地体的措施后,在楼顶部应将避雷带?针?与伸出屋面的金属管道金属物体连接起来,在每层内的建筑物内应实行辅助等电位联结,即引下线在经过各个楼层时,将它与该楼层内的钢筋、金属构架全部联结起来,于是不论引下线的电位升到多高,同楼层建筑物内的所有金属物?包括地面内钢筋、金属管道、电气设备的安全接地?都同时升到相同电位,方可消除雷电压反击。
五、跨步电压与接地装置埋地深度
跨步电压是指人的两脚接触地面间两点的电位差,一般取人的跨距0.8m内的电位差。跨步电压的大小与接地体埋地深度、土壤电阻率、雷电位幅值等诸多因素。当接地体为水平接地带时,
?3?
式中ρ―土壤电阻率/?Ω.m?
L―水平接地体长度m
Ik―雷电流幅值kA
K―接地装置埋深关系系数,见表4
Ukmax―跨步电压最大值?kV?
按例一中的接地装置计算,接地体长度L=146m,取Ik=150k,土质为砂粘土,ρ=300Ω.m,则按埋深深度0.3m,0.5m,0.8m,1m时相应的K值取2.2,1.46,0.97.0.78。按?3?式计算:
其Ukmax值分别为107.97,71.66,47.61,38.28/kV。
世界各国根据发生的人身冲击触电事故分析,认为相当于雷电流持续时间内人体能承受的跨步电压为90~110kV。从计算结果可知,该工程的防雷接地体埋深0.8m时,跨步电压已在安全范围内。JCJ/T16-92第12.9.4规定接地体埋设深度不宜小于0.6m,第12.9.7条规定:防击雷的人工接接地体距建筑物入口处及人行道不应小于3m,当小于3m时,接地体局部埋深不应小于1m,或水平接地体局部包以绝缘物。包以绝缘物易增大其接地电阻,因此还是以埋深大于1m时为好。这样处理,只增加少量工程造价,却将接地装置处理得更加安全可靠,起到事半功倍的效果。
若采用基础和圈梁内钢筋作为环形接地体,但由于三级防雷的建筑物大多为毛石基础,毛石基础上的圈梁埋地一般为0.3m左右,较浅根本达不到防止危险的跨步电压需将接地装置埋深1m的要求,因此不宜采用圈梁做为环形接地体?指三级防雷建筑物?。
六、区别工频、冲击接地电阻
工频、冲击接地电阻两者的区别及关系,许多施工技术人员不能区别与明晰,使部分工程的防雷装置接地电阻已达到设计值,而仍然盲目采用降阻措施,增加了工程造价。
关键词:多层建筑物防雷装置设计审核
惠阳位于珠江三角洲东南部,南抱大亚湾,与香港隔海相望;西连深圳;中部与惠州市相连,随着国民经济的迅速发展,国民经济实力的增强,惠州市各类多层建筑物拔地而起,从而给防雷审核工作提出许多新的问题和更高的要求。笔者在两年多的防雷装置设计审核中积累了一些多层建筑物的防雷设计审核经验和方法,下面加以介绍,供大家参考。
防雷装置施工图审核的依据是:《建筑物防雷设计规范》GB50057-94(2000版本)、《建筑物电子信息系统防雷技术规范》GB50343-2004、IEC1024-1《建筑物防雷》、IEC1024-1《雷电电磁脉冲防护》、《建筑与建筑群综合布线系统工程设计规范》GB/T50311―2000、《防雷与接地安装》D501-1~4以及相关行业防雷技术标准。
建设单位依照《防雷装置设计审核和竣工验收规定》提交各种材料后,防雷装置审核人员按照以下程序进行审核。
1 多层建筑物的防雷装置设计
1.1建筑设计总平面图。通过总平面图,掌握建筑物的位置、地理环境,从而可以查找该地雷暴日数和雷击的灾害记录。
1.2 建筑设计总说明。掌握工程概况、设计依据、水位、土壤电阻率、标高、消防等情况。
1.3结构设计总说明。了解钢筋的锚固和连接,了解构造柱、圈梁的详细位置及防雷结构措施,掌握避雷引下线钢筋的规格、数量及焊接技术要求。
1.4综合布线。是否按照《建筑与建筑群综合布线系统工程设计规范》GB/T50311-2000标准设计。
1.5基础防雷接地平面图
1.5.1 桩(承台)的利用系数a≥0.25 。
1.5.2 桩筋利用数:每根用作引下线的柱子至少有两根主筋连接且φ≥20。
1.5.3 利用基础内钢筋作接地体,在周围地面以下距地面不小于0.5米,每根避雷引下线连接的钢筋表面积总和,二类防雷建筑物应满足S≥4.24KC2,三类防雷建筑物应满足S≥1.89KC2。
1.6 避雷引下线
1.6.1避雷引下线的位置、间距(二类防雷:间距≤18m,三类防雷:间距≤25m)、用材规格(圆钢直径φ≥10mm,扁钢截面≥48mm2)。
1.6.2框架结构应利用外墙柱子主筋作避雷引下线(且利用所有围墙柱筋,建筑物阳角位的柱子必须利用)。
1.6.3 避雷引下线应是柱内对角且至少有两根主钢筋,要求从上到下连通,上接至避雷带,下接至承台、桩。
1.6.4 避雷引下线主筋每层应加箍筋连接或通过点焊的方法把所有的主筋相连接。
1.7屋顶防雷平面图
1.7.1避雷网格(二类防雷建筑物:10m×10m或8m×12m,三类防雷建筑物:20m×20m或16m×24m)、带、针(保护范围的估算)的布置、高度、材料(圆钢直径φ≥8mm)、焊接质量、连接处(搭接)、转弯处。
1.7.2女儿墙上的避雷网带:墙宽为20cm,带高至少15cm,墙宽为30cm,带高至少20cm,避雷带支架采用φ10的圆钢。
1.7.3突出天面的金属物与防雷装置连接不少于两处;如通风机、中央空调、电机机房、天线杆、旗杆、水箱等。
1.7.4 保护范围的计算。
2电气设计说明、均压环、等电位连接
2.1 判定防雷类别是否正确,说明是否合理、漏项。
2.2 低压配电系统的PE干线,接地干线与专用接地线,穿线钢管及接地装置连接在一起,构成接地保护网。所有电器设备、不带电的金属外壳、配线用的钢管、电器安装的构件、电缆桥架、电缆支架、金属接线盒均与PE线连接,沿电缆桥架外侧敷设4×40镀锌扁钢与桥架连接。
2.3 防雷区LPZ0A、LPZ0B和LPZ1交界处,所有进出建筑物的外来导电物体都应做等电位连接。
2.4 在后续防雷区间交界处的等电位连接,可采用LPZ0A、LPZ0B和LPZ1交界处的等电位连接的一般原则。
2.5 电梯轨道首尾端与防雷接地连接且每间隔20米等电位连接一次,设计时应预留。
2.6 设总等电位端子MEB,对各类进出建筑物的金属构件和管件进行等电位连;卫生间作局部等电位连接。
2.7 玻璃幕墙、金属工艺装饰作等电位连接。
2.8配电系统:供电的形式、电气竖井内的线路布置、电涌保护器配置情况。
2.9 侧击雷的防护措施
从距地面30m开始,每隔一层设置均压环并且与相同高度的梁、柱或楼板钢筋及金属窗框作良好的电气连接。
2.10 接地电阻≤1欧姆。
3,计算机网络装置
3.1将N和NC比较,确定电子系统设备是否安装雷电防护装置。
3.1.1 当N≤NC时,可不安装雷电防护装置。
3.1.2当N>NC时,应安装雷电防护装置。
3.2 按防雷装置拦截效率E的计算公式E=1-NC/N及建筑物电子信息系统的重要性、适用性确定雷电防护等级,共分为A、B、C、D四级。
3.3 网络中心选择的位置,及信息系统的设备等电位连接。
3.4 供电形式应采用TN-S或TN-C-S。
3.5 电涌保护器的选型、配置是否正确。
3.6 防雷、防静电接地。
4 消防控制系统.、有线电视系统、安全防护系统、程控数字用户交换机线路
4.1 电涌保护器的选型、配置。
4.2 等电位及防雷、防静电接地。
5 防雷审核中经常出现的几种错误
5.1 不注明防雷设计依据和防雷类别或防雷类别分类错误。
5.2 接地电阻设计错误,设计的过小(小于0.5Ω),过大(大于30Ω)。
5.3避雷引下线间距超过规定的要求(引下线间距应计算转弯处的长度)。
5.4 屋顶防雷平面不同高度未标注标高。
5.5 避雷带遇伸缩缝、温度缝、沉降缝时未设计补偿措施。
5.6 电气说明没有供电系统采取的接线方式。
5.7供电接地与防雷接地没有共用接地系统。
5.8 未设计玻璃幕墙、铁件工艺等电位连接。
5.9 配电室、消防控制柜只有一处与接地系统连接。
5.10 没有设计电涌保护器或只设计一级电涌保护器。
6 总结
在多层建筑物防雷装置施工图设计审核中,掌握防雷审核要点,能够快捷、高效、准确无误的审核防雷施工图,同时要求防雷审核人员要具有识别图纸能力,正确施图;熟练掌握防雷技术规范及行业防雷技术规范,就能快速准确无误的作出防雷审核意见。
参考文献:
1、苏邦理等《雷电与避雷工程》1997.
关键词:建筑物 防雷保护
随着现代社会的发展,建筑物的规模不断扩大,其内各种电气设备的使用日趋增多,尤其是计算机网络信息技术的普及,建筑物越来越多采用各种信息化的电气设备。我国每年因雷击破坏建筑物内电气设备的事件时有发生,所造成的损失非常巨大。因此建筑物的防雷设计就显得尤为重要。
直击雷和感应雷是雷电入侵建筑物内电气设备的两种形式。直击雷是雷电直接击中线路并经过电气设备入地的雷击过电流;感应雷是由雷闪电流产生的强大电磁场变化与导体感应出的过电压,过电流形成的雷击。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)规定,建筑物的防雷区划分为LPZOA,LPZOB,LPZ1,LPZn+1等区(各区的具体含义本文不再赘述)。将需要保护的空间划分为不同的防雷分区,是为了规定各部分空间不同的雷击电磁脉冲的严重程度和等电位联结点的位置,从而决定位于该区域的电子设备采用何种电涌保护器在何处以何种方式实现与共同接地体等电位联结。
建筑物直击雷的保护区域为LPZOA区,其保护设计已为电气设计人员所熟知,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版),设计由避雷网(带),避雷针或混合组成的接闪器,立柱基础的钢筋网与钢屋架,屋面板钢筋等构成一个整体,避雷网通过全部立柱基础的钢筋作为接地体,将强大的雷电流入大地。建筑物感应雷的保护区域为LPZOB,LPZ1,LPZn+1区,即不可能直接遭受雷击区域;感应雷是由遭受雷击电磁脉冲感应或静电感应而产生的,形成感应雷电压的机率很高,对建筑物内的电气设备,尤其低压电子设备威胁巨大,所以说对建筑物内部设备的防雷保护的重点是防止感应雷入侵。由感应雷产生的雷电过电压过电流主要有以下三个途径:(1)由供电电源线路入侵;高压电力线路遭直击雷袭击后,经过变压器耦合到各低压0.38KV/0.22KV线路传送到建筑物内各低压电气设备;另外低压线路也可能被直击雷击中或感应雷过电压。据测,低压线路上感应的雷电过电压平均可达10KV,完全可以击坏各种电气设备,尤其是电子信息设备。(2)由建筑物内计算机通信等信息线路入侵;可分为三种情况:①当地面突出物遭直击雷打击时,强雷电压将邻近土壤击穿,雷电流直接入侵到电缆外皮,进而击穿外皮,使高压入侵线路。②雷云对地面放电时,在线路上感应出上千伏的过电压,击坏与线路相连的电器设备,通过设备连线侵入通信线路。这种入侵沿通信线路传播,涉及面广,危害范围大。③若通过一条多芯电缆连接不同来源的导线或者多条电缆平行铺设时,当某一导线被雷电击中时,会在相邻的导线感应出过电压,击坏低压电子设备。(3)地电位反击电压通过接地体入侵;雷击时强大的雷电流经过引下线和接地体泄入大地,在接地体附近放射型的电位分布,若有连接电子设备的其他接地体靠近时,即产生高压地电位反击,入侵电压可高达数万伏。建筑物防直击雷的避雷引入了强大的雷电流通过引下线入地,在附近空间产生强大的电磁场变化,会在相邻的导线(包括电源线和信号线)上感应出雷电过电压,因此建筑物避雷系统不但不能保护计算机,反而可能引入了雷电。计算机网络系统等设备的集成电路芯片耐压能力很弱,通常在100伏以下,因此必须建立多层次的计算机防雷系统,层层防护,确保计算机特别是计算机网络系统的安全。
由此可见,对建筑物内各电气设备进行防感应雷保护设计是必不可少的一项内容;设计的合理与否,对电气设备的安全使用与运行有着至关重要的作用。
目前,在感应雷的防护当中,电涌保护器的使用已日趋频繁;它能根据各种线路中出现的过电压,过电流及时作出反应,泄放线路的过电流,从而达到保护电气设备的目的。
根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.4条规定:电涌保护器必须能承受预期通过它们的雷电流,并应符合以下两个附加要求:通过电涌时的最大钳压,有能力熄灭在雷电流通过后产生的工频续流。即电涌保护器的最大钳压加上其两端的感应电压应与所属系统的基本绝缘水平和设备允许的最大电涌电压协调一致。
现在,我们根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定的各类防雷建筑物的雷击电流值进行电涌保护器的最大放电电流的选择。
一、一类防雷建筑物
1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为200KA,波头10us;二次雷击电流幅值为50KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计);首次雷击:总配电间第根供电线缆雷电流分流值为200*50%/3/3=11.11KA;后续雷击;总配电间每根供电线缆雷电流分流值为50*50%/3/3=2.78KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即11.11KA*30%=3.3KA及2.78KA*30%=0.8KA,而在电涌保护器承受10/350 us的雷电波能量相当于8/20 us的雷电波能量的5~8倍,所以选择能承受8/20 us波形电涌保护器的最大放电电流为11.11*8=88.9KA;即设计应选用电涌保护器SPD的最大放电电流为100KA,以法国SOULE公司产品为例,选用PU100型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。
2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20 us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。
二、二类防雷建筑物
1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为150KA,波头10us;二次雷击电流幅值为37.5KA,波头0.25us;根据图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为150*50%/3/3=8.33KA;后续雷击:总配电间每根供电线缆雷电流的分流值为37.5*50%/3/3=2.08KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即 8.33KA*30%=2.5KA及2.08KA*30%=0.6KA,而在电涌保护器承受10/350 us的雷电波能量相当于8/20 us的雷电波能量的5~8倍,所以选择能承受8/20 us波形电涌保护器的最大放电电流为8.33*8=66.6KA;即设计应选用电涌保护器SPD的最大放电电流为65KA,以法国SOULE公司产品为例,选用PU65型。根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。
2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20 us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。
三、三类防雷建筑物
1、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)附录六规定,其首次雷击电流幅值为100KA,波头10us;二次雷击电流幅值为25KA,波头0.25us;根据附图1,全部雷电流i的50%按流入建筑物防雷装置的接地装置计,另外50%按1/3分配于线缆计;首次雷击:总配电间每根供电线缆雷电流分流值为100*50%/3/3=5.55KA;后续雷击:总配电间每根供电线缆雷电流分流值为25*50%/3/3=1.39KA;如果进线电缆已经进行屏蔽处理,其每根供电线缆雷电流的分流值将减低到原来的30%,即 5.55KA*30%=1.7KA及1.39KA*30%=0.4KA,而在电涌保护器承受10/350 us的雷电波能量相当于8/20 us的雷电波能量的5~8倍,所以选择能承受8/20 us波形电涌保护器的最大放电电流为5.55*8=44.4KA;即设计应选用电涌保护器SPD的最大放电电流为40KA,以法国SOULE公司产品为例,选用PU40型,根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.7条规定,该级电涌保护器应在总配电间处安装,即在LPZOA,LPZOB与LPZ1区的交界处安装。
2、根据国家标准《建筑物防雷设计规范》GB50057-94(2000年版)第6.4.8,第6.4.9条规定,在分配电箱处,即在LPZ1与LPZ2区的交界处安装电涌保护器,其额定放电电流不宜小于5KA(8/20 us),故此处应选用电涌保护器SPD的最大放电电流为40KA,额定放电电流为10KA;以法国SOULE公司产品为例,选用PU40型。
在供电线路中,电涌保护器的具体安装以较常用的TN-S系统,TN-C-S系统,TT系统为例,示意如下:
1)TN-S系统过电压保护方式
2)TN-C-S系统过电压保护方式
3)TT系统过电压保护方式
综上所述可见,在防雷保护设计中,总的防雷原则是采用三级保护:1、将绝大部分雷电流直接引入地下基础接地装置泄散;2、阻塞沿电源线或数据、信号线引入的过电压;3、限制被保护设备上浪涌过电压幅值(过电压保护)。这三道防线,缺一不可,相互配合,各行其责。目前通常作法是以下三点:
1)建立联合共用接地系统,形成等电位防雷体系
将建筑物的基础钢筋(包括桩基、承台、底板、地梁等),梁柱钢筋,金属框架,建筑物防雷引下线等连接起来,形成闭合良好的法拉第笼式接地,将建筑物各部分的接地(包括交流工作地,安全保护地,直流工作地,防雷接地)与建筑物法拉第笼良好连接,从而避免各接地线之间存在电位差,以消除感应过电压产生。
2)电源系统防雷
以建筑物为一个供电单元,应在供电线路的各部位(防雷区交接处)逐级安装电涌保护器,以消除雷击过电压。
3)等电位联结系统
国家标准《建筑物防雷设计规范》GB50057-94(局部修订条文)明确规定,各防雷区交接处,必须进行等电位联结;尤其建筑物内的计算机房等弱电机房,遭受直击雷的可能性比较小,所以在此处除采取电涌保护器进行感应雷防护外,还应采用等电位联结方式来进行防雷保护,本文不再叙述。
作为电气设计人员都非常清楚,建筑物的防雷保护设计是一项既简单又繁琐的内容,但对建筑物的安全使用,电气设备的正常运行有着至关重要的作用,所以还有待于各位电气设计人员作进一步的研究与探讨;同时必须严格按照国家规范,善为谋划,精心设计。本文仅此设计作了一点粗浅的探讨,所以文中不足之处,望同行不吝赐教。
参考文献
1、国家标准 建筑物防雷设计规范GB50057-94(2000年版)北京 中国计划出版社2001
2、中南建筑设计院主编 建筑物防雷设计安装99D562 北京 中国建筑标准设计研究所出版1999.12
【关键词】 建筑物 防雷装置 侧击雷 直击雷 总平图 平面图 审核
雷电是一种危害严重的自然灾害,雷击时有强大电流通过,产生机械力和热效应,破坏建筑物和威胁人员的生命财产安全。特别是随着现代化建设速度的加快,城市中的建筑物不断增加,建筑物及内部设备防雷安全的重要性就愈加明显。而做好施工图的设计技术审核是做好防雷建设的第一个把关口,通过审核,可以发现存在的问题,进而进行改进,以确保防雷装置的可靠性、可行性和安全性。下面,就结合笔者的实践经验,就防雷装置施工图设计的技术审核进行探讨。
1 总平图
1.1 地理位置
由于各地的年平均雷害次数不同,加上各技术规范所提供的数据差异较大,因此,应以当地气象部门公布的该地年平均雷害次数Td作为计算雷击大地年平均密度Ng的依据。
1.2 周边环境
该建筑物是否为孤立建筑物?周边有无其他建筑物或树木?各自高度如何?是否处于旷野或山头?是否处于水陆交界处?地质条件和土壤电阻率如何?根据上述信息,确定在计算建筑物年预计雷击次数N时校正系数K的取值(依据为GB50057—1994《建筑物防雷设计规范》(2000年版)附录一)。
2 施工设计说明
电气施工设计说明(有时也称为强电施工设计说明等),其主要内容是表述各专业的概况和基本要求。
2.1 工程概况
建筑物使用性质是住宅、办公、厂房、文物还是其他?是否为人员密集场所?建筑物内是否有爆炸物质?是否具有火灾或爆炸危险环境?属于哪类防火类别?是否有重要的信息机房?结合年预计雷击次数N确定建筑物防雷分类,同时也与等电位接地的设计要求有关。建筑物高度则关系到防侧击雷措施的设计。
2.2 设计依据
(1)国标。设计依据的国标有:GB50057—1994《建筑物防雷设计规范》(2000年版)、GB50343—2004《建筑物电子信息系统防雷技术规范》、GB16895.22—2004《建筑物电气装置第5-53部分:电器设备的选择和安装隔离、开关和控制设备第534节:过电压保护电器》。
(2)图集。设计依据的图集有:99(03)D501-1或99D501-1《建筑物防雷设施安装》、02D501-2《等电位联结安装》、03D501-3《利用建筑物金属体做防雷及接地装置安装》、03D501-4《接地装置安装》。当图纸中的某项参照标准化图集时,应同时注明图集名称、图集号、页次。
2.3 防雷、接地及安全
(1)防雷分类及分级。根据总平图中确定的雷击大地年平均密度Ng、校正系数K、屋面防雷平面图中的长、宽、高尺寸,计算该建筑物年预计雷击次数N,结合施工设计说明中的工程概况信息。依据GB50057-1994(2000年版)第二章的条款确定该建筑物的防雷分类。此外,根据工程概况信息,可依据GB50343-2004中的表4.3.1确定该建筑物电子信息系统雷电防护等级。
高度超过100m的民用建筑,依据JGJ16—2008《民用建筑物电气设计规范》第11.2.3条第1款规定,应划为第二类防雷建筑物。
(2)直击雷防护。一般地,现多采用避雷带作为直击雷防护措施。审核时应注意以下几点问题:1)避雷网格尺寸应符合对应防雷分类的要求。2)避雷带所选用材料的材质及其规格尺寸应符合GB50057—1994等国标的规定,非标尺寸可能造成施工阶段材料购买和施工的困难,应避免出现此类问题。3)避雷带沿女儿墙敷设时,应结合女儿墙的宽度来综合考虑避雷带的支持卡高度、间距及转角距离。4)如果采用金属屋面或彩钢板作为直击雷防护措施,应符合GB50057—1994等国标的规定,注意厚度的不同要求。5)对于是否可采取暗敷避雷带,不能一概而论。一般的建筑物,特别是闹市区的高层建筑坚决不能暗敷;别墅等建筑体量较小的低层建筑物,当其N值达不到第三类防雷建筑物的规定值时,应当允许暗敷。
(3)引下线。新建建筑物一般利用结构柱内的主钢筋作为引下线,利用结构柱内对角线的两根主钢筋作为引下线,则钢筋直径不应小于16mm,利用四角的四根主钢筋作为引下线,则钢筋直径不应小于12mm。
(4)防侧击雷。超过建筑物对应滚球半径高度的部分均应采取防侧击雷措施,每隔不大于6m的位置设置均压环并与引下线相连,外墙上的栏杆、门窗等较大的金属物也应与防雷装置连接。
(5)等电位及接地。审核时应注意如下几个问题:1)该建筑物采用何种接地系统,是共用接地系统还是单独接地系统。共用接地系统的接地电阻值应不高于接入各系统、设备要求接地电阻的最小值。2)强弱电竖井内应在每层预留与楼层主钢筋电气连接的局部等电位接地端子,并与接地干线焊接连通,其他部位局部等电位接地端子也应与楼层主钢筋电气连接。
2.4 供配电系统
根据建筑物防雷中的防雷分类及电子信息系统雷电防护等级判断SPD的设置分级及各级参数是否符合要求。
2.5 弱电系统
施工图审核是在工程开工前进行,一般在此阶段弱电设计尚未作深化设计(通常由弱电承包商完成),所以在施工图中很少注重弱电系统线路和设备的防雷设计,审核时应注意以下几点:(1)弱电机房的位置设置应遵从“尽可能远离屋顶和立柱”的原则,即远离可能流经大的雷电流的区域。(2)进出建筑物的信号线路应穿金属管埋地敷设入户,进户处应做好等电位接地,包括金属管道、弱电线缆的金属屏蔽层、光缆加强筋等。(3)机房内应在防静电地板下设置S型或M型等电位联结网络(一般做法为铺设铜排),将机房内所有正常时不带电的金属物体采取等电位联结。
3 屋面防雷平面图
屋面防雷平面图审核时应注意一下几点:
(1)各类防雷建筑物的避雷带网格尺寸有两种(如第三类防雷建筑物的避雷网格要求是20m×20m或24m×16m),满足任一种皆可。
(2)对于外立面或屋面形状比较特殊、复杂的建筑物,要特别留意是否所有易遭受雷击的部位均敷设了避雷带。对伸出屋檐的部分(如晒台、阳台等)要结合其尺寸及与女儿墙的高度差判断是否处于接闪器保护范围内。
(3)设于屋面的屋顶花园、网球场、或咖啡吧等人员公共活动场所,应采取相应的直击雷防护措施(如设置合适高度的避雷针)保护人员和设施安全。
(4)采光天窗应采取相应的防直击雷措施。
(5)当非金属屋面有玻璃采光顶时,应向相关设计人员核实采光顶是明框还是隐框,如支撑玻璃的金属构架在玻璃下方(隐框),则除金属支架可靠接地外,应对玻璃增设避雷装置加保护。
(6)卫星天线应处于接闪器的保护范围之内,若架设避雷针保护时,避雷针与天线的水平距离不应小于3m,天线底座应可靠接地。
(7)引下线应沿建筑四周均匀或对称设置,条件限制时,局部的引下线间距可稍超出规范规定的间距值,但应确保建筑物整体的引下线平均间距不大于对应防雷分类的间距要求。
4 基础接地平面图
基础接地平面图审核时应注意以下几点:
(1)利用建筑物基础中的自然接地体时,应将桩基、承台、地樑、底板内的结构主筋可靠连接以构成共用接地装置。
(2)地樑内的结构主筋应与所经过的结构柱内主筋可靠连接以构成环型接地体。
(3)引下线位置应逐一对应屋顶防雷平面图中标志的引下线位置。
(4)结构柱内的钢筋作为雷电流的主要对地释放通道,对附近的设备与人有一定程度影响,故弱电设备应尽可能远离结构柱和引下线。重要的设备机房应避免设置在建筑物的顶层和底层。
(5)各接地干线一般均为从大地板引出至各个部位,注意文字标注是否有误。
(6)如有特别注明设备机房等电位接地措施的,应检查是否设置等电位联结网络,等电位联结网络与大地板之间的连接方式、连接材料及规格型号,网络是否能为机房将来可能存放的机柜、机架、线槽提供足够的等电位联结点,网络的材质是否达标。
5 配电系统图
配电系统图审核时应注意以下几点:
(1)不同部位的配电箱在SPD配置方面的要求也不尽相同,并不是所有的配电箱都安装In值相同的SPD就能解决问题,应按照配电箱所处的不同位置进行分级,相应确定合适的In值。
(2)应结合低压配电系统的不同接地制式来确定安装何种类型SPD。
(3)图纸中设置的SPD应标明标称放电电流In、电压保护水平Up、持续工作电压Uc等基本参数。
6 结语
总之,防雷设施对于保障建筑电气设备正常工作及人身生命安全是至关重要的,必须加强防雷设施设计审核,以有效保证其防雷安全,特别是对施工图设计的技术审核。要求审核人员在熟练掌握规范、标准的基础上,结合建筑物的实际情况,综合分析、客观判断、灵活处理,以提高建筑物的雷电防护能力。
参考文献: