时间:2023-06-26 16:07:59
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇高一数学导数概念范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
1、从初中到高中数学过渡存在的问题
(1)教材内容
新课标的初中、高中数学教材,就内容上而言,降低了难度.尤其是初中的数学教材,降低的幅度较大,呈现出“易、 少、浅”这样的特点. 高中数学教材虽然也看似降低难度,事实上,受高考指挥棒的影响,教师还是在教材内容的基础上,进行补充.再加上,本身高一数学内容就比较多.而且大多数知识又是高中数学的重点,高考的考点,比如:集合、函数、立体几何、解析几何等.还有对一些必要的数学思想方法的要求,所以就内容难度而言,初中到高中差距比较大.另一方面,现行的初中教材把原先的一些内容删除,但我们高一的老师还是以为那些内容学生已经学过,造成一些困扰.比如:解一元二次方程,我们常用的方法是“十字相乘法”.但是这一内容在初中教材中,已经被删除.有些初中老师另外将这种方法介绍给学生,而有些按照大纲要求没有另行要求.这样导致高一学生在遇到解一元二次方程的时候产生混乱,有些学过,有些没学过.高一数学老师也在是否详细讲解这一知识点中迷茫,详细讲解的话,那些学过的学生就觉得浪费时间.不详细讲的话,确实有一些学生根本不会这一方法.
(2)教学方法
首先,初中数学教材每一课时的容量小,进度慢,教师有充分的时间让学生练习、巩固、强化.但是高中数学教材每课时的容量大,进度快,很多内容不能一一展开,点到为止.自然也没有充足的时间让学生在课堂上巩固练习.所以,高一新生普遍反映数学进度太快.其次,初中对一些概念的定义,直观性强,学生容易理解.而高中出现了一些抽象的概念,学生理解起来比较困难.比如:函数的概念、函数的单调性、导数等.此外,初中数学题型较少,一般只要学生把教师讲过的题型反复练习,基本上能得到一个很不错的成绩.但是高中数学题型多而活,而且好多题目都是一个题涉及到好几个知识点.教师不可能有那么多的时间把每种题型都讲到位.所以,对于习惯了初中那种教法的高一新生来说,在解高中题的时候,常常抱怨“老师都没讲过这类型题”,普遍出现了难以适应高中数学的教学方法.
(3)学习方法
首先,初中学生大多是跟着老师走,习惯模仿,缺乏独立思考的能力.而对于高中生,最大的差别是学生要学会自主学习.其次,初中对数学的学习,比较直观,容易理解.而高中对抽象思维、空间想象要求较高.比如:高一必修2的立体几何,部分学生对几何体毫无感觉.所以,高一学生如果还是沿用初中的学习方法,会给高中对数学的学习带来阻力.
(4)心理状态
高一新生在经历完中考后,太过松懈,没有紧迫感.认为高考还远着呢,出现这种不良的心理状态.
2、从初中到高中数学过渡的应对策略
首先,高一数学教师应做好内容上的过渡.充分掌握初中教学大纲和教材,了解学生对初中知识的真实把握情况.把初中数学教材删掉而高中数学必要的知识点,可以通过校本课程的形式向学生的开放.比如: “十字相乘法”、“三角形重心性质”、“根与系数的关系”等.在高一教学过程中,不能盲目的追求进度,使学生平稳的渡过这一艰难时期.但是按照课标要求,高一上学期要完成两个模块的教学.而我们大多数都是完成必修1、必修2.这两个模块对于刚刚进入高一的学生来讲,难度较大.我认为高一可以适当的调整所上内容.比如第一模块我们可以考虑学习必修3.这一模块主要是统计案例、算法初步.尤其统计学生在小学、初中都有所涉及,容易过渡.
其次是教学方法的过渡.高中的许多知识是对初中知识的深化.所以,咱讲授这些新知识的时候,应注意对旧知识的回顾,以消除学生学习新知识的恐惧感.比如,在讲幂函数的时候,我们可以从学生熟悉的正比例函数 、反比例函数 、二次函数 入手,来体会幂函数.再就是遇到一些抽象的概念的时候,我们可以考虑从生活中的实际案例出发,创设学生熟悉的情境.比如,对于函数的单调性,我们可以通过中国历届奥运会获得奖牌、获得金牌这样的一个案例引入,把抽象的问题具体化.
然后是学习方法的过渡.引导学生转变自己的学习观念,把“以教师为主体”变成“以学生为主体”.高一的学生在刚开始学习数学的时候,必然会遇到很多困难.作为教师应适时鼓励学生,引导他们自主的解决问题.同是,也应鼓励同学之间的互相探究.就像哲学家萧伯纳所说,“如果你有一种思想,我有一种思想,我们进行交换,每人可以有两种思想”. 师生之间的沟通毕竟没有同学之间的沟通方便.同学之间应互相帮助,经常开展探究活动,也培养了学生的合作、探究精神.还有教师应帮助学生改进解题方法,不能再“照猫画虎”,而要彻底理解所做题目的本质.
【关键词】高二数学;重要性;方法归纳
一、高二数学与高一数学的不同之处
与初中的数学相比,高中的数学相对来说概念抽象、习题繁多、教学密度大,高一过后,一些同学对数学望而生畏。高一阶段的知识点非常多,可以说高一阶段的知识比整个初中的知识点还要多,那么到了高二,是否知识更多更难呢?
首先,高一阶段与高二阶段对知识的侧重点不一样。高一阶段的知识侧重的是理解,而高二阶段强调的是技巧,而并非在于内容的难易程度。其次,高二数学的很多知识点是对高一知识的强化、深化与展开。例如:高一阶段学习的函数的相关性质,其中很重要的就是单调性。在高一阶段时,我们对这个知识点的要求是会用“比较法”判断单调性,并通过对图像的分析来对函数单调性有直观的感受,到了高二阶段,就要学习一种新的T具――导数,也就是我们不用做函数图像,也不用“取点比较”的情况下能直接判断函数的单调性和单调区间。这种处理问题的新方法需要的就是熟练掌握技巧和扎实的基本功。在几何方面的不同之处有:高一阶段我们学的是直线和网,属于解析几何的初始,但在高二阶段,对于几何的学习就更加复杂了,如类曲线――椭圆、双曲线、抛物线。图形复杂且运算的难度大大增加另外立体几何中还要引入空间向量的方法,实际也是把几何问题代数化,使同学用在复杂的立体图形中找辅助线了,当然,空间向量法带来的运算量也是相当大的。最后,在一些小的知识点上也有所深化,初学学习概率时,没有学习任何的计算方法,算概率的时候只能一个一个的数出来,如果题目的数稍微大一点的话我们就要浪费大量的时间在数数上,在高二我们学习了计数原理,将能彻底搞清楚生活中的随机事件里究竟蕴含了怎样的数学原理。
二、学好高二数学的重要性
高二数学的难度要比高一大的多。同学们在高一的时候对所学知识深入理解,高二阶段便是埘所学知识的巩同练习与深化的一个阶段。如果有些同学高一阶段知识学习的不够扎实,高二阶段便是唯一可能跟进与提高的机会,因为高二是深化学习、练习与巩同过程,既是学习过程又是复习的过程。高中阶段学习节奏之快使得一开始落后一点的同学在之后的学习过程中几乎没有什么时间可以再回过头来重新学习,也就是说如果想补救之知识漏洞,高中阶段唯一可行的办法就是在学习中复习。高二这个阶段是需要大量做题,大量练习的阶段,错过了这个阶段就再也没有机会超越别人。很多人想高三再努力也还来得及,这种想法是错误的。高三的时候,人人都拼命的学习,强化,想要超越别人几乎是不可能的,你努力也只能保证你的成绩不下降。也就是说你若想追上别人,想超过别人,高二已经是最后的机会了。
三、学好高二数学的方法归纳
我个人观点是要学好数学最关键的是要学数学思想,那么,什么是数学思想呢?所谓的数学思想,是指人们对数学理论与内容的本质认识,是从某些具体数学认识过程中提炼出的一些观点,它揭示了数学发展中普遍的规律,它直接支配着数学的实践活动,这是对数学规律的理性认识。学数学最好的方法就是深入的掌握基本概念,因为这关系到你看问题是否透彻。练习是必要的但不是最重要的,因为它只是深化和巩固你所学的认识。因此学数学是更深入地理解各个知识点,多加巩固每一道题都是一种思想的体现,在不断的做题过程中,把自己的认识和别人的思想结合起来就融汇成自己的思想了。
培养良好的学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习等多个方面。养成良好的学习习惯是学生掌握科学的学习方法的重要过程;是强化学生心理素质的前提;是学生获得技能的基础。
培养对数学浓厚的兴趣。数学的学习其实不难,关键是你是否愿意去尝试。当你敢于猜想,说明你具备数学的思维能力;而当你能验汪猜想,则说明你已具备了学习数学的天赋!认真地学好高二数学,你能领悟列的还有怎么用最少的材料做满足要求的物件,如何配置资源并投人生产才能获得最多利润……,因此,当你陷人数学魅力的“圈套”后,你已经开始走上学好数学的第一步!
培养分析、推断能力。其实,数学不是知识性、经验性的学科,而是思维性的学科,高中数学就充分体现了这一特点。数学的学习重在培养观察、分析和推断能力,开发学习者的创造能力和创新思维。因此,我们在学习数学的过程中,就要有意识地培养这些能力。
尝试一些新的学习方法,因为不同学习程度的学生需要用不同的学习方法。如果你正因为数学的学习状态低迷而苫恼,请按如下要求去做:通过预习后,带着问题听老师讲课,对你的学习能起到事半功倍的效果;对自己做出的作业太追求完美是很难达到的,出错并认真订正才更合理;老师要求的练习并不是“题海”,在完成老师的作业的同时,应当做一些配套的练习;考试时,正确率和做题的速度一样重要,因此,做题的时候碰到难题、应当及时放弃,转入下一题,及时避难就易放弃一些难题,能帮助你发挥正常水平。
如果你正因为数学的学习成绩进步缓慢而郁闷,那么请接受如下建议:收集你自己做过的错题,订正并写清错误的原因,这些材料是属于你个人的财富;对于考试成绩,给自己定一个能接受的底线,定一个力所能及的奋斗目标;养成良好的学习习惯、有计划性的学习,将使你的学习成绩稳固前进,因此,请指定好学习计划并坚持执行下去吧,对各个学科的学习时间进行规划、合理的分配。术进行合理的分配,同步前进形成了很多同学都有偏科的现象,对某一知识领域的学习出现“高原现象”。参考文献:
根据教育部考试中心《普通高等学校招生全国统一考试大纲(文科·课程标准试验·2012年版)》(以下简称《大纲》)和《2010年陕西省普通高校招生考试改革方案》,结合我省普通高中数学教学实际情况,制定了《2012年普通高等学校招生全国统一考试陕西卷(数学)考试说明》(以下简称《说明》)的数学(文)科部分。
制定《说明》既要有利于数学新课程的改革,又要发挥数学作为基础学科的作用;既要重视考查考生对中学数学知识的掌握程度,又要注意考查考生进入高等学校继续学习的潜能;既要符合《普通高中数学课程标准(实验)》的要求,又要符合我省普通高校招生考试改革方案和普通高中数学教学的实际情况,同时也要利用高考的导向功能,积极推动我省心课程的课堂教学改革和素质教育的实施。
Ⅰ.命题指导思想
普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试,命题的指导思想如下:
1.按照“能力立意”的命题原则,将知识、能力和素质融为一体,全面检测学生的数学素养.
2.命题注重考查考生的数学基础知识、基本技能和数学思想方法,考查考生对数学本质的理解水平,体现课程标准对知识与技能、过程与方法、情感态度与价值观等目标要求.
3.命题注重试题的基础性和创新性,具有一定的探究性和开放性.既要考查考生的共同基础,又要满足不同考生的选择需求.合理分配必考和选考内容的比例,对选考内容的命题应做到各选考专题的试题分值相等,力求难度均衡.
4.试卷应具有较高的信度、效度,必要的区分度和适当的难度.
Ⅱ.考试形式与试卷结构
一、考试形式
考试采用闭卷、笔试形式.考试时间为120分钟.考试不允许使用计算器.
二、考试范围
考试范围分为必考内容和选考内容.
必考内容如下:
数学1:集合、函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函
数).
数学2:立体几何初步、平面解析几何初步.
数学3:算法初步、统计、概率.
数学4:基本初等函数Ⅱ(三角函数)、平面向量、三角恒等变换. 数学5:解三角形、数列、不等式.
选修1-1:常用逻辑用语、圆锥曲线与方程、导数及其应用.
选修1-2:统计案例、推理与证明、数系的扩充与复数的引入、框图. 选考内容具体如下:
选修4-1:几何证明选讲.
选修4-4:坐标系与参数方程.
选修4-5:不等式选讲.
注意:涉及上述考试范围的我省现行教材中,除标*号者外,所有内容均在考试范围内.
三、试卷结构
1.试题类型
全卷分为第Ⅰ卷和第Ⅱ卷两部分,满分为150分.试卷结构如下:
2.难度控制
试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题界定为难题.三种难度的试题应控制合适的分值比例,试卷总体难度适中.
Ⅲ.考核目标与要求
一、知识要求
知识是指《普通高中数学课程标准(实验)》所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、图表绘制等基本技能.
对知识的要求由低到高依次是了解(知道、模仿)、理解(独立操作)、掌握(运用、迁移)三个层次,且高一级的层次要求包括低一级的层次要求.
1.了解(知道、模仿):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,能按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.
这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.
2.理解(独立操作):要求对所列知识内容有较深刻的理性认识,知道知识之间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.
这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等.
3.掌握(运用、迁移):要求能够对所列的知识内容能够推导证明,能够利用所学知识对问题能够进行分析、研究、讨论,并且加以解决.
这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.
二、能力要求
能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.
1.空间想象 能力:能根据条件作出正确的图形,根据图形想象出直观形象;
能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.
2.抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的判断.
3.推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.
4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.
5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.
6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明. 应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.
7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现. 对数学问题的“观察、猜测、抽象、概括、证明”是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.
三、个性品质要求
个性品质是考生个体的情感、态度和价值观. 要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.
要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题.
四、考查要求
数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部
分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点知识,考查时要保持较高的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面. 从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.
数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛用于相关学科和社会生活.因此,对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.
数学是一门思维的科学,是培养理性思维的重要载体,通过空间想象、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式作出思考和判断,形成和发展理性思维,构成数学能力的主体.对能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.
对能力的考查,以思维能力为核心.全面考察各种能力,强调综合性、应用性,切合学生实际.运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是对算理和逻辑推理的考查,以含字母的式的运算为主.空间想象能力是对空间形式的观察、分析、抽象的能力,考查时注意与推理相结合.实践能力在考试中表现为解答应用问题,考查的重点是客观事物的数学化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.命题时要坚持“贴近生活,背景公平,控制难度”的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要结合中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,引导考试自觉地置身于现实社会的大环境中,从数学的角度看待自己身边的事物,促使学生在学习和实践中形成和发展数学应用的意识. 创新意识和创造能力是理想思维的高层次表现.在数学的学习和研究过程中,知识的迁移、组合、融会的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强.命题时要注意试题的多样性,设计考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索型或开放型的题目,让考生独立思考,自主探索,发挥主观能动性,探究问题的本质,寻求合适的解题工具,梳理解题程序,为考生展现创新意识、发挥创造能力创设广阔的空间. Ⅳ.考试范围与要求
一、必考内容和要求
(一)集合
1.集合的含义与表示
(1)了解集合的含义、元素与集合的属于关系.
(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.
2.集合间的基本关系
(1)理解集合之间包含与相等的含义,能识别给定集合的子集.
(2)在具体情境中,了解全集与空集的含义.
3.集合的基本运算
(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
(3)能使用韦恩(Venn )图表达集合间的基本关系及集合的基本运算.
(二)函数概念与基本初等函数Ⅰ
1.函数
(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.
(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.
(3)了解简单的分段函数,并能简单应用(函数分段不超过三段).
(4)理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.
(5)会运用基本初等函数的图像分析函数的性质.
2.指数函数
(1)了解指数函数模型的实际背景.
(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.
(3)理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像.
(4)体会指数函数是一类重要的函数模型.
3.对数函数
(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.
(2)理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,1/2的对数函数的图像.
(3)体会对数函数是一类重要的函数模型;
(4)了解指数函数数.
4.幂函数
(1)了解幂函数的概念. 与对数函数(a >0,且a ≠1)互为反函
(2)结合函数
况.
5.函数与方程 的图像,了解它们的变化情
结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.
6.函数模型及其应用
(1)了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.
(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
(三)立体几何初步
1.空间几何体
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.
(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.
(3)会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.
(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).
2.点、直线、平面之间的位置关系
(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.
公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.
公理2:过不在同一条直线上的三点,有且只有一个平面.
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4:平行于同一条直线的两条直线互相平行.
定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.
理解以下判定定理.
如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.
如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面
垂直.
如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明.
如果一条直线与一个平面平行,经过该直线的任一个平面与此平面的交线和该直线平行.
如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行. 垂直于同一个平面的两条直线平行.
如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.
(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.
(四)平面解析几何初步
1.直线与方程
(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.
(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.
(3)能根据两条直线的斜率判定这两条直线平行或垂直.
(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
(5)能用解方程组的方法求两直线的交点坐标.
(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.
2.圆与方程
(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
(2)能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程,判断两圆的位置关系.
(3)能用直线和圆的方程解决一些简单的问题.
(4)初步了解用代数方法处理几何问题的思想.
3.空间直角坐标系
(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.
(2)会简单应用空间两点间的距离公式.
(五)算法初步
1.算法的含义、程序框图
(1)了解算法的含义,了解算法的思想.
(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.
2.基本算法语句
理解几种基本算法语句――输入语句、输出语句、赋值语句、条件语句、循环语句的含义.
(六)统计
1.随机抽样
(1)理解随机抽样的必要性和重要性.
(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.
2.用样本估计总体
(1)了解分布的意义和作用,能根据频率分布表画频率分布画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.
(2)理解样本数据标准差的意义和作用,会计算数据标准差。
(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.
(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.
(5)会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.
3.变量的相关性
(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.
(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).
(七)概率
1.事件与概率
(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.
(2)了解两个互斥事件的概率加法公式.
2.古典概型
(1)理解古典概型及其概率计算公式.
(2)会计算一些随机事件所含的基本事件数及事件发生的概率.
3.随机数与几何概型
(1)了解随机数的意义,能运用模拟方法估计概率.
(2)了解几何概型的意义.
(八)基本初等函数Ⅱ(三角函数)
1.任意角的概念、弧度制
(1)了解任意角的概念和弧度制概念.
(2)能进行弧度与角度的互化.
2.三角函数
(1)理解任意角三角函数(正弦、余弦、正切)的定义.
(2)能利用单位圆中的三角函数线推导出π
2±α,π±α的正弦、余弦、正
切的诱导公式,能画出y =sin x , y =cos x , y =tan x 的图像,了解三角函数的周期
性.
(3)理解正弦函数、余弦函数在[0, 2π]上的性质(如单调性、最大和最小
⎛ππ⎫值、图像与坐标轴交点等). 理解正切函数在区间 -, ⎪的单调性. ⎝22⎭
(4)理解同角三角函数的基本关系式:sin 2x +cos 2x =1; sin x =tan x cos x
(5)了解函数y =A sin (ωx +φ)的物理意义;能画出y =A sin (ωx +φ)的图像,了解参数A , ω, φ对函数图像变化的影响.
(6)会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型,.
(九)平面向量
1.平面向量的实际背景及基本概念
(1)了解向量的实际背景.
(2)理解平面向量的概念,理解两个向量相等的含义.
(3)理解向量的几何表示.
2.向量的线性运算
(1)掌握向量加法、减法的运算,并理解其几何意义.
(2)掌握向量数乘的运算及其意义,理解两个向量共线的含义.
(3)了解向量线性运算的性质及其几何意义.
3.平面向量的基本定理及坐标表示
(1)了解平面向量的基本定理及其意义.
(2)掌握平面向量的正交分解及其坐标表示.
(3)会用坐标表示平面向量的加法、减法与数乘运算.
(4)理解用坐标表示的平面向量共线的条件.
4.平面向量的数量积
(1)理解平面向量数量积的含义及其物理意义.
(2)了解平面向量的数量积与向量投影的关系.
(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.
(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
5.向量的应用
(1)会用向量方法解决某些简单的平面几何问题.
(2)会用向量方法解决简单的力学问题与其他一些实际问题.
(十)三角恒等变换
1.两角和与差的三角函数公式
(1)会用向量的数量积推导出两角差的余弦公式.
(2)会用两角差的余弦公式导出两角差的正弦、正切公式.
(3)会用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.
2.简单的三角恒等变换
能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).
(十一)解三角形
1.正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
2.应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.
(十二)数列
1.数列的概念和简单表示法
(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).
(2)了解数列是自变量为正整数的一类特殊函数.
2.等差数列、等比数列
(1)理解等差数列、等比数列的概念.
(2)掌握等差数列、等比数列的通项公式与前n 项和公式.
(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用等差数列、等比数列有关知识解决相应的问题.
(4)了解等差数列与一次函数、等比数列与指数函数的关系.
(十三)不等式
1.不等关系
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
2.一元二次不等式
(1)会从实际情境中抽象出一元二次不等式模型.
(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.
(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
3.二元一次不等式组与简单线性规划问题
(1)会从实际情境中抽象出二元一次不等式组.
(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
4
.基本不等式:a +b ≥a ≥0, b ≥0) 2
(1)了解基本不等式的证明过程.
(2)会用基本不等式解决简单的最大(小)值问题.
(十四)常用逻辑用语
(1)理解命题的概念.
(2)了解“若p ,则q ”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.
(3)理解必要条件、充分条件与充要条件的含义.
(4)了解逻辑联结词“或”、“且”、“非”的含义.
(5)理解全称量词与存在量词的意义.
(6)能正确地对含有一个量词的命题进行否定.
(十五)圆锥曲线与方程
(1)掌握椭圆的定义、几何图形、标准方程和简单几何性质(范围、对称性、顶点、离心率).
(2)了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率).
(3)了解抛物线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率).
(4)理解数形结合的思想.
(5)了解圆锥曲线的简单应用.
(十六)导数及其应用
1.导数概念及其几何意义
(1)了解导数概念的实际背景.
(2)通过函数图像直观理解导数的几何意义.
1 (3)能根据导数的概念求函数y =C , y =x , y =, y =
x 2, y =. x
(4)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.
常见基本初等函数的导数公式:
(C为常数) ;, n∈N +;;
(a>0,且a ≠1) ; ; ; ; .
常用的导数运算法则:
法则
1 .
法则2 .
法则3 .
(5)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).
(6)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).
(7)会利用导数解决实际问题.
(十七)统计案例
(1)通过典型案例了解回归分析的思想、方法,并能初步应用回归分析的思想、方法解决一些简单的实际问题.
(2)通过典型案例了解独立性检验的思想、方法,并能初步应用独立性检验的思想、方法解决一些简单的实际问题.
(十八)合情推理与演绎推理
(1)了解合情推理的含义,能进行简单的归纳推理和类比推理,体会合情推理在数学发现中的作用.
(2)了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运用“三段论”进行一些简单推理.
(3)了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程和特点.
(4)了解反证法的思考过程和特点.
(十九)数系的扩充与复数的引入
(1)理解复数的基本概念,理解复数相等的充要条件.
(2)了解复数的代数表示法及其几何意义.
(3)能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.
(二十)框图
(1)通过具体实例进一步认识程序框图.
(2)通过实例了解工序流程图.
(3)能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用.
(4)通过实例了解结构图.
(5)会运用结构图梳理已学过的知识、整理收集到的资料信息.
二、选考内容与要求
(一)几何证明选讲
(1)理解相似三角形的定义与性质,了解平行截割定理.
(2)会证明和应用以下定理:直角三角形射影定理;圆周角定理;圆的切线判定定理与性质定理;相交弦定理;圆内接四边形的性质定理与判定定理;切割线定理,并能用以上定理解决问题。
(二)坐标系与参数方程
(1)了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.
(2)了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.
(3)能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.
(4)了解参数方程,了解参数的意义.
(5)能选择适当的参数写出直线、圆和椭圆的参数方程.
(三)不等式选讲
(1)理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:
|a+b|≤|a|+|b| (a,b∈R);
|a-b|≤|a-c|+|c-b| (a,b∈R).
(2)会利用绝对值的几何意义求解以下类型的不等式:
在新课程数学教学的实践中,我们普遍感觉到函数内容难教,高一新生普遍觉得高中函数内容难学.除函数本身内容的深、广、严等特点外,究其根本原因在于:学生刚由初中升入高中,还没有实现初、高中在知识、方法、能力、习惯、思维等方面的有效衔接,再加上有的教师重自己的教而轻学生的学,重数学知识、技能的传授而轻知识形成过程的挖掘,重思想方法的归纳提炼而轻学生思维与素质的培养,就必然出现函数教学困惑尴尬的现状.
随着教育越来越回归其本质,新课程改革越来越注重提高人的素质,我们广大一线数学教师在教学中必须更加突出以人为本,在掌握教学内容的基础上,进一步变革教学方式,提高教学效率,加强理解与感悟,注重总结与反思,积极倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式,聚焦课堂教学,践行课改理念,真正成为学生学习的引导者、组织者和合作者,努力打造充满生命活力的高效和谐数学课堂.以下是我对新课程理念下高中函数教学的几点思考.
一、把握函数是中小学数学课程的主线
函数是高中数学教学的主要内容,函数的观点、思想、方法贯穿于中学数学的始终.在生产实践中充满着数量关系,它深刻反映着客观现实的本质.20世纪初现代数学教育的主要人物,德国数学家克来因(F.Klein)提出:以函数概念和思想统一数学教学的内容.一个多世纪以来函数已成为数学的基本研究对象,贯穿于数学的各个方面,课程中函数思想的发展大致有以下几个阶段.
小学阶段体现学生对数和量的认识,知道数是用来刻画量的大小的一种工具,数和量常常对应在一起,统称为数量,而这些数量之间的对应关系,本身就是函数关系.当我们通过对一些实例的讨论,例如,路程、时间、速度以及总价、单价和数量之间的关系等,并抽象为正比例、反比例关系,使学生对函数关系有了认识.虽然没有引入变量和函数的概念,但也形成了函数的思想.
初中阶段我们引入了变量和函数概念(虽然概念不严格):在某种变化过程中有两个变量x与y,按照某种确定的对应关系,如果对于x在某个范围内的每一个值,y在某个范围内都有唯一确定的值与它对应,则y就是x的函数,x是自变量,y是因变量(函数).通过具体实例,对一个量的变化引起另一个量的变化进行了讨论,建立了反映变量之间的函数关系,构建了一些函数的基本模型.如正比例函数、反比例函数、一次函数、二次函数等.
高中阶段我们利用更丰富的实例引导学生认识到,函数是刻画日常生活和其他学科规律的重要数学模型,并在此基础上,学习集合与对应语言来刻画函数:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x) ︳x∈A}叫做函数的值域.体会对应关系在刻画函数概念中的作用,进一步抽象概括了更加严格的数学定义.
函数思想在各个阶段的发展是逐步提升的,事实上进入大学以后以函数为研究对象的课程也是很多的.了解了函数这条主线,就会更好地把握数学课程的教学方向,提高数学教学的实效性.
二、掌握高中函数的学习内容
教师只有全面掌握高中函数的学习内容,才能找到与学生对话的起点.函数研究的是两个变量之间的数量关系:一个变量的取值发生了变化,另一个变量的取值也发生变化,这就是函数表达的数量之间的对应关系.其中有三点是重要的:一是变量的取值是实数;二是因变量的取值是唯一的;三是必须借助数字以外的符号来表示函数.这些就是函数定义的核心思想.
在普通高中《数学课程标准》中,函数是高中教学的主要内容,其中函数关系的建立和函数的应用是整个高中数学要求最高的内容.有如下几个部分:第一,基本函数的研究:包括函数的有关概念、函数的运算、函数关系的建立、函数的基本性质、函数的零点、特殊函数及其表示、函数概念发展史;第二,函数的基本性质:包括简单的代数函数性质研究、指数函数的性质和图像、对数函数的性质和图像、幂函数的性质和图像、函数的应用;第三,三角函数部分.事实上除了以上内容外,集合、不等式、数列、导数等与函数有着不可分割的联系.课程内容的安排是按照“抽象函数的概念(一般)一些基本函数模型(具体)函数的应用(具体)”结构进行的,教学内容中还应包括处理这些问题的方法.
学校在创新教育课程体系的建构中,数学的应用作为数学教学的拓展内容,其中数学发展史、数学建模等已成为学校的校本课程,这些内容对学生函数思想的培养是重要的补充.
三、了解学生学习函数的基础
学生是学习的主体,了解学生的基础才能找到与学生对话的基点.进入高中阶段的学生,都是合格的初中毕业生,他们有了一些函数思想的基础,学会了解决一些具体的函数问题的方法,如待定系数法,学会做和观察函数的图像,并能观察出自变量和因变量之间的变化关系,如反比例函数y= (k>0)图像在第一象限因变量随自变量增大而减小等.不足之处在于对函数概念的理解模糊,缺乏对问题的理性思考,例如,令f(x)=x²-2x-3,这是一个函数.表面上看,f(x)=0与方程x²=2x+3是等价的,但是二者所表达的意义是不同的:前者表示函数取0值,而后者表示变量之间的等量关系.同样,f(x)>0与不等式x²>2x+3所表达的意义也是不同的.在一些学生身上明显觉得有由于强化练习而学会的应试技巧,少了对数学的感悟和学习兴趣.如果在高中函数的学习中由于没能及时转变思维方式和学习方式,造成学习的困难,而教师只管教,不去考虑学生的基础,学生会进一步丧失信心.
四、教学中需关注的问题
本人认为在教学中有两个方面需要特别关注:
(一) 情感方面
苏霍姆林斯基说过:“如果教师不想办法使学生达到情绪高昂和智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度,而使不动感情的脑力劳动带来疲劳.”教学中:
1、要尊重学生.自尊心是促进学生身心健康发展不可缺少的因素.教学活动是教与学的活动,更主要的是学生的学,既要尊重学生的学习过程,也要尊重学生个性,在人与人平等的环境中,实现生命与生命的交流,教与学才是有效的.
2、要理解学生.要理解学生的差异性,理解学生的思想和行为,在与学生的交流过程中,学会角色换位,不可求全责备.
3、要相信学生,给学生以学习的自信.哲学家詹姆斯说过:人类本质中最殷切的要求是渴望被肯定.自信才有勇敢,自信才有主动,自信才能振奋.
4、要感谢学生,给学生以鼓励.教师要感谢学生,因为有了学生你才有施展才华的机会,生命才更加有意义;鼓励学生,学生就会有奋发向上的勇气,就会变被动为主动,学习就会事半功倍.学生会给你以鼓励,不要说:不行、不可、不允许,要说:你行、你可以、你真棒、你很好.让学生在赞赏中成长.
尊重学生,学生会尊重你;理解学生,学生会理解你;相信学生,学生会相信你;感谢学生,学生会感谢你.
(二)知识方面
函数的思想和方法贯穿了高中数学课程的始终,不要期望一堂课或者几堂课就能让学生很好地理解,应当通过各种具体的例子和习题的分析帮助学生深刻理解函数概念.
概念教学中要讲清函数的三要素,但一定不能停留在抽象的理论上,还要有一些函数的模型,甚至可以是一些形象化的比喻.例如符号y=f(x)的含义非常抽象,难于理解,就可以把函数看成是一个加工厂,定义域中的元素就是原料,对应法则就是加工原料的机器,产品就是函数值.并引导学生分析函数的两种定义,认识函数概念的实质,让数学回归本质.
1、函数的教学一定要突出函数图形的地位.不管是用解析式、列表法还是图像法去刻画一个具体函数时,我们都要让学生在头脑里形成一个图形.只有把握住图形才能把握住一个函数的整体情况,这样的学习习惯有助于提高运用几何思想、把握图形的能力,体现数形结合的思想方法.
2、教学中应该引导学生去思考函数的应用问题,特别是思考函数在日常生活和其他学科的应用,渗透数学建模的思想,这样既知道了函数在生活中的应用,也就是知道了函数的价值,反过来会进一步加深对函数概念的理解,真正树立数学来源于实践并反过来作用于实践的观点.
3、加强多媒体信息技术的使用.函数体现的是两个量之间的运动变化关系,多媒体的使用使函数的变化关系更加形象直观.信息技术具有强大的图像功能、数据处理功能和良好的交互环境,利用这些优势,可以在求函数值、做函数图像、研究函数性质等方面发挥很大作用;运用计算器还可以解决大量的计算问题,从而将更多精力关注到函数的变化上,而计算机的交互环境则为学生的自主探究提供了强有力的平台,丰富了学生的学习方式,如果要求学生亲自利用信息技术发现规律,收集数据并建立函数模型将会进一步理解函数甚至数学的本质.
总结的写作过程,既是对自身社会实践活动的回顾过程,又是人们思想认识提高的过程。接下来是小编为大家整理的高三数学教师教学心得体会,但愿对你有借鉴作用!
高三数学教师教学心得体会一
总的说来,我是在忙忙碌碌地充实工作中度过这一学期的。我在工作的磨练中逐渐走向成熟。在加强自身政治修养的同时,我更从小事出发,时刻铭记自己是一名教师,是学生的榜样。
作为一名高考把关的数学教师,要全面理解教学大纲,熟悉全部教材,明确教学目标,并通过教学实践逐步制定出双基训练与能力培养的纲目,要把握住教学过程的各个环节,单元备课要高瞻远瞩;每课时备课要落到实处;课堂教学则付诸实施,并根据情况的变化,及时调整教学。辅导要有针对性;认真批改作业,力求全批全改;辅导与作业是检测课堂教学效果的重要手段之一,应随时记录在案,积累资料。所以我每天早起晚睡,争分夺秒的抢时间。虽然孩子很小,总是缠着妈妈,但是每天早上七点一刻我准时到校,晚上六点以后我才回家。有时问题的学生多,我就耐心地给他们解答,做到了让学生高兴而来,满意而去。可回到家,爱人等我回家的饭总是热了再热,孩子也总是说:妈妈你明天早点回来,妈妈明天接我。对于孩子来说,妈妈能接一次那该有多好,想着女儿看到别的孩子被妈妈接走的羡慕,我总是说着言不由衷的话:妈妈明天一定接你。
在教学上我立足于全局,让学生各有所得。适应课改要求,把握高考特点,进行有效教学。
研究性学习是新课程改革所倡导的,到了高三,复习资料多如牛毛,如果陷入题海战术,势必”事倍功半”。这就要求教师能够根据学生的实际情况和自身的教学特点,对资料作出恰当的、独到的二次加工;能够根据课堂上学生学习的实际情况,对教案作出及时的、灵活的调整与改变。也就迫使我实现从教材到教案,从教案到教学的两个创新。
为了适应要求,我努力做到:不急于求成,从课堂教学点点滴滴的改进做起。课改要求我们“用教材,而不是教教材”。这无形中给高三的老师带来很大的工作量,上网,泡图书馆,查阅参考书……真可谓披星戴月,有时为了一道例题,刚躺下,灵感一来又爬起来……
对学生,我坚持从严要求,讲求复习效果,充分调动学生的积极性。众所周知,高三数学练习测试几乎每周一次,利用好这些测试机会可以发现学生数学学习中的很多不足,教会他们分析试卷:将存在问题分类,总结经验教训。
提高业务素质和管理水~平,应及时发现自己在业务上与教学上的空缺与弱点,有的放矢地参加业务进修。区里和市里的进修我都积极参加,并且在听课的过程中认真听讲。为了更好地适应教学的需要,我又参加了北京教育学院的计算机二学历大专班,并顺利地结业。对于我以后的教学中计算机的应用帮助很大。
“学然后知不足”,通过教学,我更加清楚教学相长的意义,更加清楚教师的“一碗水~和一条溪流的辨证关系”。在今年的高考中,一班的数学平均分和及格率均为第一,我一定要加倍努力,在今后的工作中更上一层楼。
高三数学教师教学心得体会二
在新课程形势下要求一个称职的高中数学教师,决不能“教书匠”式地“照本宣科”,而要在教学中不断反思,不断学习,与时共进。新课程提倡培养学生独立思考能力、发现问题与解决问题的能力以及探究式学习的习惯。可是,如果教师对于教学不做任何反思,既不注意及时吸收他们的研究成果,又不对教学做认真的思考,上课时,只是就事论事地将基本的知识传授给学生,下课后要他们死记,而不鼓励他们思考分析,那么,又怎能转变学生被动接受、死记硬背的学习方式,拓展学生学习和探究数学问题的空间呢?所以,教师首先要在教学中不断反思。
一、教师从主导者成为组织者、引导者
在以往的教学中,我们一直在倡导“教师为主导”、“学生为主体”,但是在实际教学中教师常常是“主演加导演”。在教师的主导下,学生只能被动学习。学生要成为学习的主人,教师必须从“主导者”成为“组织者”、“引导者”。
在课堂教学中,教师要努力创设平等、和谐的课堂氛围,从创设生动具体的情境入手,组织师生共同参与的学习活动,以缩短教师与学生、学生与学生、学生与文本之间的距离。
数学知识不是独立于学生之外的“外来物”而是在学生熟悉的事物和情境之中,与学生已有的知识和生活经验相关联的内容。因此,在数学教学中,教师一定要注意贴近学生的生活实际,适当引入他们喜欢的活动,如讲故事、做游戏、表演等,使他们产生乐学、好学的动力,从而增强学生探究欲.
比如在上指数函数单调性这一章节的时候,我讲了这样一个故事:一个叫杰米的百万富翁,一天他碰到了一件奇怪的事,一个叫韦伯的人对他说,我想和你订个合同,在整整一个月中,我每天给你10万元,而你第一天只需给我一分钱,以后每天给我的钱是前一天的两倍,杰米非常高兴,他同意订立这样的合同,如果是你们,你们是否愿意订立这样的合同.学生刚开始都很高兴地说愿意,看到我笑后又想想可能有什么不对的地方,于是齐声说不要这样的合约,那么到底谁更为合算,能否用我们的数学知识来进行探讨,此时学生的兴致达到极点,并由此发现其实际为一个“指数爆炸”的现象.
二、重视课本概念的阅读,培养学生的自学能力。
中学生往往缺乏阅读数学课本的习惯,这除了数学难以读懂外,另外一个原因是许多数学教师在讲课时,也很少阅读课本,喜欢滔滔不绝地讲,满满黑板的写,使学生产生依赖性,数学课本是数学基础知识的载体,课堂上指导学生阅读数学课本,不仅可以正确理解书中的基础知识,同时,可以从书中字里行间挖掘更丰富的内容,此外,还可以发挥课本使用文字、符号的规范作用,潜移默化培养和提高学生准确说练的文字表达能力和自学能力。
重视阅读数学课本,首先要教师引导,特别在讲授新课时,应当纠正那种“学生闭着书,光听老师讲”的教学方法,在讲解概念时,应让学生翻开课本,教师按课本原文逐字、逐句、逐节阅读。在阅读中,让学生反复认真思考,对书中叙述的概念、定理、定义中有本质特征的关键词句要仔细品味,深刻理解其语意,并不时地提出一些反问:如换成其它词语行吗?省略某某字行吗?加上某某字行吗?等等,要读出书中的要点、难点和疑点,读出字里行间所蕴含的内容,读出从课文中提炼的数学思想、观点和方法。教师在课堂上阅读数学课本,不仅可以节省不必要的板书时间,而且可以防止因口误、笔误所产生的概念错误,从而使学生能准确地掌握课本知识,提高课堂效率。
为了帮助学生在课外或课内阅读,教师还可以列出读书提纲,以便使学生更快更好地理解课文,例如,高一下期平面向量中平面向量的坐标运算一节,笔者拟了以下读书提纲,让学生阅读自学:
平面向量的坐标表示是怎样进行的?
起点在原点的向量、起点不在原点的向量、相等的向量,它们在坐标系中是怎样表示的?两向量平行时,它的坐标表示是什么?
通过学生对课文的阅读,加深了学生对课文的理解,提高了学生的自学能力。
三、挖掘课本隐含知识,培养学生的研究能力。
高中数学新教材中知识点的抽象性和隐含性比其它学科显得更为突出,数学中的知识点
要通过思维和逻辑推理才能揭示,由于学生受思维和推理能力的限制,以及没有阅读数学课本的习惯,许多学生对数学教材看不懂、不理解。为了完成中学数学的教学目的和任务,首先教师要认真钻研和熟悉教材,把蕴藏在教材中那些隐含的知识点挖掘出来,帮助学生理解教材和掌握教材以培养学生的研究能力
例如,判断函数的奇偶性的等式f(-x)=f(x),f(-x)=-f(x)就隐含着定义域关于原点对称这个前提,而学生往往忽视这个重要前提而导致失误。
又如学习数列通项公式时,就应注意(1)不是所有数列都能写出它的通项公式;(2)同一数列的通项公式不一定;(3)仅由前几项可以归纳出无限多个“通项公式”;(4)对某些数列,通项公式可以用分段表示。
再比如平行向量的定义中就隐含两个零向量不是平行向量这一知识点。经过教师对教材隐含知识的挖掘,激发了学生学习数学的积极性,增加了学生探索问题、研究问题的能力。
四、剖析课本例题,培养学生解决问题的能力。
新教材中所选的例题都是很典型的,是经过精选,具有一定的代表性的,例题教学占有相当重要的地位,搞好例题教学,特别是搞好课本例题的剖析教学,不仅能加深对概念、公式、定理的理解,而且对培养学生发现问题、解决问题的能力以及抽象思维能力等方面,能发挥其独特的功效,例题的剖析主要从三个方面进行:
1、横向剖析
即剖析例题的多解性,课本上的例题一般只给出一种解法,而实际上许多例题经过认真的横向剖析,能给出多种解法。如果我们对课本例题的解法来一个拓宽,探索其多解性,就可以重现更多的知识点,使知识点形成网络。这样,一方面起到强化知识点的作用,另一方面培养了学生的求异思维和发散思维的能力。课堂上剖析例题的多解性,还可以集中学生的学习注意力,培养学生“目不旁骛”的良好学习习惯。
2、纵向剖析
即分析这个例题从已知到结论涉及哪些知识点:例题中哪些是重点、难点和疑点,例题所用的数学方法和数学思想是什么等等,甚至哪一步是解题关键,哪一步是学生容易犯错误的,事先都要有周密的考虑。我们以新教材第一册第62页例5为例:已知函数f(x)是奇函数,而且在(0,+∞)上是增函数,求证:f(x)在(-∞,0)上也是增函数。这个例题难度虽然不大,但对于刚步入高中的高一学生来说是很难理解其解法的。本例涉及的知识点有区间概念,不等式性质,函数奇偶性,函数单调性;本例重点是比较大小,难点是区间转化,疑点是变量代换;本例所用数学方法是定义法,数学思想是转化思想。本例的成败关键,也就是防止学生犯错误的是如何突破难点和疑点。因为转化思想和变量代换是高中数学的一个质的飞跃,对于高一学生是很陌生和不习惯的。如果数学教师能把课本中例题剖析得透一些,讲解得精一些,引导学生积极思维,使学生真正领悟,则必将提高学生的解题能力,使学生摆脱题海的困境。
3、“变题”剖析
即改变原来例题中的某些条件或结论,使之成为一个新例题。这种新例题是由原来例题改编而来的,称之为“变题”。改编例题是一项十分严谨、细致而周密的工作,要反复推敲,字斟句酌。因此,教师如果要对课本例题进行改编,必须在备课上狠下功夫。“变题”已经成为中学数学教学中的热点,每年的“高考”试题中都有一些“似曾相识”的题目,这种“似曾相识题”实际上就是“变题”。我们广大数学教师如果也能象高考命题一样去研究“变题”,那么必将激发学生的学习情趣,培养学生的创造能力。当然,在研究“变题”时,除了上面所述的严谨性、科学性以外,还应当注意以下几点:(1)要与“主旋律”和谐一致,即要围绕教材重点、难点展开,防止脱离中心,主次不分;(2)要变化有度。即注意审时度势,适可而止,防止枯蔓过多,画蛇添足;(3)要因材而异,即根据不同程度的学生有不同的“变题”,防止任意拔高,乱加扩充。
五、改变固有的评价模式
原有的对学生的评价模式只是对学生的课业学习情况通过考试分数来评价,而忽视了学生的能力、品质的评价,评价方式呆扳,不利学生的发展,打击了一批学生的积极性.新课改后在评价学生时,不是只看学生的考试成绩,而更注重学生的学习品质、自主学习能力、合作学习能力、探究能力、思想品质等各方面的综合评价,以发展的眼光来评价学生,评价的是学生的综合能力,注重学生的动手能力,实践能力,创新能力的培养,而不是以一次考
试的成绩论成败,评价方式更科学、全面、客观,更有利于学生的发展。
比如对模块的综合评价成绩采用如下计算公式:
W=平时×20%+单元测验×15%+实践与探究活动×15%+学段考试成绩×50%
充分提高自身素质,投身新课改,作为当代新形势下的教师要不断加强业务、理论学习,不断提高自身的能力素质,以新理念新观念,来适应社会的发展,培养驾御课堂的能力,适应新形势的要求,及时汲取营养,丰富自身的素质,提高自身能力,力争在新课改中有所作为。
六、归纳课本知识,培养学生的概括能力。
教师在授完教材一节或一章内容后,要根据教材的特点,有重点的对课本知识进行深入浅出地归纳,这种归纳不是概念的重复和罗列,也不同于一个单元的复习,而是一种源于课本而又高于课本的一种知识概括。“概括”需要有一定的思维能力,这种能力不同于其它思维能力,它是通过对众多事物的观察,以及对许多知识的提炼而得出的条理化、规律化的东西,经过概括的知识易记、易懂。
例如,对三角函数中sinX>cosX的判断求解时,就可通过作平面直角坐标系一、三象限的角平分线区分,在角平分线上方有sinX>cosX,在角平分线下方有sinX
对适应知识的归纳、概括不仅是学习的需要,乃至在今后的工作实践中,这种概括能力也是不可缺少的,我们都要在教学中逐步培养学生这种能力,以适应社会工作的需要,这也是素质教育的一个方面。
总之数学教学中需要反思的地方很多,我们在教学过程中只有勤分析,善反思,不断总结,我们的教育教学理念和教学能力才能与时俱进。愿我们在工作中学习,在学习中工作,紧跟时代的步伐。
高三数学教师教学心得体会三
在刚刚结束的20_届高考毕业年级工作中,我担任高三理科班1、3两班的数学教学工作,这是我自2008年调入以来95中第一次教高三,也是我担任年级组长带的第一届,因此我也有些诚惶诚恐。因为我很怕自己能力不足,辜负了学校的期望。幸好在备课组同头授课中,我遇到超强亲和力、知识渊博的老教师陈伟和干劲儿十足的年轻教师张健,我才有了一些底气。
一、我的高三复习作法:
1.加强集体备课,优化课堂教学
由于九十五中学历年高考上线、各科成绩均不错,所以从我自身不想拖其他老师的后腿,因此针对如何提高教学效果我们制定了严密的教学计划,提出了优化课堂教学,强化集体备课,培养学生素质的具体要求。即优化课堂教学目标,规范教学程序,提高课堂效率,全面发展、培养学生的能力,为其自身的进一步发展打下良好的基础。
(1)集体备课前我们先选定复习材料——金版教程(和学校提供的世纪金榜),针对我校20_届高三理科班学生的特点,我们确定以金版教程为主的,世纪金榜为辅,并适当补充全国近几年一些典型高考题的教学策略。即使这样,对金版教程上的题也不是照抄照搬,我们亲自试做相关的习题,再从中筛选些典型的例题和习题,或进行改编,或给出更好的解题方法,以适合我校学生认知水平。同时我们还打乱了编写者的顺序,并对教学内容进行了适当的整合,选用了适合20_届学生的顺序,我们把高中复习内容分为了1.不等式;2.集合与函数;3.三角函数;4.平面解析几何;5.数列;6.排列、组合与概率;7.立体几何;8.复述;9.平面几何证明选讲;10.程序框图;11.平面向量11部分.
(2)集体备课中研究《考试说明》中对本章内容考试的性质、考试的要求、考试的内容、考试形式及试卷结构各方面的要求,并以此为复习备考的依据,也为复习的指南,做到复习不超纲,同时,从精神实质上领悟《考试说明》,具体说来是:
1)细心推敲对考试内容三个不同层次的要求。准确掌握哪些内容是了解,哪些是理解和掌握,哪些是灵活和综合运用。这样既明了知识系统的全貌,又知晓了知识体系的主干及重点内容.
2)仔细剖析对能力的要求和考查的数学思想与教学方法有哪些?有什么要求?明确一般的数学方法,普遍的数学思想及一般的逻辑方法(即通性通法).
3)把考试说明中的要求分配到每一周的课时中,在细分到每一节课中,尽量做到每一节课都贴近高考、适应高考、体现高考.
(3)在集体备课中,注重充分发挥各位教师的长处,集体备课前,我和张健老师都准备一周的课,集体备课时,每位教师都进行说课,然后对每位教师的教学目标的制定,重点、难点的突破方法及课后作业的布置等逐一评价。集体备课后,我根据自己班级学生的具体情况进行自我调整和重新精心备课,这样,总体上,集体备课把握住了正确的方向和统一了教学进度,对于各位教师来讲,又能发挥自己的特长,因材施教。同时对于我们理解不到位的地方积极向陈伟老师请教,他也不厌其烦的给我们进行指导。
2.安排好学习进度,重视基础与落实
(1)2013年高二暑假我们进行了为期5周的补课,在补课期间由于班主任的课前教育到位、假期补课的全程陪同在补课期间学生的学习热情高涨,效果很好。20_届的学生在高一入学时大部分学生入学分在450分以下(当时市内六区平均分490)比同类学校张家窝中学平均低30分左右,学生基础比较薄弱,学生的总体特点就是吱吱动动、波波转转,也就是说绝大部分学生缺乏学习的主动性和自觉性,在学校孩子们还学点,到家基本上就不学了。由于我校2013届高考成绩显著(95中学历2本以上学生首次过百),它的成功经验是——高三晚自习上到9点半,所以学校决定20_届高三从开学第一周开始每周周一至周六均上到晚上9点半。所以我们整整到20_年2月份完成了高三数学的第一轮复习,由于复习时间比较充分,每堂课的充分准备,每堂课问题提出的精心设置,都使得学习程度不同的学生都能比较积极的参与到教学活动过程中来,因此取得的效果也比较显著。在高三第一学期期末考试和后面的两次12校联考中,我校的理科数学成绩基本上与兄弟校张家窝中学的成绩持平。2月至4月进行专题复习,实际上这是第二轮知识的复习,也是对前一学期第一轮复习的补充与提高。我们主要针对高考考试中的6道解答题,我们分了6个单元进行练习,分别为①三角函数,②概率统计,③立体几何,④解析几何,⑤数列不等式,⑥导数及其应用。再加上此时校领导决定实施午辅导、边缘生弱科包干制,这样使得部分学生的数学复习的针对性较强,从高考成绩来看效果还是挺好的。4月至6月高考前进行综合训练,主要就是做各区模拟试卷、2009——2013天津理科高考数学试卷,并对每套试卷进行归纳、整理,学生的数学知识与数学能力在这期间得到较大幅度的提高。
(2)每一次的月考试卷我们都是经过深思熟虑后才出稿,难度上略低于高考(因为考虑到学生的实际水平),试题的结构跟高考完全一致,并注意题目的典型性和层次性,以适应不同层次的学生,不出难题、偏题、怪题,保持学生情绪稳定,建立学习自信心。每个月的月考试卷我们两个人轮流出题,目的是防止试卷总是一个人出,一个模式。月考后统计每个学生的得分率,并进行分析,从中找出本班同学的漏洞,发现本班的差距。为精心设计典型题目的错音分析、减少学生此类题目的再次错误打下了良好基础。
3.重视答题策略,培养学生良好答题习惯
天津高考考题的方向是基础与全面,考试的知识点覆盖面比较广,难度不大,一张卷只有2-3道难度比较大的试题。高考试题中选择填空比例占到了47%,为此我们在综合阶段特别强化了对选择题、填空题解答方法的指导和训练,以提高学生的解题技巧,教会学生一些技巧解法,如排除法,特值法,代入数值计算,从极端情况出发,等等。除了选择填空,学生成绩的好坏最终还取决于前4道解答题,平时做太多太难的解答题对于多数学生来说没有太大的实际意义。所以在实际教学中我们侧重前4道解答题的教学,用较多的时间分析讲解解答题,给学生充分的时间去做解答题。并要求学生做到规范做答,努力作到“会而对,对而全”,再引导学生考试当中怎么去争分,怎么样书写不丢分,怎么去得步骤分等等,强调良好习惯的重要性,重点在速度、计算、表达三个方面加以训练。考试的时间紧,复习时特别强调要有速度意识,加强速度训练,不断提醒学生,对于有些题,用时多即使对了也是“潜在丢分”,要避免“小题大做”,学会取舍。
二、针对20_年天津理科数学高考试卷,分析自己复习的优点与不足
从20_天津理科数学高考试卷情况看:天津试卷的整体结构没有变化。依然是延续8道选择题、6道填空题、6道大题,选择填空每题5分,大题前4个每题13,后2个每题14分。从命题风格角度看,填空、选择和前三个解答比较常规,考察的也是高中教学中重要的知识点、注重通性通法。后3个解答,第18题椭圆第一问考的是离心率问题,而20_各区模拟的第一问基本上都是求椭圆方程,学生不太习惯;第19题数列是一个与集合联系的创新题,学生读不懂;第20题导函数第一问求参数的取值范围而20_年各区模拟基本上都放到第二问,起点高。
优点:只要耕耘就有收获,天道酬勤。学生的基础题目答得较好,成绩是比较令人满意的。
不足:我所教的两个理科班数学分118,没有优秀率。因此学生的计算能力、审题能力、创新能力、综合能力还有待于加强。
例如:
1.第7选考的是条件问题,这类题不论是从20_区模拟还是以往教学中所做过的题,基本上答案都从充分不必要和必要不充分两个选项选,而此题的答案是充要条件,所以学生感觉不适应;而且总我自身解题来说也更重视的分类讨论,而不是树形结合;
2.高三一班的郭雯、孙琪琪,等同学前3个解答做的不好,准确率低,对于必须拿分的没有拿着。
3.20_高考学生都反映后3个题难,尤其是第19题——数列,绝大部分学生没有读懂题,因此在复习中应设置一些创新题目。
通过我们全组教师的共同努力,我们20_届最终取得了比较好的成绩,也算是给学校交了一份满意的答卷。但是,回首期间还是有很多的缺憾和不足,也衷心的希望20_届的师生能够弥补我们的遗憾,取得更加骄人的成绩!
高三数学教师教学心得体会四
新年将至,一学期就要过去,因为带的是高三学生,真正觉得紧张忙碌。总体看,能认真执行学校教育教学工作计划,转变思想,积极探索,改革教学,在我校“两课七环节”课堂教学模式的基础上,加大学生自主和探究的步伐,收到较好的效果。
一、政治思想职业道德方面
严格遵守学校的各项规章制度,从不迟到早退,积极参加学校组织的各项政治学习和活动,并认真做好笔记,认真学习新课程教学标准,学习其新的教学理念,使自己能适应不断发展的教育新形势。在教学中,我始终能以满腔的热情去关心热爱每一位学生,不对学生体罚或变相体罚,使他们在一个充满爱的环境下学习成长。
二、教育教学能力方面
我担任高三文科数学教学,文科生普遍数学能力差。为此,我平时认真备课,努力钻研教材,明确教学目的,突出教学重点,精心设计教学过程,采用生动活泼的教学手段,提高学生的学习兴趣。对于班级中成绩较好的学生,我尽量出一些思考题,以便他们积极思维,开拓他们的解题思路,提高他们的解题能力,对于差生,我从不气馁,总是及时发现他们身上的闪光点,利用课余时间,耐心的帮他们补课,不厌其烦地教,鼓励学生不懂就问,端正其学习态度,努力提高学生学习成绩。在教学中,遇到难题,我总是及时的向经验丰富的教师请教,学习其优秀的教学经验,取长补短,努力提高自身的业务水平。
三、创新评价,激励促进学生全面发展。
始终把评价作为全面考察学生的学习状况,激励学生的学习热情,促进学生全面发展的手段,也作为教师反思和改进教学的有力手段。对学生的学习评价,既关注学生知识与技能的理解和掌握,更关注他们情感与态度的形成和发展;既关注学生数学学习的结果,更关注他们在学习过程中的变化和发展。抓基础知识的掌握,抓课堂作业的堂堂清,采用定性与定量相结合,定量采用等级制,定性采用评语的形式,更多地关注学生已经掌握了什么,获得了那些进步,具备了什么能力。使评价结果有利于树立学生学习数学的自信心,提高学生学习数学的兴趣,促进学生的发展。
四、抓实常规,保证教育教学任务全面完成。
坚持以教学为中心,强化管理,进一步规范教学行为,并力求常规与创新的有机结合,形成学生严肃、勤奋、求真、善问的良好学风。从点滴入手,了解学生的认知水平,查找资料,精心备课,努力创设宽松愉悦的学习氛围,激发兴趣,教给学生知识,培养了学生正确的学习态度,形成良好的学习习惯及方法,使学生学得有趣,学得实在,向45分钟要效益;扎扎实实做好常规工作,做好教学的每一件事,切实抓好单元过关及期中质量检测。
一份耕耘,一份收获。总之今年我的教学工作苦乐相伴。今后我将本着“勤学、善思、实干”的准则,一如既往,再接再励,把工作搞得更好。
高三数学教师教学心得体会五
在本学期中,本人担任了高三(23)班和(24)班的数学教学工作。还记得当初学校通知我连任高三的时候,觉得压力还是挺大的。作为年轻教师,教学经验不足,对高考的把握始终不够。特别又是高三(23)和(24)班都是文科班,学生的基础普遍是偏差的。高考数学试卷的特点是难度大,区分度大,高考所占权重大,数学也是高三学生最重视的学科。高三数学的教学直接关系着考生高考的成绩,数学教师的责任是重大的。下面是我对这学期的具体做法与体会。
一、时间进度的安排。
在高一、高二时完成了整个高中数学的新课教学工作,所以高三从前一年的7月就开始复习,这样的安排是完全合理的,我们第一遍复习用了高三的整个第一学期,应该是比较充分的,效果也比较显著的。第二学期前一个月作专题复习,主要是知识专题,实际上是第二遍的知识的复习,是对前一学期第一轮复习的补充与提高。从第二学期刚开学时的第一次考试和一个月后全市第一次模拟的考试成绩对比来看进步是显著的。4月初第一次模拟考试后我们安排做综合练习,我们安排就做前一年即20_年的高考数学试卷,这也用了一个月左右的时间。最后一个月,从四月底到五月中有2到3周的时间,这段时间很关键,我们安排解答题的专门练习,针对高考要考的6道解答题我们分6个单元做练习,分别为①三角函数,②概率统计,③立体几何,④解析几何,⑤数列不等式,⑥导数及其应用。该部分的习题的都是自己组卷,这样针对性较强,难度适当,学生反映也较好。最后在学生自主复习的两周,学生自主复习时我们要求学生做一些做今年当年的模拟试题,主要是今年安徽省省各地市的模拟试卷,这些试题的水平比较高,高考的方向掌握的比较准,难度不大,正适合这时的需要。
二、复习一定要把握好高考的方向。
我省的高考命题水平逐年提升,质量逐年提高。而他们命题的样板就是前一年考试中心的试卷,他们也在努力学习考试中心的命题思想,所以只要充分研读前一二年考试中心的试卷就能摸准当年高考命题的脉搏。实际情况也是如此,高考试卷的型式:21道试题,10道选择题,5道填空题,6道解答题,各题的得分比例都与去年的考试中心的命题试卷雷同。各章考查知识点在试卷中的比率与6个解答题的考查方向,都与去年考试中心的试卷的相似。我就是以这样的思想来指导高考复习。也就是说以去年的考试中心的6道解答题主要考查方向是我们复习的主攻方向。
三、重点内容重点复习。
前面已经提到6个解答题是我们高考复习的重点,所以尤其要重点复习,在第一轮复习时,函数部分不要花费过多时间,集合与简易逻辑,向量部分,连续与极限,统计部分都不是重点,不必做过多过难的题。在第二年的5月份,也就是高考的最后阶段,这时的时间最宝贵,我们针对高考的6个解答题安排了6个专题复习。现在看这样的安排是完全正确的。在具体复习中教师要对习题试题进行指导性的选择。
在过去这一学期里,我们努力了,我们奋斗了,我们也取得了一些成绩,工作成绩得到了学校的肯定。今后,我们将更加努力工作,以对党的教育事业的无限热爱和无限负责的精神,做好本职工作,为学校建设多作贡献。