时间:2023-04-01 10:13:22
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇优化设计论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
人们在对公路高边坡进行支护优化设计之前的基础性工作就是高边坡普查。高边坡普查是指在对前期勘察资料分析的基础上,对高边坡周围的地质情况进行进一步勘探,根据勘探结果作进一步的调查研究,并且重点分析需要开挖地段的周边的岩体结构,根据具体的地质状况以及岩土结构进行相应的实验研究。要结合定性研究与定量研究来对边坡稳定性进行分类,并对设计方案进行进一步的优化,来达到更加适合自然条件的设计,并指导施工。边坡普查目的主要就在于根据稳定性对边坡进行分区,来提出更好的优化设计方案,并且筛选出需要重点研究的边坡。
2重点高边坡稳定性评价及支护优化设计
2.1基于过程模拟与控制的高边坡稳定性评价及灾害控制方法研究
高边坡岩土体具有地质体所具备的地质过程特性,对岩石进行的高边坡稳定性评价的主要目的就是对边坡变形破坏的过程以及机制进行阐述,并且基于地心力学来对问题进行刻画,实际上这种对岩石高边坡进行的稳定性评价更具体说来应该是一个变形稳定性的问题。对变形稳定性的分析是指对高边坡的变形以及相关的破坏情况、破坏机制进行研究,并且结合数学、力学以及计算机技术,利用数值模拟的方法来对边坡变形的过程进行模拟演示,并且对变形过程进行控制,基于这种模拟研究的结果对边坡的稳定性进行相关评价。变形稳定性分析的过程是在对应力环境、变形特征、破坏模式、潜在滑面位置进行模拟分析的基础上进行的,但目前对于稳定性系数以及推力值的估计还缺乏足够的理论支持,没有形成一个成熟、准确的计算方法。
2.2重点高边坡稳定性评价
对需要重点进行研究的边坡要随时进行施工跟踪,要注意对实际施工中遇到的岩体结构以及边坡变形的情况进行足够精确、细致的描述,并且要积极收集边坡以及施工过程中的反馈信息,对具体的坡体情况进行分析,根据上述资料以及研究分析,来建立相应的地质模型来反映控制性结构面空间展布特征,并且要根据具体边坡结构的实际特征来进行计算方法的选择,用来研究边坡变形的破坏模式以及稳定性情况。土质边坡、散体结构以及破裂结构边坡的稳定性大多都会受到最大剪应力面的控制,因此,对这类边坡的边坡开挖过程进行研究分析,就要在对潜在滑动面的位置的判断基础之上进行,并且根据强度稳定性分析来对相应的边坡稳定性进行评价,为支护设计的优化提高有效的参数。
2.3重点高边坡支护优化设计
在对边坡支护进行优化中,要由对变形破坏的过程进行模拟来研究边坡开挖过程的不同变形阶段,由地质体所处的演化阶段以及变形破坏机制来对支护方案进行筛选,要按照具体的规范标准来进行静力学设计,要按照数值模拟的结果来研究地质体以及治理工程结构之间的相互作用,并由此来进行方案的优化设计。高边坡优化设计要建立在精准的地质模型的基础上,利用控制过程技术来完成,而且还需要特别关注边坡的稳定性评价,根据原有的设计方案进行改进。边坡优化要注意变形控制以及灾害控制,要将采用适宜的支护措施来是变形控制在允许范围之内,要结合反馈信息以及稳定性分析结果来进行有针对性的优化。
3结语
1高层住宅剪力墙结构设计的总论
1.1高层住宅结构设定意义
经济快速发展使得城市的现代化程度越来越高,城市人口的不断增加导致城市的高层住宅建筑也越来越多,居民对高层住宅的安全性要求也越来越高。高层住宅的设计需要考虑的因素包括建筑的高度、安全性、舒适性和经济性等等,并且在施工结束后的工程验收过程中的检测标准也是非常严格,高层住宅必须经过严密的检查才能投入居住。因此,建筑的结构对高层住宅的建设非常重要,而近年来,由于剪力墙能够增加高层住宅建筑的可靠性的特点,使得剪力墙结构的应用范围变得越来越广泛。
1.2剪力墙的概念和结构
所谓剪力墙结构就是将现代产品钢筋混凝土应用到高层住宅的墙体中,其基本作用就是代替传统的梁柱加强高层住宅的结构安全性。剪力墙结构的使用使得墙体在承受横竖力时更能体现支撑的良好效果。同时,剪力墙结构能够具备传统支撑结构不具备的优点,即剪力墙结构的整体性能大大的优于传统支撑结构的整体性能,并且剪力墙结构的运用增加了房间的装修空间,从而更大的提高高层住宅的房间使用率。但是剪力墙自身存在也一些不可避免的缺点,那就是在房屋的平面使用方面可能会受限制。而且由于剪力墙的整体性比较好,所以进行部分拆除或者破坏的工作难度较大。目前,大部分的剪力墙结构的施工成本较高和施工比较困难,所以需要对原有的剪力墙结构进行优化工作,降低施工成本和提高建筑整体的安全性能。
2剪力墙优化设计
2.1剪力墙抗震优化设计
现代社会,人们对建筑的抗震性能意识不断提高。对于高层住宅建筑,地震所带来的危害将会更大。因此,在对高层住宅进行结构设计时,一定要考虑建筑的抗震指数。对于高层住宅剪力墙结构,可能由于本身刚度比较差,所以在发生地震时变形就会非常严重,对于地震的防御力就很低。因此,对于高层住宅剪力墙的刚度问题要进行优化设计,符合抗震的要求,保证结构合理和经济性。
2.2剪力墙结构设计优化
高层住宅建筑的设计不仅仅要求是能够达到最基本的建筑使用标准,更要注意的注重结构合理性问题。高层建筑的设计过程中需要考虑建筑层数比较多,并且在施工时要保证地基足够坚固,支撑之后将要建造的上面的楼层的重量。在设计时,既要保证剪力墙能够保证较好的抗震性,又要保证足够的刚度。对于现有的剪力墙结构中的一些缺点,比如建筑成本比较高,而且在施工时难度比较大,对于钢材的使用量也非常大,也需要被考虑在优化设计中。可能这些缺点就是因现有剪力墙的结构不合理性造成,所以在进行优化设计的过程中就要考虑到这些问题。优化设计者要充分考虑到各方面可能影响到剪力墙结构的因素,在优化设计时能够改进这些问题,争取使得优化后的剪力墙在使用过程中尽量避免出现原有的不足。优化过后的剪力墙结构需要表现出抗震性好、建造成本低、施工时比较简单、对钢材的使用量降低等优点,因此对高层住宅的剪力墙优化设计的探索具有重要意义。
2.3剪力墙位置优化
剪力墙在其设计的过程中通常为双向布置,一般沿着主轴方向或者其他的方向,此种做法可有效的提高空间工作性能,且极易实现两个方面手里的抗侧刚度接近。剪力墙的位置、数量均要得当适宜,若是剪力墙的数量太少,那么结构抗侧刚度则无法满足设计要求,但是数量过多,那么墙体的利用率则会大大降低,从而导致结构抗侧刚度过大,加大地震力和自重,无法充分满足设计要求。在设计剪力墙肢截面的时候,尽量达到规则、简单、竖直刚度均匀等要求。在对建筑进行抗震设计时,剪力墙底部则需加强部位不应采用错洞墙和叠合错洞墙,有效的避免设计过程中墙肢刚度相差悬殊的洞口。同时剪力墙必须应用从上到下的连续布置方式,避免强敌刚度突变,且对剪力墙平面外地弯矩进行控制,保证剪力墙平面外地稳定性。
2.4剪力墙厚度优化
在对剪力墙进行厚度优化设计时可完全依靠ansys软件进行设计,图1剪力墙结构模型利用梁单元BEAM4和壳单元SHELL63建立剪力墙结构模型,如图1,并充分的发挥ansys软件强大模态分析功能采用30阶莫泰,得到模型的30阶自振频率,从而对剪力墙的固有频率与振型进行了优化设计,优化后的各阶频率均小于优化前,这就使得整个结构变的“更柔”而且降低了工程的成本。在墙体厚度的优化设计中,设计变量为剪力墙厚度,约束条件为最大层间位移角,目标函数为混凝土用量。优化后的墙体厚度从0.25m减小到0.214m,混凝土的用量也从2544m3降到了2181m3。
3结束语
本文工作中设计的便携式电场传感器标定装置,其基本结构由两个平行极板构成,标定装置的下极板开有圆孔,并采用特殊夹具固定被检电场传感器。被检电场传感器的动片与标定装置的下极板平齐,使得被检电场传感器无需进入标定装置的上、下极板之间的空间,即可感应到其电场。
2电场传感器标定装置结构参数的优化设计分析
基于有限元的相关理论,首先对标定装置的机械结构建立模型。黄色部分为标定装置,蓝色部分为电场传感器。然后,对几何模型进行单元剖分、加载,可求解出标定装置两极板间的电场分布情况。根据求得的电场分布情况,可进行标定装置结构参数的设计。在计算求解过程中,改变加载在两极板间的电压,使两极板间形成的电场强度的理论值始终为20kV/m。被标定的场磨式电场传感器外壳直径8cm,感应片直径6cm,传感器外壳与标定装置的下极板接触。
2.1标定装置极板间距和极板直径对电场的影响研究
在标定装置的设计上,受限于被检电场传感器的尺寸,以及要考虑标定装置的便携性,把标定装置的极板直径L固定为16cm。在L固定的条件下,分析两极板间距H对极板间电场强度的影响,并以此确定极板间距H。依照图2所建立的模型,取H值分别为1cm,2cm,3cm,4cm和5cm,,。横坐标是电场传感器感应片距离标定装置中心的横向距离,单位为m;纵坐标是感应片某一位置处的电场强度,单位是V/m。同时,在感应片的敏感范围(x<0.03m)内,电场强度并非恒定值,而是随着与标定装置中心距离的增加发生了畸变。图6为极板间电场强度实际值的畸变情况。理想情况下,在感应片的敏感范围内,电场强度应保持不变,但由于标定装置中极板边缘效应的存在,使得感应片敏感区域内的电场不是一个恒定值,距离电场传感器的外壳越近,畸变程度越大。定义在感应片敏感范围(x<0.03m)内各个位置处电场强度的平均值与理论值之比为电场强度的畸变率,并用该值来衡量电场强度的变化程度。畸变率越小,说明所产生的电场越接近均匀分布。综上,在极板直径固定为16cm时,极板间距为5cm时,电场强度的实际值与理论值最为接近,且在电场传感器感应片感应区域内电场的畸变最小。同时,在保证H/L小于0.5的条件下,极板直径L对实际电场的影响非常小。
2.2传感器外壳与标定装置的相对位置研究
当标定装置与被检电场传感器配合不好时,容易使被检电场传感器相对于标定装置发生倾斜。模型中,极板直径为16cm,极板间距为1cm,倾斜角度为1.5°。标定装置的倾斜,会对被检电场传感器感应片上方的电场分布造成较大影响。图9是基于图8的倾斜模型计算得到的感应片上方的电场强度的横向分布。由于相对倾斜后,模型不再对称,因此分析了整个感应片上方(-3cm~3cm)的电场强度的横向分布,并将结果与没有相对倾斜时的感应片上方电场分布作了比较。被检电场传感器与标定装置在相对倾斜角为1.5°时的电场的畸变情况,比没有相对倾斜时严重。有相对倾斜时,感应片上方电场分布更加不均匀,因而被检电场传感器与标定装置间的相对倾斜会对标定结果产生较大影响。在标定装置设计中,应使标定装置与被检电场传感器的外壳的直径尽可能接近(极限情况是外径与孔径的差值为零),以使得两者紧密结触,从而保证被检电场传感器与标定装置之间不会发生相对倾斜。
3便携式标定装置的优化设计和实验结果分析
当输出为-3kV至+3KV的可调直流电源加在两极板上时,两极板间的电场强度理论值的范围为-60kV/m~+60kV/m。使用在标准标定装置中标定好的电场传感器测量本文工作中所设计的便携式标定装置中的实际电场。实测电场强度与所加电源电压之间有良好的线性关系,同时,实测电场小于理论电场,两者的比值约为0.92,这与给出的仿真结果吻合。在野外的实际标定过程中,保持被检电场传感器与标定装置的位置不变,使得电场强度理论值与实际值的比值保持不变,在此基础上,可以通过加在两极板间的电压计算出电场强度的理论值,计算出电场强度的实际值。然后,通过电场强度实际值与被检电场传感器输出值两者间的关系,计算出被检电场传感器的灵敏度,实现对被检电场传感器的标定。经过较长时间的现场使用,所研发的便携式标定装置能够方便、快捷地对场磨式电场传感器进行校准。目前,该校准装置已经应用于中国电力科学研究院特高压直流实验基地高压直流输电线路地面合成电场测量系统中,并已取得了良好的效果。
4结论
比之传统的焊接技术,真空电子束焊接技术是较为先进的焊接技术,其特点是焊接缺陷少、具有热影响的区域小、高强度焊接缝隙能力等特点。采用真空电子束焊接不仅能够提高焊接部件的使用寿命及其强度,也能避免目前飞机起落架中,对整体锻件制造带来的难度。
2 真空热处理
起落架的关键部位,从普通热处理改进为真空热处理,起落架零件具有无脱碳、表面光亮等优点。使用真空热处理改善了材料品质,提高了材料的抗疲劳强度,满足起落架发挥潜力的性能要求。
3 高强度钢零件的表面强化工艺
改进过后的起落架一般都是采用(40CrNi2Si2MoVA) 超高强度钢或者高强度钢(30CrMnSi2A),这些材料对应力的集中尤其敏感。通过零件表面强化后,零件的表面有压缩应力层的产生,而表面的强化能够大幅度的提高金属零件的正常使用寿命,其腐蚀能力也得到了提高。
4新型的防护工艺
4.1HVOF高速火焰喷涂
HVOF是一种在传统火焰喷涂防护基础上逐渐发展出来的高速型火焰喷涂。新型火焰喷涂的原来如下图:主要将氢气、乙炔等可燃性气体与氧气混合,在燃烧室点燃之后,由于剧烈的膨胀,气体在受到喷嘴的约束后,就会产生高速的火焰。然后,由惰性气体将粉末沿着燃烧室的轴心送入,在受热后加速喷出,将表面整体覆盖。
HVOF喷涂在于等离子、电弧等喷涂比较时,HVOF优异的性能就表现出来了。一是,HVOF使用较为经济,成本低;二是,高速火焰喷涂适合于金属、合金、混合物以及碳化物等粉末;三是,高速火焰喷涂自身较低的温度与超音速也能有效的空子高温中所造成的材料氧化与蒸发,这中方法对金属集体中含有碳化物的涂层尤其的实用。
相比传统镀铬层,HVOF涂层更具有耐磨性与抗腐蚀性;其结合强度很高,连接基体的性能较好,一般的结合强度都大于70MPa。因为避免了与酸性容易、电流的接触,所以避免了氢脆的影响。此外,镀铬工艺还会带来严重的环境污染,从而受到的限制也越来越多、越来越严格,因此使用HVOF喷涂完全是理想型工艺替代品。
最近几年,HVOF喷涂已经逐渐的应用到了飞机起落架的制造当中,部分零件已经从镀硬铬工艺转变成HVOF喷涂工艺。其中波音系列的飞机,已有100多个零件不稳实用了HVOF。而且在美国的军方使用的飞机中,F216、P23等飞机也包括F235型战斗机起落架的部分零件都已经在考虑使用HVOF喷涂。
4.2无氰镀镉-钛防护工艺
镉-钛镀层具有较高的抗腐蚀能力和低氢脆性的特点。其中,国外的电镀镉-钛是专利工艺,而我国的无氰镉-钛是将盐酸在“钛膏”中溶解之后加入中性铵盐,使用这种电镀液具有美观、结合力好等特点,而且在钛合金镀层中含有0.1%到0.7%的优质镉。相比氰化镀镉-钛,无氰镉-钛镀液在分散能力上、镀层抗腐蚀上以及低氢脆性都有较高的优越性。钛盐在一段较长的时间内都能够保持相对稳定的溶解状态,可以节省以往繁琐的操作,具有工艺、维护简便等特点。
4.3刷镀镉工艺
1.1抽气逆止阀故障频发
作为工业设备使用的一种形式,抽气逆止阀内部各个组成成分相互配合、协调合作,在具体的使用选择过程中要根据其用途差异化区别挑选个性化的适用类型。当前抽气逆止阀故障频发的原因所在是相关使用者缺乏对于此类设备的充分了解,导致由于忽视不同抽气逆止阀组成结构与安装配置等基本信息存在差异,造成工业使用中出现设备故障。
1.2开关接触不当
鉴于我国现有的工业抽气逆止阀设计水平较低,产品在应用过程中难免出现开关使用不灵活的现象。这表现为开关的接触动作难以实现或灵敏度较低等,开关接触缓慢或动作延迟造成了抽气逆止阀开关时间放缓,这严重制约了此类设备发挥对于工业制造的控制效用,也影响了我国工业的发展进程。
2新型阀门的优化思考
工业抽气逆止阀的改进与优化对于稳定我国工业的可持续发展具有不可替代的作用,伴随着对于阀门质量要求的不断攀升,设计新型的工业抽气逆止阀对于促进工业效率的提升具有实际意义。这就需要设计者灵活应用先进的设计理念对现有阀门进行完善的检测与评估,不断革新设计技术来协调其与社会经济的共生关系。
2.1传统与现代技术搭配
伴随着工业抽气逆止阀更新换代速率的增快,工业设计者要不断学习相关理论,熟悉新产品的性能与用法,在了解设备的基础上进行合理利用。要实现工业抽气逆止阀的改良就要明确设计理念,将质量保证与故障减小上升到设计改良的战略规划中,把工业多元化需求的满足与阀门设计的目标统一起来,实行灵活多变、多元化的改良模式,最大限度的提升工业抽气逆止阀设计中各个主体的协调度。具体而言,要将工业抽气逆止阀传统的设备使用技术与新型科技智慧型检测、试验手段相结合,着力发挥信息技术在设备改进方面的作用,不断提升其机械自动化的诊断水平,并引进国外先进设备开展实验。在解决工业抽气逆止阀现有故障时,要从根本上认识到故障现象出现的原因,提出有效的解决方案。一方面要对工业抽气逆止阀定期进行检验与维修,借助定期维护来提高其使用寿命。另一方面,还要积极推动以智能型试验为基础的新式阀门信息收集方式,将抽气逆止阀故障的数据诊断与问题的探究作为一个系统性工程处理,在大量数据的支撑下提出可行的智能测试方法,最终实现推动设备改良可持续发展助力的目标。
2.2依据问题革新改良措施
要根据工业抽气逆止阀个性化的运行方式来选择差异化的改良措施,根据开关的灵敏度判断合分闸的位置是否正确,通过密切观察其是否存在断裂分解等现象判断离合系统是否有检修的隐患;可以采用多样化的抽气逆止阀安全措施防止故障现象的发生;建立即时控制来实现阀门的保护功能;定期清洗抽气逆止阀,来保证接触部位作用发挥正常。要尝试设计具有逆止和快速关闭双重作用的新型抽气逆止阀,通过革新设计的结构和性能来改良现有的抽气逆止阀,进而不断满足工业领域的使用要求。新型工业抽气逆止阀的具体改良方案如下:首先,要检测低工业抽气逆止阀的各项相关参数指标,在不损害设备的前提下及时准确的了解其运行状态;其次,要结合阀门相关知识和故障检测的基本原则,来定期定时地评价工业抽气逆止阀的现行情况,对于合理规划其使用寿命,预测其完成目标计划的可行性具有良好的前瞻性。
2.3形成各分系统的互动
新型工业抽气逆止阀的改进需要协调各个组成部分之间的关系,形成良性互动。具体而言,首先,在新型工业抽气逆止阀材料的选择上,要根据实际需要与设备要求选用合金等耐磨材料,在满足阀门设计标准的基础上,最大限度的提高材料的可靠性与安全性,为阀门的持续利用奠定基础。其次,要发挥抽气逆止阀中固有保护系统的作用,在必要时刻实现其对于设备的自我保护;还要充分考量离合设备的衔接效用,灵活处理抽气逆止阀内部关联与分离的关系。最后,还要利用智能手段与新式设备实现对于工业抽气逆止阀的保护及联网控制,在切实改善当前工业抽气逆止阀存在故障现状的同时,大力发展多元化的检测技术,实现对其的有效控制。
1.1箱梁支座的强度优化设计
箱梁节点是整个承重钢梁最为关键的部位,在施工中采用不同形式的加劲肋对该部位进行了加固处理。严格按照要求的尺寸,对GWJ-4号承重结构进行不同荷载状态下的分析。利用有限元软件ABAQUS对GWJ-4号钢架各部分的实际三维模型进行数值计算。该有限元软件研究实际模型在承重荷载及风荷载作用下的承载能力,着重对承重结构需要优化的地方进行分析,从而提出可行的优化设计方案。天窗闭合状态时不同受力荷载条件下对天窗闭合状态下的GWJ-4屋架的受力分析如下。
1.1.1GWJ-4屋架在承重下的受力天窗全关闭状态下的GWJ-4屋架关键部位的受力分析。看出:在GWJ-4屋架的跨中位置附近,其应力分布比较均匀,没有大的应力集中区,且最大Mises应力均小于100MPa,在此应力下支撑板是不会发生局部屈服的。最大Mises应力小于Q235B钢的单轴抗压强度,故在此工况下,箱形梁跨中部位的荷载承载能力满足要求。箱梁支座数值分析结果知,最大Mises应力约为230MPa,主要是因为梯形加劲肋存在明显的应力集中区,导致该位置出现了较大的应力。一般来说,由塑性材料制成的构件,应力集中对其在静荷载作用下的强度几乎无影响,但是该结构为滑动式玻璃天窗的承重结构,需要各种交变荷载的作用,因此有必要对此支座进行优化设计,减小其应力集中系数。天窗全关闭状态下的GWJ-4屋架关键部位的位移大小分布,由于在承重荷载的作用下,箱型梁在水平方向位移值小于1mm,因此仅列出了GWJ-4屋架箱梁在天窗全关闭状态下的竖向位移分布图。从结果可以看出:在此工况下,箱形梁产生的最大竖向位移约为5mm,位置在箱型梁的跨中部位,根据钢结构的设计规范,其位移大小满足要求。
1.1.2GWJ-4屋架在承重及风荷载下的受力在承重及风荷载的共同作用下,箱形梁跨中部分的应力仍然很小,因此不再重复分析。在此工况下箱形梁支座的应力状况。在两种荷载的共同作用下,支座个别单元的应力已经超过Q235钢材的屈服强度(并不意味着破坏),梯形加劲肋与竖向加劲肋的接触部位存在很大的应力集中,这对结构的长期稳定性是不利的,因此有必要采取措施来减轻应力集中带来的危险。GWJ-4屋架在承重荷载及风荷载下的竖向位移及水平位移。通过对比可知,风荷载对竖向位移影响很小,竖向位移的最大值约为4.7mm,最大位移在跨中部位,满足工程设计的规范的要求,这说明该屋架的竖向刚度已经满足要求。风荷载主要影响箱形梁的水平位移,在此作用下,箱形梁产生了较大的水平位移,其最大值仍产生在箱型梁的跨中位置处,为4.3mm。根据钢结构设计规范,此水平位移的大小是满足工程设计要求的,因此无需另外增加水平方向刚度。
1.1.3箱梁支座的优化设计由上面两种荷载条件下应力和位移的数值模拟结果分析可知,在天窗玻璃全关闭状态下,强度和刚度都满足要求,但其不足之处在于箱型梁支座存在较大的应力集中,这导致支座支撑板出现了个别单元的屈服。根据疲劳理论,在交变荷载的作用下,应力集中会降低结构的强度和耐久性。因此,提出了以下可行的减小支座应力集中的实施方案。针对梯形加劲肋应力集中程度高的现象,建议在支座两侧再添加两个相同尺寸的梯形加劲肋。对优化后的支座,运用有限元对其在承重荷载及风荷载作用下进行应力分析,如图8所示。可以得出,经过优化后支座的最大应力是187MPa,其应力集中程度相比未优化之前的支座已经减小很多。这说明此优化起到了良好的效果。
1.2连接板的优化设计
滑动天窗从完全关闭至完全打开过程中时,数值模拟分析,在连接板与箱梁的接触处存在较大的应力集中,这导致了部分单元的应力超过了Q235钢的屈服强度,但是需要说明的是并不是超过屈服强度该连接板就要破坏,只是很小的一部分可能会发生屈服,这对韧性结构整体的安全性影响较小。由于支架要处于不同活荷载的作用下,为了长久的安全性和稳定性,连接板所受的最大应力有必要处于钢材的最大屈服强度之下,因此有必要对该处连接板进行优化设计。针对以上分析知,连接板存在的最大问题是该处存在应力集中,导致了该处产生了较大的集中应力,从而影响结构的长期安全性和稳定性。为了消除应力集中,可以采取以下两种措施:第一种是通过构造措施减小应力集中,例如连接钢板需要倒角处理等;第二种措施是对此处连接板进行重新的设计,例如增加连接板的数量来减小每块连接板所受的应力、连接板采用强度更高的钢材等等。此处我们对第二种优化措施进行了数值模拟,验证了其可行性。
2结论
由于模型比较复杂,分析时需要简化几何体,具体做法如下:连接伸缩大臂与伸缩套筒的液压缸用一个横截面为矩形的杆件替代;所有用销轴和圆螺母联接结构均用圆柱体替代;装配过程中所留的间隙都需要进行填补,不能留有空隙,对于之后网格的划分,有些地方的圆角适当可以省略。
2矿用液压起重机吊臂结构的有限元分析
吊臂截面是通过4块厚度为16mm的长型板材焊接到一起的箱体结构,在伸缩大臂与伸缩套筒之间安装一个液压缸,可以保证伸缩臂能够水平伸出。本结构所选用的材料为Q550高强度低合金结构钢,吊臂主要承受来自重物的轴向应力、扭矩和弯矩;伸缩套筒前下端的部位与旋转装置连接有升降液压缸,可以保证吊臂的俯仰,旋转套筒在液压缸的推动下能保证吊臂的旋转运动。吊臂最前端安装有链轮和矿用圆环链,需要校核吊臂完全伸出3.1m时吊臂提升15t重物情况下的应力情况。
(1)建立静态算例
采用SolidWorksSimulation进行静态结构分析,将模型导入SolidWorks中,调出Simulation插件,建立静态算例;定义默认的求解器FFEPlus。
(2)定义零部件材料属性
销轴采用35钢,可以直接从材料库中调用,其余零部件采用Q550高强度低合金结构钢,调质处理后具有极高的力学性能。主要应用在重要的高强度结构件、工程机械、矿山钢结构件等。由于系统材料库中没有现成Q550参数,因此需要按照Q550的材料系数及性能自定义材料,在有限元分析中主要需要Q550的4个材料参数:屈服强度550MPa,弹性模量210GPa,密度7.85g/cm3,泊松比0.3。在分析时将其赋予相应的零部件上。
(3)定义连接及夹具
销轴与圆螺母联接部位均用相触面组并选择无穿透这一接触类型,伸缩大臂与伸缩套筒的连接部位选用相触面组并选择接合这一接触类型。这样做的目的一方面是将整个零部件作为一个整体,为下面网格的精细划分提供基础,另一方面使伸缩大臂与伸缩套筒之间不至于有滑脱的现象。
(4)外部载荷(加载)及划分网格
在吊臂前端即与链轮联接的销轴上建立一个与上平面成27°的平面,施加一个作用力F,垂直于该平面且作用于销轴上,F=394kN,它是吊臂提升m=15t重物上仰角α=36°时作用在销轴上的合力,可以从简化模型中计算出合力F。划分网格,选用2阶实体四面体单元,每个单元含有6个中间点和4个角点共10个节点,并且每个节点包含3个自由度。当单元在承受载荷的情况下会发生变形,其2阶单元所对应的边会变成曲线,面会变成曲面。选用高品质网格单元,划分后可得到节点总数51188个,单元总数27194个;划分网格后的三维实体模型。
(5)运行求解
在完成上述步骤之后,可以对整个模型运行求解,在默认的求解器FFEPlus下对吊臂进行有限元分析,得到相应的应力和位移云图。
3静态算例下的结果分析
额定承载150kN的状况下,所显示的最大应力σvonMises=298MPa,最大应力位置发生在伸缩大臂与伸缩套筒的连接部位,且其最大应力小于材料的屈服强度550MPa。根据材料力学上的强度理论计算公式可以计算出相应的安全系数。由于加载时的工作载荷是正常工作载荷的1.5倍,所以实际安全系数Ss=1.5×1.85=2.78;实际安全系数2.78大于井下标准安全系数1.5,满足要求。由位移云图可以看出最大位移发生在伸缩大臂的最前端,最大位移仅有16.64mm,变形量较小,不会造成吊臂结构的改变。吊臂虽然安全但从经济的角度考虑,安全系数偏大,吊臂重量偏大,耗材过多。因此,需要重新对其进行优化设计。
4优化分析
对优化后的结构做优化分析可知,最大等效应力为348MPa,发生在伸缩套筒与伸缩臂的连接部位,计算其安全系数,所得结果na=550/348=1.58,满足矿用设备安全系数1.5的要求;且其质量从原来的950kg降到804kg,相比之下减小了15.4%,在满足强度的基础上节约了板材的消耗,从而达到了优化的效果。
5结语
(1)根据井下需要安装和拆卸设备的实际重量及井下实际工作的状况,选用Q550高强度低合金结构钢材料,并选择相应的板材、截面形状及焊接工艺;
(2)利用SolidWoksSimulation有限元分析软件进行静态结构分析,通过应力、位移云图,找出了吊臂的最大应力及最大变形位置;计算出安全系数;为以后结构的改进提供参考;