时间:2023-04-28 09:03:41
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇神经外科医生论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
与印象中的外科医生不同,张荣教授清瘦儒雅,不像是手术室里要站台十几个小时做手术的外科医生,也许因为是儿科方面的专家,所以心“年轻”,外貌也很年轻。
小儿神经外科≠成人神经外科缩小版
“神经外科还分小儿版,年纪小的单独分出来是因为比较‘小’吗?”结果张教授认真地说:“小儿神经外科绝不是成人神经外科的缩小版,单独把它分出来作为神经外科的一个亚专业是特别有必要的。小儿因为生理上的特殊性,所以有很多疾病是成人并不会出现的。”
张教授在2002~2005年间分别在德国梅茵茨大学神经外科与美国加州大学旧金山分校(UCSF)医学中心神经外科做访问学者,在国外学习小儿神经外科的专业知识。回国后就着重开展临床亚专科工作,2005年华山医院神经外科正式成立小儿神经外科亚专业组,建立并完善了这个神经外科中的小众亚学科。
小儿神经外科有自己的特点特色,绝不是成人神经外科的缩小版。比如从先天性疾病来讲,主要以小儿神经系统的畸形为主,包括多种类型,且很多类型在开展成人神经外科时并没有留意到,所以处理上会有些不正确,如小儿的脊柱裂,以前只知道切除包块,关闭闭合不全的椎管,但其实更要注意修补缺损、切除瘘管和重建神经管的过程。另外,从小儿神经系统肿瘤来说,小儿神经系统肿瘤有的并没有成人版。有的成人恶性肿瘤恶性程度非常高,即使手术后预后亦不佳。但有些小儿的恶性脑肿瘤手术后,配合个体化治疗,生存十年以上的非常多。
小儿脑肿瘤早发现
儿科医生也叫“哑医”,因为孩子的表达还不够成熟,会影响对疾病的描述。张教授把临床上见到的儿童分为“小小孩”和“大小孩”。对于“小小孩”,如一岁以内的婴幼儿,他们不会表达不舒服,得靠大人发现。张教授说,如果发现小孩子习惯于用一侧手,另外一侧的手不大用,这时就要怀疑小孩子不活动的那侧肌力是否比较差。另外,发现小孩子哭吵得很厉害,或者出现惊厥等,家长都要足够重视。对于更小的、头颅囟门还没闭合的小孩,如果颅内压高,则短期内头围会增长过快,甚至眼睛不愿意往上看,这点也需要引起家长注意。孩子频繁呕吐也要当心,小孩子呕吐虽然常见,但是经常性、喷射性的呕吐还是应该提高警惕,排除胃肠道疾病后,可筛查是不是有脑部疾病。
至于“大小孩”,早期最常说的症状是头痛,家长可发现孩子有走路不稳、眼睛看东西看不清等症状。其中有的小孩子到肿瘤很大了才会发现,如脑室内肿瘤早期视物不清并不明显,等到视力很差了才来看,也就是等到脑积水出现,头痛、呕吐,甚至看不见了才来就诊。这时候疾病往往已经到后期了,肿瘤往往已经长得比较大了。
“大小孩”如果出现视力改变,当然首先要查一下视力能不能矫正,视野有没有缩小。比如鞍区颅咽管瘤,在视交叉前的肿瘤,孩子会有双颞侧偏盲,两边看东西就看不到,视力改变,视野缩小。有时候视物改变会伴有特定的症状,如爱饮水,多饮多尿,甚至有早熟现象,这时就要考虑孩子脑部鞍区是否有病变。
神经系统肿瘤没有有效的预防方式,只能尽力做到早发现。张教授建议,如果有直系亲属患过相关疾病的,如神经纤维瘤病、血管母细胞瘤,可以通过早期筛查血液,初步了解基因有无改变。
神经导航助精确切除病灶
目前小儿神经系统肿瘤的治疗优选手术切除,术后病理诊断报告对确诊肿瘤类型非常重要,关系到肿瘤的类型及分期,是指导后续放化疗治疗的重要指征。虽然有的生殖细胞瘤不手术,直接放化疗效果也不错,但不知肿瘤类型和分期,对临床放化疗剂量及用药都会有影响。
张教授说:“以前手术开展的比较少,是因为许多肿瘤生长部位很难手术,比如说松果体区、鞍区,从以前的技术、设备角度来讲,很难做到全切除。有的松果体区肿瘤因为手术难,医生觉得手术风险太大就放弃了手术,直接去做放疗、化疗了。但因为没有拿到最后的病理诊断,所以很多放化疗效果并不好。更有甚者,由于未能切除肿瘤,一些良性的肿瘤因得不到适当治疗而贻误病情。”现在,通过显微外科技术,就可以相对安全地切除肿瘤。对于位于功能区的肿瘤来讲,通过神经导航和神经电生理监护技术,可以精确地标明功能区,准确定位肿瘤,很小的肿瘤都能找到,使肿瘤能切除干净,且危险区的提示又能让医生避免手术触碰功能区而造成损伤。张教授说,现在能够通过手术治愈更多的患者,作为医者,他还是很受鼓舞的。
儿童神经系统肿瘤手术后康复比成人要好,因为小孩子正处于不断发育的过程中,其神经系统重塑性好。对于恶性肿瘤,放疗和化疗是很好的控制肿瘤复发的方式。一般来说,5岁以上小儿可选择放化疗,5岁以下的患者一般不建议放化疗。
亚专科,术业更专攻
小儿神经系统疾病包括神经系统肿瘤、先天性畸形、脑血管疾病、癫痫等。国内小儿神经外科起步较晚,但经过几代医家的努力,于2006年成立了中国小儿神经外科专家委员会,2013年成立了中华医学会神经外科分会小儿神经外科学组。张教授介绍说,上海目前除了华山医院以外,开展小儿神经外科的医院尚有上海新华医院、上海儿童医学中心、上海儿科医院、上海儿童医院等。小儿神经外科亚专科的分出及学会的成立,很大程度地推动了小儿神经外科的发展,使学科间的交流更充分、更有效。
华山医院自从2005年开展小儿神经外科亚专科以来,特色做神经系统肿瘤、血管畸形、烟雾病等疾病的治疗。科里年龄最小的颅内肿瘤患儿6个月不到。在小儿中枢神经系统排名前5位的肿瘤中:髓母细胞瘤的肿瘤全切率为90%以上,结合术后放化疗,5年生存率达到80%左右;颅咽管瘤的全切率为95%以上,其中三脑室内的颅咽管瘤全切率为90%以上,次全切除后行伽玛刀辅助治疗的5年控制率达100%,术后无昏迷、瘫痪等早期严重并发症;5年来对于中枢神经系统生殖细胞瘤进行了系统的研究,并总结了临床经验,通过先手术切除或活检以明确肿瘤性质,再根据肿瘤具体类型进行个体化综合治疗以达到最佳治疗效果,疗效达到甚至超过国际同期水平。在对于颅裂脑膜脑膨出、脊柱裂脊膜脊膨出、小儿脑血管病的手术治疗也取得了令人满意的长期疗效。
博观而约取厚积而薄发
自2002年于暨南大学攻读硕士学位起,杨荣骞选择现代医疗仪器作为研究方向,不仅在电子信息、计算机应用与仪器仪表的理论和设计方面打下坚实的基础,而且扩展了基础医学知识,紧密结合临床对医学仪器的需求,负责企业规划的多项医疗器械新产品的研发,完成了妇产康复治疗仪、LEEP手术系统等5个产品的研制。
在上海交通大学攻读博士学位期间,他师从中国无创医学领域开拓者之一陈亚珠院士从事肿瘤物理治疗领域的研究。深入研究实时温度测量的理论和技术,提出了基于结构光的三维红外成像方法,在结构光系统标定、三维表面数据快速重建等方面取得了创新性成果。发表SCI论文4篇、EI论文3篇,获国家发明专利授权1项。
进入华南理工大学生物医学工程系任职后,杨荣骞组建和带领由青年教师、博士生和硕士生组成的科研小组,开展以手术导航、心功能评价和放射治疗等为特色方向的理论与应用研究,主持承担国家自然科学基金及省、市级科技项目多项。提出基于配准的四维心脏图像全自动分割、精确近红外摄像机标定、标记点自动提取与立体匹配等新方法,设计高精度近红外光学定位系统,完成了手术工具的标定、跟踪定位等算法。发表学术论文25篇,其中SCI论文3篇、EI论文7篇;申请国家发明专利6项,其中授权1项;获软件版权1项。
紧跟前沿科技结合临床应用
随着生活水平提高和生活方式变化,人类预期寿命在延长,但心血管疾病发病率和死亡率也在不断上升,对国民健康形成巨大威胁。心血管疾病的早期诊断和预防已成为全球关注的重大问题。在心脏医学影像领域,常见的有MRI、SPECT、CT、US等,基于不同图像来源可重建出不同精度的模型。近年出现的双源CT(DSCT),为采集清晰动态的心脏图像提供了可靠的影像学保障,可实现在无需使用β-受体阻滞剂和不受心率影响的情况下对心脏病患者进行成像。CUDA(computeuni fieddevicear chitecture)是建立在图形处理单元(graphic proces singunit,GPU)基础之上的通用计算开发平台,通过它可以将GPU视为一个并行数据计算的设备。利用DSCT提供的良好的心脏断层图像,结合GPU并行计算能力,为可视化心脏辅助诊断系统的研究提供了良好的医学影像学和计算机基础。
紧跟这项前沿科技,杨荣骞主持完成了“基于GPU的心脏DSCT系列图像精确分割技术及三维可视化研究”(中央高校基金面上项目),采用基于模板的配准技术实现创新的四维心脏图像的全自动分割,不仅大大减少了医生半自动分割图像的时间,而且提高了分割精度。通过与广州总医院放射科密切合作,还获得了冠脉灌注测评和动态心功能评价方法等相关研究的新成果。将进一步结合临床影像数据和医学专家知识,构建符合国人特征的具有临床应用价值的辅助诊断和评价模型。
在肿瘤开颅手术前,须先进行手术入路规划。目前,神经外科医生一般是根据影像学提供的病灶信息,结合自己的经验,采用定性的方法设计勾画开颅部位。由于对肿瘤的形态、尺寸及空间位置不能精确量化,往往造成较大切口引起更大损伤,也可能因反复探查而拖延术前计划时间。依靠经验定性方式的入路规划也不利于术中脑功能区保护和有效完全切除肿瘤。如果采用立体定向头架或神经外科导航系统,则能精确定位脑部肿瘤,且正确引导手术入路的方向和深度,但费用昂贵、操作繁琐,难于在医院普及。
为克服人工经验方法的不足,提高定位精确度,减小手术损伤,保障手术的有效性和安全性,杨荣骞团队成功研究一种不依赖昂贵设备,且操作简便,易于掌握的辅助肿瘤开颅手术入路规划方法和软件,基于术前检查获取的医学影像数据,确定肿瘤病灶的三维形态和空间位置,对肿瘤、头皮表面和设定标志点进行三维可视化重建。在这个虚拟半透明可视化模型中可直观地看到肿瘤在头皮的投影,人机界面能够辅助医生进行手术入路规划设计,以实际尺寸等比例打印方式输出规划结果。该项技术与广州总医院神经外科合作研发,并得到临床试用60多例,明显比人工经验方法提高了定位精确度,减小了开颅创口,缩短了入路规划时间。该成果的进一步研究发展,将结合生物力学机理研究有效抑制开颅后脑漂移对肿瘤定位的影响,把电刺激获取的脑功能区位置映射到MRI影像中为医生提供更丰富的信息规划手术路径。
致力导航技术延伸医生视觉
手术导航为微创手术提供了重要的辅助手段,从一开始就在神经外科中得到应用和大力发展,特别是对颅脑肿瘤手术治疗而言,实现了手术医生的视觉延伸。通过术前计划和虚拟导航辅助制定详尽的手术计划,指导术中精确定位,对提高手术精确度,保障手术安全有效,提高手术效率发挥了极大作用。手术导航是现代医学影像、双目视觉、虚拟可视化、立体定向等技术与计算机应用技术有机结合构成的医疗仪器系统,目前的手术导航产品最成熟的技术主要是在术中导航精确定位部分,已经可以达到较高的跟踪定位精度。关于术前计划部分,主要是虚拟手术研究领域的相关进展,在CT、MRI图像融合技术及应用软件方面取得较好成果,但是还未有机地融入到手术导航系统中。此外,手术导航的术后评估方法已经逐渐进入研究关注范围,但现有进展不够深入,基本未形成示范性有价值的指导。
鉴于导航技术在现代医疗设备中的重要地位和面对关键技术难点提出的挑战,杨荣骞主持承担了“高精度近红外光学导航技术”(中央高校基金重点项目)和“手术导航中高精度大视场光学定位技术研究”(国家自然科学基金项目)。由于光学定位技术具有定位精度高,使用灵活,基础技术较成熟等优势,且得到广泛的应用,因而选择光学定位技术构建系统并深入开展导航技术研究。仔细分析了目前光学定位技术存在的两个主要缺点:一是光学成像设备受摄像机有效视场限制,使得手术必须在摄像机的有效视场范围内完成;二是手术中光线容易被阻挡。医生只能调整成像设备或者手术工具到合理的位置来完成定位,给实际使用带来了很大的不便。杨荣骞提出创新的能够自动跟踪手术工具的大视场高精度近红外光学定位技术,达到克服上述缺陷的目的。每个摄像机的内外部参数都通过光学测量精确标定,实现了多件手术工具高精度定位和实时跟踪。基于FPGA(现场可编程门阵列)新设计了一种近红外光学定位单元,实现多摄像机的动态图像信号同步采集,很好地消除了由于图像采集不同步而产生的抖动现象。
怀着对徐林主任的深深敬意,笔者近日拜访了这位骨科神经学创建人。见到徐林主任时,他刚做完7台骨科手术,虽然已是疲惫不堪,但他依然耐心地接受了记者的专访。他说话时,浑厚的声音中蕴含着一种坚定的气质,炯然的眼神里透射出一种执著的信念,丰富的谈话中体现了一种创新的精神……
我国第一位骨显微外科博士
1976年,徐林毕业于白求恩医科大学。“”当时刚刚结束,各行各业百废待兴。年轻的徐林在“大外科”、“大骨科”的轮转性临床工作中任劳任怨。一边刻苦钻研理论知识,一边庞杂精炼实践技能。经常得到患者的赞誉。在这个阶段。他学到了作为一名好医生应该具备的首要条件――勤学苦练,求知为患。
1979年,积累了一定临床经验的徐林在极度求知欲的促使下,脱产攻读了硕士研究生,不仅再一次锤炼了自己的医学理论知识。也开启了他医学科研的大门,使他向医学的前沿阵地迈出了第一步。
1982年。硕士毕业后的徐林再一次回到白求恩医科大学附属医院从事临床工作。他像一个回归前线的战士,带着更饱满的激情和更为精练的知识来到患者中间。以全新的姿态和病魔战斗。他把自己的“阵地”规划到骨科领域,但同时也不断地汲取其他学科的知识和经验,并灵活运用;尤其是对与骨科关联紧密的神经外科,他同样潜心研究,这为他的临床工作带来了很多意想不到的收获,也为他多年以后创建“骨科神经学”打下了坚实的基础。
1984年,徐林凭借超乎寻常的毅力考入上海医科大学,成为世界“断肢再植之父”、著名骨科与显微外科专家、中国科学院院士陈中伟麾下的第一位博士研究生。也是我国第一位骨显微外科博士。在陈中伟院士的精心培育和徐林自身的不断努力下,他的整体医疗技能和医学知识突飞猛进,并且在我国医学界树立了自己独特的医学理念和创新思维。
1987年,在徐林的博士论文答辩会结束后,陈中伟院士在接受记者采访时曾预言:“这个经过艰苦磨练而成长起来的新秀,有一种与众不同的创新欲。他将来会带动一个学科的发展。”
东方脑瘫SPR手术的奠基人
1987年,徐林在国际上率先开展了“吻合血管的神经移植术修复臂丛神经缺损”研究。同时。还在北京博爱医院参与创建了“中国康复中心”。徐林就像一个动力十足的火车头。在医疗领域里勇往直前地奔跑。以其创新性的工作理念带领整个学科的飞速发展。
脑性瘫痪是小儿时期常见的神经系统疾病之一。占出生人口的4‰左右,其致残率高,治疗与康复均较困难。故一直是骨科、神经外科和康复医学领域的难题之一。徐林教授自20世纪80年代后期开展了一系列有关脑瘫痉挛的基础实验和临床诊治研究,其中包括腰骶神经根的解剖学研究,腰骶神经根的组织化学研究,有关“选择性脊神经后根阻断术”(SPR)的诱发电位研究、动物实验等,均取得了重要进展和突破。
1990年5月,徐林率先在亚洲将SPR应用于临床治疗脑瘫下肢痉挛,并对手术方法进行了一系列重要改进。痉挛解除有效率达95%以上,功能改善率达80%以上。截至目前,已完成手术8000余例,这是国际上完成手术例数最多、资料最完整、治疗效果最好的一组病例。
1991年12月,徐林在SPR成功的基础上,在国际上开展了首例“髓外选择性颈段脊神经后根切断术”,治疗由脑瘫引起的手与上肢痉挛的病例,获得明显疗效。截至目前,已完成手术500余例。
SPR改变了传统的脑瘫外科治疗模式,使其痉挛解除效果与功能改善效果大幅度提高,这一技术引起了国内外同行的高度重视。截至目前,全国已有近百家医院先后采用SPR治疗脑性瘫痪。SPR被称为全球脑瘫外科治疗最重要的进展之一,成为脑瘫外科治疗的重要里程碑。
为了推广此项技术,1991年,徐林与有关工程技术人员合作,自主研发了适于普及SPR手术的“神经阈值测定仪”,改善了以往该手术必须使用肌电诱发电位的传统方式,更有利于该技术在基层医院的推广,该测定仪已获得国家专利。
为了进一步提高脑瘫疗效,徐林又开展了针灸和中医药对复杂难治性脑性瘫痪的攻关研究。1993年,徐林被推选为中国小儿脑瘫康复专业委员会副主任委员。1994年,被吸收为美国科学进步协会国际会员。1995年,徐林应邀赴美讲学,介绍了SPR在中国的成功经验,受到国外专家的高度关注,并被国外同行誉为“东方SPR的奠基人”。1997年,中国脑瘫外科专业委员会成立,徐林众望所归出任主任委员。目前,徐林创新的SPR治疗脑瘫技术已居国内领先地位,并跻身国际先进行列。
徐林除了在骨科脑瘫领域的研究和治疗外,还擅长治疗颈椎和腰椎病变、脊柱脊髓疾病和损伤、关节退行性病变、脊髓拴系综合征,及以臂丛损伤为代表的周围神经损伤、神经伤残后遗症等,在骨科创伤、骨肿瘤方面也有很深的造诣。自1992年以来,徐林完成的500余例脊柱脊髓畸形、脊髓拴系综合征手术,是目前国际上数量最多的一组病例。
徐林在多年的骨科临床工作中,不仅积累了丰富的临床经验,也开拓性地开展了一系列工作,受到国内外同行的瞩目。2003年,徐林在国内率先将纳米人工骨应用于临床,被评为“2003年度中国医学十大新闻”之一;同年,他在亚太地区首创“导航引导下关节置换手术”,以及术中CT脊柱导航脊柱开放和微创手术,大大提高了关节和脊柱手术的精确度,从而开创了中国骨科手术的智能化时代。
迄今为止,徐林完成各类骨科手术12000余例,其中约8000例为颈、腰段选择性脊神经后根阻断术,是目前国际上该手术例数最多、疗效最好的一组病例。在徐林的行医生涯中,“首创”和“首例”出现的字眼最多,这充分体现了他在拥有扎实的医学基础和基本功下,发挥出了他独具一格的创新精神。
骨科神经学的创建者
1993年,徐林来到北京大学人民医院工作,并于1997年创建了全球医学界第一个“骨神经科”。同时,徐林还从基础到临床,从教学到科研,从理论到实践。全方位地创建了一门新的医学学科――骨科神经学。
骨科神经学是根据人体的“骨骼神经系统”,将“骨骼、脊髓、脊神经等周围神经”整体联系紧密的区域划分出来,将其作为“骨和神经”综合在一起为研究对象的学科。例如,“脊柱脊髓区”是
本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
针对临床上多见的脑瘫、脊柱裂、脊柱脊髓外伤等疾病的研究和诊治。在以往,这些区域是由临床上神经外科或是骨科两个不同的科室单独给予处理的,由于学科的界限和局限性,成为医学上的盲点或是边缘地带,故该科学研究进展缓慢。徐林通过自身的综合素质和研究,打破了这种学科间的壁垒,更科学地、全面地进行新的划分,并且在l临床实践中发挥了卓越的贡献。
医学新学科的创建,与徐林独特的人生经历和综合理念分不开,更与他的创新精神和开拓意识密切相关。徐林从一名医学生到一位医生,经历了反复的理论知识学习和临床工作技能实践,打下了坚实、广博的医学理论知识基础,又在骨科和神经科领域具有极其深厚和精湛的造诣,他将骨科学的边缘领域和神经科学的边缘领域经过科学地综合和创新,从而开创了医学的一个新园地。
2002年,徐林作为特殊人才被引进到北京中医药大学东直门医院,并担任骨科学部主任、骨科教研室主任、博士生导师、博士后合作导师,享受国务院特殊津贴。在他上任后,对骨科状况进行了细致的分析,并根据其特点对骨科的发展制定了详细的规划。以开创特色鲜明的中西医结合疗法、打造国内骨科领域的领军团队、开展创新项目等为指导思想,快速提高团队整体业务水平,为病人提供更完善的服务。
2003年8月及2005年9月,徐林先后为两名世界罕见的“寄生性不完全性连体婴”(“三腿宝宝”)成功完成分离手术,经全世界100多家新闻媒体报道,引起了国内外社会及学术界的极大震动和关注,为中国医学界赢得了赞誉。
2005年,徐林带领的骨科学部成立了“小儿脑瘫康复中心”,一方面巩固、改善了小儿脑瘫外科治疗的效果,另一方面有利于培训骨科医生治疗脑瘫的全面技能。其指导理念正是徐林“将骨科、神经科、康复科整合在一起”的“综合理念”,解决了目前脑瘫治疗中存在的“外科医生不懂康复,康复医生不懂外科治疗”的弊病。真正实现了脑瘫治疗三原则――解除痉挛、矫正畸形、实用康复,并且制定了完善的脑瘫术后康复治疗常规。该中心对小儿脑瘫及畸形的治疗采用手术与针灸、手法康复、中医药调整相结合,提高了手术及围术期的安全性,同时缩短了患者恢复时间,提高了患者功能改善效果。2006年,该中心因为在治疗小儿脑瘫领域所取得的成绩,被指定为“国家民政部脑瘫定点治疗中心”。
传承榜样品质
说到华山医院内分泌科,就不能不提到一个人——钟学礼。青年时期的钟学礼教授,自强不息、学识广博,能胜任呼吸、心脏、血液、消化等多专业的主治医生工作,这些为钟学礼教授成为杰出的医学家打下了扎实的基础。1950 年,钟教授为上海医学院(复旦大学上海医学院前身)创建了代谢内分泌专业组,是当时国内最早成立的内分泌专科之一,并于20世纪80年代在国内首先受卫生部委托连续举办了7届全国内分泌代谢病进修班,为全国各地培养了大批内分泌代谢病的学科带头人。钟教授作为我国代谢内分泌病学科的奠基人之一,为我国代谢内分泌病学的发展作出了杰出的贡献,他在1980年领头进行的全国14个省市近30万人糖尿病患病率调查,为我国糖尿病的防治提供了重要数据。
如今,华山医院内分泌科在前辈们打下的雄厚的工作基础上,在学科带头人胡仁明教授和现任科主任李益明教授的带领下,坚持“特色立科、创新兴科、人才强科”的发展战略,持续保持科室各项医疗业务的全面发展,形成了总体实力不断提高、特色项目特色鲜明的格局,并于2011年获评卫生部临床重点建设专科。糖尿病慢性并发症和神经内分泌疾病诊治两大主要特色发展方向已初具规模,同时内分泌科还在“个体化治疗”理念的指导下,不断探索糖尿病的社区防控新模式。
特色立科
微循环障碍、微血管瘤形成和微血管基底膜增厚,是糖尿病微血管病变的典型改变。微血管病变主要表现在视网膜、肾、神经、心肌组织,其中尤以糖尿病肾病和视网膜病为主要。糖尿病微血管并发症的诊治是华山内分泌科重点发展方向之一,胡仁明教授带领华山内分泌科一直致力于解决糖尿病微血管并发症的疑难危重病人及寻找早期诊断指标和新的治疗策略。在国内较早报道了社区糖尿病慢性并发症患病及卫生经济学情况,发表SCI论文25篇,为上海市乃至全国糖尿病慢性并发症的防治提供了重要数据。10余年间华山内分泌科不断摸索糖尿病肾病早期诊断指标,较早建立了糖尿病肾病诊断决策树等。近期还拍摄了电视剧形式的糖尿病防治宣传片,为研究和指导社区推广糖尿病防治适宜技术、减少糖尿病及其并发症的发生、尤其是降低因糖尿病肾脏病变所致透析的比例不断努力。糖尿病引起的心肌病变已经越来越受到大家的重视,周丽诺教授领衔的课题组在该领域做了大量的临床和研究工作,特别在糖尿病自主神经病变方面具有特色。
依托华山医院神经外科的优势,神经内分泌已经成为华山医院内分泌科重点建设和发展的主要亚专科方向,近年来得到了快速发展,已经形成多学科合作的鲜明特色,并取得了很大的成绩,造福了越来越多的患者。在李益明主任的积极推动和神经外科、放射科等各兄弟科室的努力配合下,对神经内分泌疾病尤其是垂体瘤、垂体功能减退、尿崩症等,形成了与国际一流医疗中心接轨的多学科合作一体化诊疗模式,大大地提高了诊疗速度,方便了患者。在李益明教授的领衔下,内分泌科开设了垂体专病门诊,由主任医师亲自坐诊,为神经内分泌病患者提供优质的诊疗服务,吸引了越来越多来自全国各地的患者。关注神经内分泌疾病患者的糖脂骨代谢异常,并进行研究,深入探寻中枢下丘脑对代谢的调节作用。开创新技术新项目,如通过双侧岩下窦静脉采血技术提高库欣综合征的鉴别诊断水平,通过全垂体功能替代和生殖功能重建帮助垂体功能减退患者重新过上正常人的生活。
曾有一位女病人,新婚不久后发现出现了闭经症状,后经诊断发现生长了垂体大腺瘤。神经外科医生成功手术切除了她的垂体肿瘤,但她仍未能恢复垂体功能,手术后只能依靠多种药物维持正常激素水平。能成为一位母亲一直是她最大的夙愿,抱着试试看的心态,她来到了华山医院内分泌科,得知自己还有机会怀孕做母亲时她欣喜万分,后来在医生的指导下,通过调整激素使用剂量,并通过内分泌科和辅助生殖医学专家的治疗,她成功怀孕并顺利分娩,喜获千金。
李益明教授介绍,华山医院近十年来积累下多达数万例的下丘脑垂体疾病病史资料,这不单在国内而且在国际上也是屈指可数的宝贵资源。近年来,在多学科整合的疾病诊治模式指导下,已经建立了相应的患者资料库,组建了专门的多学科合作医疗团队,对为数众多的患者进行个体化的诊断和治疗。
社区糖尿病“三二一综合防控”
随着糖尿病诊疗领域循证医学证据的积累与新型降糖药物的涌现,临床可选择的降糖药物及治疗策略不断增加,但同时也面临更多的困惑、抉择与争议。2012 年美国糖尿病学会(ADA)和欧洲糖尿病研究学会(EASD)《2 型糖尿病高血糖管理立场声明》以全新的面貌公开,着重强调了个体化降糖方案的重要性。
李益明教授告诉笔者,其实“个体化治疗”理念由来已久,最早被应用于肿瘤疾病的治疗,由于每个患者病情不同,为了最有效地控制病情、取得最好的疗效,同时尽量减少并发症和副作用,肿瘤治疗最早实现了个体化治疗。以患者为中心的个体化治疗,对于糖尿病治疗来说,就是在对糖尿病患者设定治疗方案和血糖控制目标时,要综合考虑患者的个体情况,包括患者对治疗的态度、发生低血糖的情况、合并症及并发症、预期寿命等,从而根据不同的情况,设定不同的治疗目标和治疗方案。如果实现个体化治疗,首先获益的是患者,为每一位患者量身定制的治疗目标和方案,可以有效提高治疗效率、改善患者发生低血糖的情况、减少并发症。同时,个体化治疗会考虑患者对治疗的态度,依从性也会较好。当然,个体化治疗对医生的要求会提高,需要在大量临床经验的基础上综合考虑患者情况。
据研究报道,我国糖尿病控制现状令人担忧。2009-2011年由中华医学会糖尿病学分会进行的全国大规模“2型糖尿病患者HbA1C控制状况调查”结果表明,中国近65% 的2 型糖尿病患者糖化血红蛋白(HbA1C)≥ 7.0%,未达到指南推荐的血糖控制目标。李益明教授认为,造成糖尿病控制水平不够理想的原因很多,其中一个不可忽视的因素是基层医生也许了解指南,但可能并不了解针对每一个患者的方案应该在指南框架下进行调整,有时候完全靠指南治疗,效果并不是很理想的。
(一)背景及意义
二十一世纪我国将面临人口众多、交通拥挤、医院容量有限,以及由于独生子政策导致的日益严重的人口老龄化等一系列严重的社会问题,远程医疗技术的发展可望为我们提供一个缓解上述问题的有效途径。最简单的远程医疗形式是通过PSTN(公共电话网络)进行心电(ECGs)的远程解释,但目前的远程医疗技术研究与试验则是伴随当前IT技术的发展而发展的一个范围更加广泛,意义更加深远的新兴领域。它是现代通讯技术和计算机与现代医学相结合的产物,它利用电子通讯及多媒体技术实现远距离医学检测,监护,咨询,急救,保健,诊断,治疗,以及远距离教育和管理等等。远程医疗旨在通过提供一种管理良好、高效和跨越时空障碍的全新医疗保健服务模式,最终达到共享医疗保健资源,降低医疗保健费用,提高医疗效率和质量的目的。另外,在战场救护,交通等意外事故危重病人的紧急处理等方面,远程医疗技术也有很大的应用价值!广义地讲,远程医疗是指医护人员利用通讯和电子技术来跨越时空障碍、向人们提供医疗保健服务。根据不同的应用,远程医疗又可分类为远程监护,远程治疗,远程会诊和远程教育等等。
(二)发展过程
最早的远程医疗雏形可以追溯到1905年Einthoven等人利用电话线进行的心电图数据传输实验。但真正具有一定实用价值的远程医疗系统在50年代才开始出现,该系统可以通过电话线和专用线传送简单的医学数据。而在70~80年代远程医疗开始利用电视系统传输医学图像,即以远程放射医学(Tele-radiology)为主。随着现代微电子学、通讯技术、计算机及网络技术的发展,在90年代人们开始实践与评估该系统在远程医疗咨询、远程教育、远程专家会诊等多方面的应用。近几年来,随着医用数字影象设备如CT、MRI、B超以及DSA等的迅速普及,促使越来越多的医院采用数字图像存储通讯系统(PACS,PictureArchivingandCommunicationSystem),逐步实现医院的无胶片管理,为普及远程医疗奠定了良好基础。当前,远程医疗系统技术的技术支持有:交互视频影像设备(interactivevideo),高分辨监视器(high-resolutionmonitors),计算机网络(computernetworks),蜂窝电话(cellulartelephones),高速开关系统(high-speedswitchsystems),以及以光纤和卫星通信为核心的信息高速公路等。需要说明的是,在目前的中国,由于网络的普及面仍然十分有限,在一些中小县城市,既缺少高水平的医疗专家又缺少足够带宽的信息网络,患者的经济能力也十分有限。在这种背景下,基于电话线的远程医疗服务在一定程度上满足了当前的需求,显示出了一定的发展空间,值得国内的医疗电子企业重视。
(三)适宜范围和初步的临床效果
远程医疗技术(Tele-medicine)最大的作用在于它对农村和不发达国家的那些得不到良好服务的人群提供健康护理服务。在这些地方,合格医生的缺乏是一个很大的问题。其他需要远程医疗的地方包括:边远的兵站,需要保密的地方,出院后病人的监护,家庭监护,病人教育,医学教育等。有些医学部门,如放射学(radiology),病理学(pathology)和心脏病学(cardiology),他们需要高保真的电子医务数据和图像为诊断服务,因而特别适合于采用远程医疗。随着远程医疗技术的成熟,它能够提供服务的医学部门和范围也会随之相应地增加。比如,以下这些领域的远程医疗实践正在逐步增多:矫形外科学(orthopedics),皮肤病学(dermatology),精神病学(psychiatry),肿瘤学(oncology),神经病学(neurology),儿科学(pediatrics),产科学(obstetrics),风湿病学(rheumatology),血液学(hematology),耳咽喉科学(otolaryngology),眼科学(ophthalmol-ogy),泌尿科学(urology),外科(surgery)等。总的来说,有关报告显示,远程医疗提供了医生与远端之间的可靠的高质量的数据和音频视频通信。通过将远程医疗和直接的医生诊断相比较发现,二者没有大的差异。这些初步的结果说明,远程医疗提供了与医院相当的服务质量。目前,远程医疗已被成功地用于直接的病人监护,它明显地改进了医生的诊断能力和对病人的处理选择。远程医疗在临床医学中的作用已被完全证实,它的使用情况已经超过了立法和行政部门的步伐。因此,在未来健康监护工业的发展策略中,远程医疗应是一个不可忽略的因素。一个重要的目标是实现两个“所有”:方便地实现所有的医学服务和面向所有的地方。
(四)远程医疗系统与信息技术
很显然,远程医疗(Tele-medicine)应当有许多不同的系统和技术要求(分级的)。但大致可分为两类:实时的(RealTime,RT)和先收集后处理的(store-and-forward,SAF)。对于RT交互模式,病人与现场医生或护理人员一起在远处,专家在医学中心。对于SAF模式,所有相关的信息(数据、图形、图像等)用电子方式传到专家处,在这里,专家的反应不必是立即的。在大多数情况下,几小时或几天后才能收到专家的报告。一种理想的远程医疗系统当然是同时具备RT和SAF两种模式,但显然这种复合模式意味着显著增加的费用。例如,一个理想的RT-SAF组合,需要在急诊室内或附近有一个基站,并在远处有多个对病人实施治疗计划的地方,那里带有诊断室或移动的监护单元。基站需要有控制系统或工作站、在线的医学数据库、视频相机和监护仪、微型耳机和话筒以及图形图像输入设备。在远端,需要有完全可移动的视频相机和监护仪、各种诊断设备、图形图像输入设备、PC或工作站等。如上所述,当前的技术可以使得远程医疗系统具有可靠的高质量的数据和视频-音频通信(在医学中心的医生和远端病人之间),能够提供与到医院就诊相当的服务。随着远程医疗的范围和广度的扩展,需要进一步关注的技术和临床问题包括:传输的图像、视频信息的知觉质量以及其他临床完善性所要求的程序;当前技术能够提供的检查的透彻性,以及远程医疗服务和当前临床常规检查的有机结合问题等。远程医疗当中的一个重要技术成份是通信系统,它的基本的传输介质是铜质电缆、光导纤维,微波中继,卫星转发。一个混合的网络可能是,卫星传送用于很远距离的情况,光纤用于视频图像,铜电缆传数据、信号和控制信息。RT、SAF两种模式的通信要求都可以预测。RT模式要求短时间内传送大量的信息,它强调的重点是传输、交换和交互的时间。它的决定性因素是容许能力(传输速率和带宽)。而SAF模式则对传输速率和带宽的要求不大。只要能将整块的数据传送就行。一般的多媒体远程医疗系统应具有获取、传输、处理和显示图像、图形、语音、文字和生理信息的功能。按照远程医疗系统的组成划分,它一般由三个部分构成:用户终端设备,医疗中心终端设备和联系中心与用户的通讯信息网络。不同的远程医疗应用,对通讯系统和系统终端设计又有不同的要求。相应的设备费用也依要求的不同而变动较大。
(五)相关的有待解决的技术问题
仍然有待解决的,与远程医疗全面、广泛地实施有关的关键技术问题包括:数码医院的建立,目前有些医院己有医院信息系统(HIS)和图像归档与通信系统(PACS—picturearchivingandcommunicationsystem)和DICOM(Digitalimagingandcommuni-cationsinmedicine)。医院现有的这些系统是远程医疗的重要组成部分,它们的扩展是建立远程医疗系统的一个有利条件。此外,还需要建立标准的医学信息库;开发功能可靠、操作方便的终端设备•以及接口技术问题,因为远程医疗系统涉及多种医疗设备与通讯系统的连接,建立通用的标准接口将会减少系统建立时的复杂程度和节省费用;系统加密问题,以确保医疗数据在通讯网络传输中的安全性,维护病人的隐私权;家庭以及偏远地区的宽频通讯问题,初期通讯网络的铺建应考虑到远程医疗的用途。目前,有关研究主要集中在:(1)人-机接口和通讯网络的研究,主要解决各种信息的有效上网和传送;(2)传感器技术的研究,目标在于研制有源、无线和小型的换能器,实现生理信号的方便而可靠、准确而无损的测量;(3)各种先进的数据与图像压缩方法的研究,在尽可能减低有用信息丢失的同时,达到尽可能高的压缩率,最终实现远程医疗数据与图形图像信息的的高效传输;(4)医学信息与数据传输安全问题的研究,为相应的立法等提供技术保证。
二、医学成像技术与三维医学图像处理
(一)医学成像技术
1895年德国物理学家伦琴发现了X射线,并被应用于医学,产生了以X光照片为标志的医学影象学。此后的整个20世纪可以说是医学成像的盛世。面对各种纷纷涌现的众多成像模式,我们不仅要问:这些成像技术各有何特点?它们的发展前景又如何呢?到目前为止出现的所有成像方法,几乎都与核或电磁有关。如果从利用的电磁波的频率高低上对医学成像模式进行分类,在静态场领域有电生理成像,低频领域有阻抗CT,高频领域有微波CT,光领域有光学CT,在更高的频率领域有X线CT。其中X线CT早已进入实用的阶段。此外还有利用磁场相互作用机制的磁共振成像技术(MRI)。加上最近受到重视的一些功能成像方法,如功能磁共振成(fMRI)和正电子发射断层扫描技术(PositronEmissionTomography,PET)等,如此众多的医学影象手段提供了大量的有关病人的各种信息,包括形态的和功能的、静态的和动态的等,被广泛应用于诊断和治疗,成为现代化中必不可少的手段和工具。
1•电阻抗断层成像技术
电阻抗断层成像技术(ElectricalImpedanceTomography,EIT)是近些年来兴起的一项医学成像技术。其基本思想是利用人体组织的电特性差异形成人体内部的图像。它通过体表电极向人体送入一交流电流,在体表不同部位测量产生的电压值,由此重检一幅电极位置平面的人体组织电特性图像。这种图像不仅包含了解剖学信息,更为重要的是,某些组织和器官的电特性随其功能状态而改变,因此图像也包含了功能信息在内。此外加上对人体几乎无创伤、廉价、操作简便等优点,EIT受到了日益广泛的关注。但由于受到数据采集系统和算法等因素的限制,目前该技术并不十分成熟,基本处于实验室阶段。EIT技术根据测量目标的不同可以分为两类:静态EIT和动态EIT。静态EIT以测量对象内部电阻(导)率的分布为成像目标;而动态EIT则是测量对象内部的电阻(导)率的相对变化量的分布为成像目标。由于动态EIT技术只需反映阻抗的相对变化量,相应地,其算法简便、快速,可以实时成像,而且系统对具体目标形状有较高的鲁棒性。虽然由于假设条件难以满足、推导过程不严格等缺点使得动态EIT的成像质量不高,但由于其对人体形状和电极摆放位置的适应性强、能反映变化的信息等优于静态EIT的这些优点,它已被用来进行临床研究。相信随着算法的改进和成像质量的提高,动态EIT有望在临床上发挥更大的作用。
2•电生理成像技术
电生理成像技术指基于体表电磁信号的观测,进行的体内电活动情况成像的技术。具体有心电磁和脑电磁问题两大类。但两类问题在技术上是密切相关的,它们分别是利用测量得到的心电图(Electrocardiogram,ECG)和脑电图(Electroen-cephalogram,EEG)来研究人体的功能。这里以脑电为例,其中又可以分为两个层次,一为脑电源反演,一为成像。在成像方面,人们希望能从头皮上获得的空间分辨率较低的电位分布推算出皮层表面上空间分辨率较高的脑电电位分布,因也称为高分辨率EEG成像。人们相继发展了等效源方法(Sidmanetal,1992;Yao,2000),有限电阻网络法(杨福生等,1999),和球谐谱分析方法(Yao,1995)。脑电源反演就是利用测得的头皮电位,推算颅骨内脑电活动源的空间位置的一项技术。其具体方法有非线性优化算法和子空间分解算法。在这些方法中,大都是以某一时刻的电位观测值为已知信息,唯有子空间分解算法是直接建立在一段观测记录之上,从而较好地同时利用了观测记录中的时间和空间信息,因而受到了广泛的重视(Mosher,1992;尧德中,2000)。电生理成像技术与其它的医学成像技术如CT、MRI等相比,具有其不可替代的独特功能。它检测的是生物体的自发(或诱发)的功能信息,是一种真正的非损伤性的成像技术,且可以进行长期检测,而fMRI等只能检测诱发的间接的功能信息。另外一个优点就是它具有很高的时间分辨率。目前的一个重要发展方向是,电生理成像技术与其它影像技术相结合(如EEG与fMRI结合),实现优势互补,以得到两“高”(高时间分辨率和高空间分辨率)的结果,帮助研究人员进行更精确的分析和判断。
3•微波CT
微波CT可以说是一种比较新的成像模式,它是1978年才被提出来的。它的基本原理是:利用电磁波的传输特性,通过测定透过身体的电磁波来重建体内图像。微波CT大体可以分为两大类:被动测定型和主动测定型。被动测定型也可以称为无源型,利用的是由生物体发出的属于微波范围的那一部分电磁波,如人体热辐射等,最终获得热图像(因此,类似的还有红外成像);主动测定型也叫有源型,是用外部入射微波照射生物体,然后利用透过微波和反射微波重构图像,获得的是形态图像。微波CT作为一种医学成像模式,它的主要特点是,同X-CT相比更容易查出癌变组织;与超声相比更有利于肺的诊断;不存在电离辐射的危险性。微波CT需要解决的最大问题是如何提高空间分辨率。要想提高分辨率,必须缩短波长,提高频率,但波长愈短其在体内的衰减愈大。同时,微波在介质中传播时产生的衍射和散射会造成重建图像的模糊。所以提高微波CT的图像分辨率是一件极为困难的工作。随着技术的进步和图像分辨率的提高,微波CT将很有希望成为新一代的医学成像手段。
4•光学CT
光学CT也将是21世纪的重要研究领域。其基本思路是将光输入待测组织,测量其输出,重建该组织。由于人体对可见光是屏蔽的,但对红外或红外波段的光有一定的穿透能力,利用它进行断层成像。光学CT大致可以分为内禀(Intrinsic)光学成像、光学相干层析成像、光子迁移技术成像等几种。内禀信号指的是,由组织活动(如神经元活动)引起的有关物质成分、运动状态的改变而导致起光学特性发生变化,而这种变化在与某些特定波长的光量子相互作用后得到的包含了这些特性的光信号。通过成像仪器探测到这些光信号的某一时间间隔内的空间分布,进而重建组织图像。无损伤内禀光学成像方法近年来正加紧研究,以期用于人脑功能的研究。光学相干层析成像,即将光学相干剖析术(OCT)用于成像,它是采用低相干的近红外光作为光源,采用特制干涉仪完成光的相干选通,这样接收到的信号就只包含尺度相应于相干长度的一薄层生物组织的信息。若同时加以扫描,就能得到三维剖析图像。OCT技术从提出至今虽然只有短短几年的时间,但已表现出极为诱人的应用前景。目前它已在视网膜及黄斑疾病的早期诊断,皮肤、肠、胚胎检测等领域发挥出巨大的作用。这种技术已成为国内外在生物光学方面的一个活跃点。利用灵敏的探测器和适当的重检算法,就可以确定测量组织的光学特性。通过检测组织的光学特性,可用于肿瘤诊断、代谢状态动态监护、药物分析及光动力学治疗等场合。光子迁移技术成像(PhotonMigrationImaging,PMI)利用的是在红光和近红外光谱区,生物组织的某些不同成分对于光的散射和吸收表现出不同特性,而且在不同生理状态下的组织光学参数也不大相同。高频调控的正弦入射光经组织传播后,由于吸收和散射延迟了光子行程时间,引起了相位和光子能量密度的变化,显著和精确的相位变化体现了吸收的变化。光学方法正处于迅速发展之中,一方面,与XCT、MRI等其它成像方法相比,光学CT具有价格低廉、运行安全,另一方面,它体积小重量轻,特征信号容易获得,技术发展成熟。光学CT还有一个吸引人的优势是,它在空间分辨力和时间分辨力这两个基本的成像性能上可以说是首屈一指,目前已达约5mm的物方象素和每秒25帧以上的视频速度。因而可以预料,光学CT会在医学研究和临床等方面发挥越来越大的作用。
5•正电子发射断层扫描技术
正电子发射断层扫描技术(PositronEmissionTomography,PET)作为一种传统的核医学成像技术,它的历史可以追溯到1932年,在那一年CarlAnderson在研究宇宙射线所拍的云室照片时发现了β+的存在;此后不久ErnestLawrence发明了可发射β+核素的回旋加速器,这些是实施PET的两个不可缺少的前提条件。PET的成像原理是,将由发射正电子β+的核素标记的药物由静脉注入人体,随血液循环至全身。正电子与人体内的电子相遇并湮灭产生两个背对背的γ光子,这对具有确定能量的光子可以穿透人体,被体外的探测器接收,从而得到正电子在体内的三维密度分布及这种分布随时间变化的信息。PET的标记药物很丰富,且这些核素的半衰期都很短,病人所受到的辐射剂量可以说是微乎其微,并可在短期内进行重复测量。尽管PET具有近乎无损的测量、三维动态成像、定量检测化学物质分布及实现真正的功能成像等独特的优点,但早期由于对短寿命核素认识的不足及探测技术缺乏等原因,直到1976年第一台全身(whole-body)PET才正式投入市场并应用于临床。此后PET才真正开始进入了一个蓬勃发展的时期。目前全世界已有上百家的PET中心,利用PET进行临床医学、基础医学、脑科学等方面的研究。在临床方面,主要用于诊断神经类疾病、心脏疾病、癌症等,也可辅助设计治疗方案和评估药物疗效,并可用于探讨一些神经类疾病的发病机制。因为各种精神类疾病,如癫痫、精神分裂症、痴呆等,以及脑肿瘤、脑血管病等,都将引起血流、葡萄糖和氧代谢的异常,PET即可通过测量这些生理参数来诊断疾病。同时,PET的独特优点也给神经科学提供了观测手段,被越来越多地用来研究人类的学习、思维、记忆等的生理机制,帮助人类进一步了解自身。因为给正常人不同的刺激(如光、语言等)或让其进行不同的活动(如记忆、学习、喜怒哀乐等),也将引起不同脑区域的血流和代谢的变化,进而帮助研究脑的功能。相信在不远的将来,随着PET技术的进一步成熟,PET将会成为诊断和研究上不可缺少的工具。
6•X-线成像技术
X-线成像技术可以说是在医院当中应用的最传统、最广泛的一种医学影象技术。X-线图像建立在当X-线透过人体时,各种脏器与组织对X-线的不同吸收程度的基础上,因而接收端将得到不同强度的射线,传统的做法是将之记录在胶片上得到X胶片。随着电子技术的发展,这种传统方法的弊端日趋突显出来。当X-线图像一旦形成,其图像质量便不能做进一步改善;不便于计算机处理,也不便于存储、传输和共享等。在评价20世纪X成像技术时,多数资深专家均认为影像的数字化是最新、最热门及最重要的进展。数字化成像可以利用大容量磁、光盘存储技术,以数字化的电子方式存储、管理、传送、处理、显示医学影象及相关信息,使临床医学彻底摆脱对传统硬拷贝技术的依赖,真正实现X-摄影的无胶片化。目前采用的直接数字化X-线影象的方法主要有两种:直接X-线影象探测仪(DirectRadiographyDetector,DRD)和平板探测仪(FlatPanelDetector,FPD)。DRD最早由Sterling公司申请专利,现已进入商品化阶段。FPD由Trexell公司研制成功。这两项技术的发展方向均是设法进一步提高分辨率和实时性。数字影像可以说是伴随着计算机技术的发展应运而生。1981年第15届国际放射医学会议上首次展出了数字放射新产品。进入90年代中后期,国外已经推出了多种新型的数字化X-线影象装置;传统X-线装置中的X-线乳腺影像设备也已数字化。到目前为止,市场上的数字化的X-线影像设备已占70%以上。可以预期,数字化的X-线影像设备将逐步成为市场的主宰,并将使21世纪的X-线诊断发生令人瞩目的变化。
7•磁共振成像(MRI)
在磁共振成像(MagneticResonanceImaging,MRI)领域,自从1946年哈佛大学的E•M•Purcell和斯坦福大学的F•Bloch发现了核磁共振现象并因此获得1952年诺贝尔物理奖起,直到70年代初,它一直沿着高分辨核磁共振波谱学的方向发展,成为化学、生物学等领域研究分子结构不可缺少的分析工具。1972年R•Damadian注册了第一个关于核磁共振成像的专利,提出了磁共振成像的思想,并指出可以用磁共振成像仪扫描人体检查疾病。1982年MRI扫描仪开始应用于临床。由于质子(1H)结构简单,磁性较强,是构成水、脂肪和碳水化合物的基本成分,所以目前医学上主要利用质子(1H)进行MRI成像。其成像主要利用磁共振原理,以一定宽度的射频脉冲磁场使具有磁性核的原子产生共振激发;被激发的原子核的退激时间的长短反映了磁性核周围的环境情况。通过测量生物组织退激过程中磁化强度的变化,即可获取反映内部结构的图像。磁共振成像由于其空间分辨率高、对人体危害性小、又能提供大量的解剖结构信息等优点而被广泛应用于临床诊断。随着技术的发展和需求的提高,动态成像或功能成像是未来世纪MRI的研究方向(functionalMRI,fMRI)。一个成功的应用是用外面的造影剂或内生的血氧度相关效应(BOLD)描述视觉皮层的活动。BOLD的成像原理是基于血红蛋白的磁化率随脱氧过程而急剧变化。在静脉血管内脱氧血红蛋白浓度发生变化时,会在血管周围引起磁场畸变,而这种变化可以被探测记录下来。在功能神经科学研究领域中,BOLD成像有很多优点。这类研究完全非侵入性,产生的图像数据与解剖结构的数据是完全配准的。BOLD技术已经发展得比较好,它在解释大脑在正常和病理状态的功能方面很有前途。迄今为止,fMRI虽然只有短短几年的历史,但理论与实验都已取得了许多有重要意义的结果。它的最大优点是无损伤(不用外源介质),可以直接进行反复的非侵入性的功能测量。与同样属于功能成像的PET相比,fMRI则是更新的技术,成像速度比PET快,而且提供了更好的空间分辨率。fMRI未来的发展方向是,一要进一步加强对fMRI信号的实质的认识和理解,这是基本的前提。另一方面,从实验设备的硬件和软件的结合上进一步提高灵敏度和分辨率(包括时间分辨率和空间分辨率),这是核磁共振现象的本质决定的一个永恒的研究主题。除了以上与电磁或射线相关的成像技术外,还有基于超声波的多种结构、组织和功能的成像技术,这里不再详述。
(二)三维医学图像处理
医学图像处理是指对已获得的图像作进一步的处理,其目的或者是使不够清晰的图像复原,或者是为了突出图像中的某些特征信息,或者是对图像做模式分类等。随着技术的发展,医学图像的处理已开始从二维转向了三维,以求从中获得更多的有用信息。三维医学图像分析所包含的研究问题很广,目前主要有:图像的分割、边缘检测、多模式图像和数据的配准(Registration)和融合(Fusion)、虚拟现实技术、图像的快速重建和显示、图像处理算法性能评估、信息集成(Informationintegration)和传输技术等。所有这些的研究都可以集中到如下两个方面:
1•图像的融合和可视化
医学影象技术的发展为临床诊断和治疗提供了包括解剖图像和功能图像在内的多种图像模式。临床上通常需要将同一个病人的多种成像结果结合起来进行分析,以提高医学诊断和治疗水平。比如在放射治疗中,CT扫描可以用于计算放射剂量的分布,而MRI可以很好地定位病灶区域的轮廓。常规的方法(如将几张图像胶片挂在灯箱上)使医生很难对几幅不同的图像进行定量分析,首先要解决的这几幅图像的严格对准问题。所谓医学图像配准与融合,就是通过寻找某种空间变换,用计算机图像处理技术使各种影象模式统一在一个公共坐标系里,融合成一个新的影象模式显示在计算机屏幕上,使多幅图像的对应点达到空间位置和解剖结构上的完全一致,并突出显示病灶或感兴趣部位,帮助医生进行临床诊断,制定放射治疗计划和评价等。近年来医学图像配准和融合技术的研究和应用日趋受到医学界和工程界的重视。对医学图像匹配方法的分类可以有多种不同的标准。1993年,VandenElsen等人对医学图像匹配的方法进行了分类,归纳出了多达七种分类标准。一般的匹配方法的实现步骤为:特征提取;特征配对;选取图象之间的几何变换、确定参数;执行变换。基于特征点选取的不同,匹配算法可以分为两种:基于外部特征的图像配准方法和基于内部特征的图像配准方法。基于外部特征的图像配准通常是在研究对象上设置一些标志点(如采用螺丝植入骨头方法固定立体定位框架等),使这些标志点在不同的影象模式中均有显示,然后以这些共同的标准点为标准对图像进行配准。这种配准方法因为不受图像畸变等因素的影响,所以精度很高,可达1~2mm,可以作为评估基于内部特征的图像配准方法的标准。但其植入式的特点会给患者带来一定的痛苦,一般仅限于手术室使用。目前的研究集中在基于内部特征的图像配准方法上,这种方法一般是用图像分割方法提取医学图像中相对运动较小的解剖结构,如点(血管分叉点等)、2D轮廓线、3D曲面等。用这些提取出来的特征对之间的位置变化和变形来确定图像之间的变换和配准。配准的精度取决于图像分割的准确性。这种方法优点之一就是其回溯性,即以前获取的图像(没有外标记点)也可以用内部特征点进行匹配。目前,基于内部特征的图像配准方法比较成熟并已广泛应用于临床。但目前大多数模糊动态图像的精确分割和特征提取仍是一个尚未完全解决的问题。最近又发展了一种直接利用所谓的基于体素相似性的配准方法,又称为相关性方法,它是直接利用不同成像模式的灰度信息的统计特性进行全局最优化匹配,不需要进行分割和特征提取。因此这种方法一般都较为稳定,并能获得相当准确的结果。但是它的缺点是对图像中的噪声信号敏感,计算量巨大。在目前出现的各种相关性算法,如互相关法(correlation)、联合熵法(jointentropy)、相对熵法(relativeentropy)等算法当中,临床评估的结果是相对熵法(又称为互信息法,mutualinformation)是最精确的。医学影像的三维重建和可视化也是一个值得关注的问题。常规影像如CT、MRI等得到的均为组织的二维切片,医生很难直接利用它们进行分析、诊断和治疗。三维医学图像的重建将有助于观察复杂结构的立体形态;有利于医生制定放射治疗计划;有助于神经外科手术的实施;有助于对不同治疗方案进行评估等。对三维图像重建算法的研究,近几年来国内外学者进行了许多探讨。目前通用的做法是,先从切片图像中提取出物体轮廓信息,重建三维结构,再由计算机图形学中的光线跟踪法(RayTracing),根据一定的光照模型和给定的观察角度、光源强度和方位来模拟自然景物光照效果,计算物体表面各点的灰度值,最终构成一幅近似自然景物的三维组织或器官图像。目前各种各样的图像所涉及的数据量越来越大,各种算法也越来越复杂,所以处理时间也较长,而用户则希望实时、快速地得到图像处理结果,及时用于诊断与治疗。因此,医学图像处理的加速也是一个主要的研究方向。为了提高系统的运行速度,当然有许多方法可以考虑。除了算法上的改进外,应用多处理器进行医学图像处理与分析的加速是一种不错的方法。在有些情况下可以直接利用DSP进行加速。
2•基于影象的计算机辅助治疗方法及系统
发展各种医学影象的最终目的就是为了更细致的了解人体的结构和功能,辅助医生对病人做出诊断和治疗,提高人类的生活质量。目前以此为目标的研究主要有:基于影象的三维放疗计划系统、立体外科手术仿真系统、医学中的虚拟现实系统等。在过去的放射治疗时,先有医生根据CT或MRI胶片上的定位标志点来计算病灶的三维坐标,然后根据病灶位置和形状布置焦点,经计算机计算出等剂量线,在灯箱上用打印输出的剂量线与胶片上的病灶进行对比,如不吻合则重新规划焦点。反复重复直到满意为止。最后计算出每个焦点的治疗时间。总的说来这个过程很不方便,而且可能会引起很大的误差。目前临床上开始采用的三维放射治疗计划系统则大大方便了肿瘤医师的工作。在整个治疗计划的计算机化过程中,可以说是涉及到了三维医学图像处理的各个环节,如图像配准与融合、轮廓提取、三维重建等。三维放疗计划系统的推出不仅提高了医生的工作效率,而且精度大大提高,是以后肿瘤治疗中心制定放疗计划的常规工具。今后放射治疗的方向是适形放射治疗(ConformalRadiotherapy,CR)。该方法通过旋转照射或静态多射野照射,使得高剂量区剂量分布的形状在三维上与靶区(病灶)的实际形状一致,同时尽可能地降低靶区周围的健康组织和重要器官(如脊髓)的照射量,从而大大提高治疗效果。CR由于能够调整射野内的射线强度分布,故又称为调强放疗(Intensity-modulationRadiotherapy,IMRT)。调强算法根据医生指定的限制因素计算每个射野的最接近医生要求的强度分布,是一个典型的多参数优化问题。1989年,英国科学家S•Webb首次提出采用模拟退火法求解最佳强度分布。此后各种调强算法可以说是层出不穷,成为当今放疗中的一个热点。随着多叶准直器技术(Multiple-LeafCollimator,MLC)的发展,医生可望给出单次肿瘤致死剂量,起到外科手术的效果。虚拟现实(VirtualReality,VR)就是力求部分或全部地用一个计算机合成的人工环境代替一个现实世界的真实环境,让使用者在这个三维环境中实时漫游和交互操作。VR是综合人机界面、图形学、传感技术、高性能计算机和网络等的一门新兴学科,涉及学科面广且发展十分迅速。VR在医学领域的应用前景非常广泛,Rosen认为,VR将构成最终实用的手术模拟器。随着医学成像可视化和虚拟现实技术的发展,科学家们已经有可能建立起一个具有部分人体特性的虚拟人体。由美国国家医学图书馆(NLM)发起的可视人计划(VisibleHumanProjects,VHP)正是基于这样的目的。虚拟人体可以提供模拟的诊断、治疗、计算机成像、内窥镜手术等等。例如在内窥镜手术中,外科医生通过观察电视屏幕来操作插入病人体内的手术器械。虚拟环境技术可大大改善这种手术过程。事实上,虚拟内窥镜系统(Virtualendoscopy)是目前发展比较快的一个方面。
三、网络化医学仪器人才的培养
生物医学工程专业的范畴很广,各高校的侧重点各不相同。我校本学科专业与其它高校相比具有明显的时代特色。我们一向以电子学、计算机科学为支撑平台,强调与生物医学、医疗仪器相结合,在医疗仪器的智能控制、管理方面有很强的优势。随着以上医学信息技术的发展,我们提出了依拓本校的优势专业如通信、计算机、自动控制、仪器测试等,在我校生物医学工程学科培养网络化、智能化医学仪器方向人才的设想。
(一)培养网络化医学仪器人才的依据
计算机及网络技术飞速发展,世界正进入一个数字化的时代。在医疗领域,数字诊断设备也逐渐成为一种新标准,被越来越多的医院和用户所接受。各大厂商相继推出数字X光机、CT、B超等,在一些发达国家,已经取代常规设备成为临床诊断的主流。医疗设备已经到了一个更新换代的时期。而DICOM标准的制订,则使医疗信息实现了网络模式的资源共享和远程传输。无疑,数字化、网络化将是21世纪医学发展的主流。而远程医疗系统则以其迅猛的发展势头为人们勾画出了一幅“让每一位医生都成为专家,让每一位患者都能请得到专家”的美好前景。社会的需求为高等院校的人才培养提出了新的要求,同时具有医学知识和网络技能的复合型人才将会受到社会的广泛青睐。“网络化医学仪器”作为本学科领域出现的新方向,在国内外没有现成的模式可以借鉴,为此我们提出了以下建设计划。