时间:2023-03-30 11:29:52
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇电路设计论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
电路设计尤其是超声波信号的收发处理采用诸如TX734激励电路、MAX2038回波放大处理电路等专用IC效果固然理想,但考虑到研发专用设备仅需小批量试制的因素,故在电路方案选型设计时遵循简单实用、器件易于采购的原则,尽量选用通用元器件实现,系统电路主要由超声波发射激励和电源变换单元、超声波回波信号处理单元、时间差测量单元、单片机控制和数据处理单元组成。排版布线亦尽量参照IC生产厂商的DEMO方案,采用贴片元件的双面PCB设计制作,以提高样机研发的一次性成功率。
1.1超声波收发电路由于检测装置工作于井下,井口只为其提供了一路+24V直流电源,各单元电路的工作电源需要依靠DC/DC变换电路获得。控制系统和信号处理系统使用的+5V和±12V电源由LM2596-5.0承担,其主路输出+5V/2A电源供单片机等数字系统使用,将其储能电感改用5026-47μH环形功率电感,并在其上增加两个辅助绕组,经整流、滤波和LM78(79)L12三端稳压IC后产生±12V/0.1A直流电源供信号处理系统使用;超声波发射采用了高压脉冲激励方式,+200~300V激励电压由+24V供电电压经简单的Boost升压电路获得,利用单片机送来的1ms周期、5μs脉宽脉冲信号控制MOSFET开关管实现对超声波发射探头的激励,储能电感选用TDK-NL565050T-822J-PF(8.2mH)贴片电感,NMOS开关管选用2N60即可。超声波激励及电源变换电路如图2所示。经实测,激励脉冲会在接收探头中产生一个较大的谐振频率为5MHz、大约5个周期的串扰信号,为此,接收电路设计了一个对发射激励脉冲延迟6μs、持续30μs的使能控制信号,控制接收放大处理电路仅在使能信号有效期间实现回波信号的放大和输出,使之能够在钢管内壁和外壁反射的一次、二次回波信号到来之前有效地消除激励脉冲串扰的影响,使能控制信号时序关系见图3。检测装置中用于时间差测量的TDC-GP2的典型应用是作为超声波流量计、激光测距仪的时间间隔测量、频率和相位信号分析等高精度测试领域。在这些应用中输入信号一般都较强,经简单处理后即可作为TDC-GP2的START、STOP控制信号使用,而该检测装置的超声波回波信号尤其是多次反射回波信号非常微弱且杂波较大(实测回波信号大约在mV数量级),必须经高增益宽带放大器放大和滤波、检波、整形处理后才能胜任。宽带放大器由AD604承担,可获得6~54dB的增益并可由VGN端电压连续控制,可较好地满足超声波回波信号高速高增益放大的要求[2]。考虑到仅需将回波信号放大处理后形成STOP控制脉冲即可,故电路仅利用可调电阻对2.5V基准电压(由TL431产生)分压获得的VGN电压进行增益设定,但设计电路亦有预留接口可用于接受经单片机和DAC输出的AGC控制电压,实现增益的闭环控制。AD604前级放大电路如图4所示。带通滤波器选用由MAX4104构成,设计中心频率为5MHz,带宽约为1MHz;钳位和检波由AD8036完成,具有卓越的钳位性能和精度高、恢复时间短、非线性范围小、频带宽的特点;检波输出信号的整形处理由MAX9141负责,这是一款具有锁存使能和器件关断功能的高速比较器,具有高速、低功耗、高抗共模能力和满摆幅输入特性等,回波信号经其整形处理后可获得理想的脉冲前沿,并便于与TTL逻辑电平接口,还可以方便地实现回波信号输出的使能控制。信号调理电路如图5所示。
1.2时间差测量电路回波信号时差测量选用了德国ACAM公司的高精度时间间隔测量芯片TDC-GP2。TDC-GP2采用44脚TQFP封装,内含TDC测量单元、16位算术逻辑单元、RLC测量单元及与8位处理器的接口单元和温度补偿单元等主要功能模块,利用内部ALU单元计算出时间间隔,并送入结果寄存器保存。TDC-GP2基于内部的硬件电路测量“传输延时”,以信号通过内部门电路的传输延迟来实现高精度时间间隔测量,测量分辨率可达pS数量级,可以很好满足项目测量的要求。单片机在给超声波传感器提供发射激励脉冲的同时给TDC-GP2提供START信号指令使之开始计时工作,超声波接收头接收到的反射回波信号经放大、处理后作为STOP指令信号,由TDC-GP2完成两次反射波时间间隔的测量。由前述可知,STOP与START信号的时间差大约在6~40μS之间,时差测量分辨率约为0.07μs,为此,设定TDC-GP2工作于“测量模式2”,在该模式下芯片仅使用通道1,可允许4个脉冲输入,实现STOP1与START信号之间的时间差测量,测量范围在60ns~200ms,然后,由TDC-GP2计算出各回波信号间的时间差Δt=tB-tS=tn-tn-1。测量原理如下:在输入START信号指令后,芯片内部测量出该信号前沿与下一时钟上升沿的时差,标记为Fc1;之后,计数器开始工作,得到predivider的工作周期数,并标记为Cc;这时,重新激活芯片内部测量单元,测量出输入的STOP1信号的第一个脉冲(一次反射回波)前沿与下一时钟上升沿的时差,标记为Fc2,将STOP1信号的第二个脉冲(二次反射回波)前沿与下一时钟上升沿的时差标记为Fc3,……;Cal1和Cal2分别表示一个和两个时钟周期。
1.3单片机接口电路实现系统控制和数据处理的单片机选择余地较大,项目结合TI公司中国大学计划选用了美国德州仪器公司生产的MSP43016位单片机,具有16位总线、带FLASH的微处理器和功耗低、可靠性高、抗强电干扰性能好、适应工业级运行环境的特点,很适合于作现场测试设备的控制和数据处理使用[4]。TDC-GP2其与单片机的通信方式为四线串行通信(SPI),利用MSP430的4个P2.x和P4.2I/O口实现GP2的选通、中断和开始、结束使能以及复位等控制功能。MSP430除用来对GP2控制和数据处理外,还可以留出一些资源实现设备其他电路和动作机构的控制使用。单片机接口电路原理和程序流程分别如图8和图9所示。
2结束语
1.1基本原理LVDS驱动线路可以有多种结构,常见的包括单电源模式、双电流电源和电压模式。单电流源模式需要较大的电阻,如果采用传输逻辑实现电压驱动,需要复杂的电路对电压进行修正。因此在设计中可以选择双电流源模式进行驱动。电路如图:双电流源模式的电阻需求较小,可以方便的提供恒定电流,相对稳定。双电流源模式,对PMOS管以及NMOS管进行分别设置,形成两个电流镜(M1、M2、M3、M4)。通过适当的调节可以保证电流输出稳定在3.5mA。M2和M4、R组成偏置电路产生偏置电流,然后通过电流镜映射到M1和M3端,为驱动电路提供电流。如果in1是高电平则M5、M8导通,M6、M7阻断。电流从M5通过,从out1输出,经过电阻控制后再从out2输入,进入M8后经过M3,形成一个回路。这样驱动电路输出端out1和out2上的电流相反,形成一个差分信号。
1.2电路模型构建和分析按照前面的分析,M2和M4提供偏置电流,如果要保证电流经过电阻R的电流与偏置电流一致,并控制其参数,根据电流镜的原理,只需要对M1的宽度进行调整,设置为M2的3.5倍。如果此时Ir=1则驱动电路工作电流为3.5mA。同时设定电阻R=200Ω,并确定M2和M4宽长比一致,设定二者漏极电流就可获得其相对应的电压。为了获得稳定的工作电流3.5mA,设计要求M1和M3的漏极电流为3.5mA。根据电流镜的工作原理,可以得到各个关键位置的基本参数。获得相关的M2和M4的比值。在电路输出后,为了保证反转时性能的稳定,M5-M8管应保持参数一致。所以计算其中一个即可获得其他的参数。在电流导通的时候M5是非饱和状态,因此在输出时LVDS的高电压为1.25V,同时电流源的电流为3.5mA,所以MOS开关启动的时候,漏流为3.5mA,而Vds则很小,为100mA。经过计算可以得到M5的宽长比。实际中往往取值较大,因为这样可以减少沟道电阻,加快电平的转换速度。通过仿真可以对LVDS的驱动器进行修正,最终获得各个MOS管的尺寸、电阻和电容等,提高电路的性能。
2LVDS接受设计
在设计中电路的核心部分是接受电路,电路图如下,in1和in2为LVDS输入信号,经过运算和放大后,经由反向器输出。按照电流镜的基本原理其中M3和M4的参数一致。此时Id3为主导,Id4随其发生改变,且二者相等。如果in1和in2相同,此时Id1=Id2;Id3=Id4.从而Id4=Id1=Id2,Iout为零。如果输入的差分信号为共模则电流为零。如果输入信号中in1大于in2则PMOS将发挥作用,此时电流只能从out端流出,而Iout大于零。相反则出现Iout小于零的情况,输入的LVDS信号直接会导致Iout的改变。按照差分放大器的各种性能要求,利用相关公式即可获得相关技术参数,各个点位的电压和电流,如图2中所示。
3结束语
1)实际导通时栅极偏压一般选12~15V为宜;而栅极负偏置电压可使IGBT可靠关断,一般负偏置电压选-5V为宜。在实际应用中为防止栅极驱动电路出现高压尖峰,最好在栅射之间并接两只反向串联的稳压二极管。
2)考虑到开通期间内部MOSFET产生Mill-er效应,要用大电流驱动源对栅极的输入电容进行快速充放电,以保证驱动信号有足够陡峭的上升、下降沿,加快开关速度,从而使IGBT的开关损耗尽量小。
3)选择合适的栅极串联电阻(一般为10Ω左右)和合适的栅射并联电阻(一般为数百欧姆),以保证动态驱动效果和防静电效果。根据以上要求,可设计出如图1所示的半桥LC串联谐振充电电源的IGBT驱动电路原理图。考虑到多数芯片难以承受20V及以上的电源电压,所以驱动电源Vo采用18V。二极管V79将其拆分为+12.9V和-5.1V,前者是维持IGBT导通的电压,后者用于IGBT关断的负电压保护。光耦TLP350将PWM弱电信号传输给驱动电路且实现了电气隔离,而驱动器TC4422A可为IGBT模块提供较高开关频率下的动态大电流开关信号,其输出端口串联的电容C65可以进一步加快开关速度。应注意一个IGBT模块有两个相同单管,所以实际需要两路不共地的18V稳压电源;另外IGBT栅射极之间的510Ω并联电阻应该直接焊装在其管脚上(未在图中画出),而且最好在管脚上并联焊装一个1N4733和1N4744(反向串联)稳压二极管,以保护IGBT的栅极。
2实验结果及分析
在变换器的LC输出端接入两个2W/200Ω的电阻进行静态测试。实验中使用的仪器为:Agi-lent54833A型示波器,10073D低压探头。示波器置于AC档对输出电压纹波进行观测,波形如图5所示。由实验结果看,输出纹波可以基本保持在±10mV以内,满足设计要求。此后对反激变换器电路板与IGBT模块驱动电路板进行对接联调。观察了IGBT栅极的驱动信号波形。由实验结果看,IGBT在开通时驱动电压接近13V,而在其关断时间内电压接近5V。这主要是电路中的光耦和大电流驱动器本身内部的晶体管对驱动电压有所消耗(即管压降)造成的,故不可能完全达到18V供电电源的水平。
3结论
在非微电子专业如计算机、通信、信号处理、自动化、机械等专业开设集成电路设计技术相关课程,一方面,这些专业的学生有电子电路基础知识,又有自己本专业的知识,可以从本专业的系统角度来理解和设计集成电路芯片,非常适合进行各种应用的集成电路芯片设计阶段的工作,这些专业也是目前芯片设计需求最旺盛的领域;另一方面,对于这些专业学生的应用特点,不宜也不可能开设微电子专业的所有课程,也不宜将集成电路设计阶段的许多技术(如低功耗设计、可测性设计等)开设为单独课程,而是要将相应课程整合,开设一到二门集成电路设计的综合课程,使学生既能够掌握集成电路设计基本技术流程,也能够了解集成电路设计方面更深层的技术和发展趋势。因此,在课程的具体设置上,应该把握以下原则。理论讲授与实践操作并重集成电路设计技术是一门实践性非常强的课程。随着电子信息技术的飞速发展,采用EDA工具进行电路辅助设计,已经成为集成电路芯片主流的设计方法。因此,在理解电路和芯片设计的基本原理和流程的基础上,了解和掌握相关设计工具,是掌握集成电路设计技术的重要环节。技能培训与前瞻理论皆有在课程的内容设置中,既要有使学生掌握集成电路芯片设计能力和技术的讲授和实践,又有对集成电路芯片设计新技术和更高层技术的介绍。这样通过本门课程的学习,一方面,学员掌握了一项实实在在有用的技术;另一方面,学员了解了该项技术的更深和更新的知识,有利于在硕、博士阶段或者在工作岗位上,对集成电路芯片设计技术的继续研究和学习。基础理论和技术流程隔离由于是针对非微电子专业开设的课程,因此在课程讲授中不涉及电路设计的一些原理性知识,如半导体物理及器件、集成电路的工艺原理等,而是将主要精力放在集成电路芯片的设计与实现技术上,这样非微电子专业的学生能够很容易入门,提高其学习兴趣和热情。
2非微电子专业集成电路设计课程实践
根据以上原则,信息工程大学根据具体实际,在计算机、通信、信号处理、密码等相关专业开设集成电路芯片设计技术课程,根据近两年的教学情况来看,取得良好的效果。该课程的主要特点如下。优化的理论授课内容1)集成电路芯片设计概论:介绍IC设计的基本概念、IC设计的关键技术、IC技术的发展和趋势等内容。使学员对IC设计技术有一个大概而全面的了解,了解IC设计技术的发展历程及基本情况,理解IC设计技术的基本概念;了解IC设计发展趋势和新技术,包括软硬件协同设计技术、IC低功耗设计技术、IC可重用设计技术等。2)IC产业链及设计流程:介绍集成电路产业的历史变革、目前形成的“四业分工”,以及数字IC设计流程等内容。使学员了解集成电路产业的变革和分工,了解设计、制造、封装、测试等环节的一些基本情况,了解数字IC的整个设计流程,包括代码编写与仿真、逻辑综合与布局布线、时序验证与物理验证及芯片面积优化、时钟树综合、扫描链插入等内容。3)RTL硬件描述语言基础:主要讲授Verilog硬件描述语言的基本语法、描述方式、设计方法等内容。使学员能够初步掌握使用硬件描述语言进行数字逻辑电路设计的基本语法,了解大型电路芯片的基本设计规则和设计方法,并通过设计实践学习和巩固硬件电路代码编写和调试能力。4)系统集成设计基础:主要讲授更高层次的集成电路芯片如片上系统(SoC)、片上网络(NoC)的基本概念和集成设计方法。使学员初步了解大规模系统级芯片架构设计的基础方法及主要片内嵌入式处理器核。
丰富的实践操作内容1)Verilog代码设计实践:学习通过课下编码、上机调试等方式,初步掌握使用Verilog硬件描述语言进行基本数字逻辑电路设计的能力,并通过给定的IP核或代码模块的集成,掌握大型芯片电路的集成设计能力。2)IC前端设计基础实践:依托Synopsys公司数字集成电路前端设计平台DesignCompiler,使学员通过上机演练,初步掌握使用DesignCompiler进行集成电路前端设计的流程和方法,主要包括RTL综合、时序约束、时序优化、可测性设计等内容。3)IC后端设计基础实践:依托Synopsys公司数字集成电路后端设计平台ICCompiler,使学员通过上机演练,初步掌握使用ICCompiler进行集成电路后端设计的流程和方法,主要包括后端设计准备、版图规划与电源规划、物理综合与全局优化、时钟树综合、布线操作、物理验证与最终优化等内容。灵活的考核评价机制1)IC设计基本知识笔试:通过闭卷考试的方式,考查学员队IC设计的一些基本知识,如基本概念、基本设计流程、简单的代码编写等。2)IC设计上机实践操作:通过上机操作的形式,给定一个具体并相对简单的芯片设计代码,要求学员使用Synopsys公司数字集成电路设计前后端平台,完成整个芯片的前后端设计和验证流程。3)IC设计相关领域报告:通过撰写报告的形式,要求学员查阅IC设计领域的相关技术文献,包括该领域的前沿研究技术、设计流程中相关技术点的深入研究、集成电路设计领域的发展历程和趋势等,撰写相应的专题报告。
3结语
关键词:节能灯;电子线路设计;调光;充电;台灯电路
0前言
随着高科技的发展,节能灯也不断的更新,它不但具有体积小、光效高、寿命长、耗电少、造型美观、使用方便等特点;而且适用于各种使用要求的灯具应运而生,学生灯、书写灯、应急灯、日光灯、霞光灯、晚餐灯、不同高度的落地灯等新品迭出。从而能够很好的满足人们方方面面的需要,受到人们的欢迎。
1普通调光台灯电路
1.1亮度稳定的调光台灯电路
本调光台灯电路不仅可使亮度可调,而且调整后的亮度不会因电网电压的波动而变化。电路如图1所示。
电路原理如下。
(1)调光由R2、KP1和C1组成的阻容移相网络决定晶闸管VT的导通角,当C1两端电压经R2、KP1充电上升到双向触发管的导通电压时,双向晶闸管VT被触发导通;当交流电流过零时,VT自行关断。调节KP1可改变C1的充电时间,从而改变VT在交流电正、负半周的导通角,以便得到需要的亮度。(2)稳定调光。R3、KP2及光敏电阻RG串联后和C1并联,在R3、KP2固定的情形下,分流的大小由光敏电阻RG的阻值决定。当电网电压上升时,灯光亮度增加,RG受到的照度增大,阻值减小,分流增大,C1两端电压上升变慢,VT导通角变小,灯光亮度下降;反之亦然。这样就自动地将输出电压稳定在需要数值,保证了灯光亮度不变。
1.2键控调光台灯电路
本键控调光台灯电路利用两个轻触式按键来调光,当轻触其中一个按键时,光线将由强变弱,轻触另一个按键时,光线又会由弱变强,从而满足用户对光线的要求。电路如图2所示。
电路原理如下
VD1、VD2、C3、C2组成电容降压式直流电源,MOS场效应管V、电容C1等组成双向晶闸管VT的触发电路。VW1、VW2为保护二极管,防止场效应管栅极被击穿。当按下AN1时,C1经R2放电,V的栅极电位下降,漏极电流减小,VT的导通角变小,HL光线变暗;当AN1、AN2都松开时,由于场效应管的栅源电阻很大,C1两端的电压将基本不变,所以VT的导通角也将不变,光线稳定下来。
1.3光照控制自动调光台灯电路
本自动调光台灯能根据周围环境照度强弱自动调整台灯发光量。环境照度弱,发光亮度大,环境照度强,发光亮度就暗。电路如图3所示。
电路原理如下。
当开关S拨向“2”位时,它是一个普通调光台灯。KP、C和氖泡Ne组成张弛振荡器,用来产生移相脉冲触发晶闸管VT。一般氖泡辉光导通电压为60-80V,当C充电到辉光电压时,Ne导通,VT被触发导通,达到调光的目的。调节KP能改变C的充电速度、从而改变VT的导通角,达到调光目的、R2、R3构成分压器通过VD5也向C充电,改变R2、R3分压比也能改变VT的导通角,使灯泡HL的亮度发生变化。当S拨向“1”位时,光敏电阻RG取代R3,当周围光线较弱时,RG呈现高电阻,电阻分压器在RG上的分压值变高,电容C充电速率加快,振荡频率变高,VT导通角变大,HL两端电压升高,亮度增大;当周围光线增强时,RG电阻变小,与上述相反,HL两端电压变低,亮度减小,从而实现自动调光的目的。2、调光、充电、应急台灯电路的整体设计本电路具有调光、充电和应急照明三种功能。平时电网供电时,可进行调光并对电池充电;电网停电时会自动点亮应急灯。电路如图4所示。
电路原理如下:
(1)调光。
接通开关S,电网供电时,交流电压经电容C1降压限流,再经VD1-VD4全桥整流后提供直流电压使继电器J1励磁吸合,其常开触点J1-1断开切断灯炮HL1的电流,HL1不会点亮;常闭触点J1-3断开,常开触点J1-2闭合,灯泡HL2点亮。同时,电网电压经VD7-VD10全桥整流、R1降压限流后给调光控制电路供电,调光控制电路中,三极管V1、V2和R4、KP,C等构成张弛震荡器,其输出信号从V2的发射极取出作为晶闸管VT的移相触发脉冲。调整KP即可改变张弛震荡器的震荡频率,从而改变VT的导通角,也就改变了HL2的亮度,实现了调光功能。
(2)充电。
在HL2点亮的同时,电路对电池E充电、在电网电压正半周时,VD5导通,VD6截止,E获得充电电流;在电网电压负半周时,VD5截止,VD6导通,电路停止对E充电。即E以脉动电流充电,且充电电流通过HL2,故调整HL2的亮度就可以改变充电电流的大小。
(3)应急。
在电网突然停止供电时,继电器J1因失电而释放,其常开触点J1-2断开,切断调光及HL2电路,常闭触点J1-1、J1-3闭合,电池E给HL1供电,实现应急照明。
3结束语
本文设计出了调光、充电、应急台灯,从而解决了停电情况下光的危机,同时,本设计的思想可以应用到空调、洗衣机、电视机、电脑等其它产品的电子电路设计中去,具有重要的意义和广阔的前景。
参考文献
[1]深精虎.电路设计与制版——Protel99入门与提高[M].北京:人民邮电出版社,1991.
1.1TEC工作原理
半导体制冷器(TEC)是以帕尔贴效应为基础研制而成,其最基础的元件是利用一只P型半导体和一只N型半导体连成的热电偶。当通电后在两个接头处就会产生温差,电流从N流向P,形成制冷面;电流从P流向N,形成制热面。若干组热电偶对串联就构成了一个简单的半导体制冷器。在制冷面或制热面增加一个热交换器就可以完成半导体制冷器与外界环境的能量交换。
1.2半导体激光器温控电路设计
1.2.1半导体激光温控电路原理
高稳半导体激光器一般都有内置半导体热电制冷器(TEC)和温度传感器等相关的温控元件来保证激光器管芯温度可控。半导体激光器内置温控系统基本工作原理如图1所示。将温度传感器(常用负温度系数的热敏电阻)与激光器管芯安置在同一热沉上,起到实时监测激光管芯温度的作用。在常温25℃时(在25℃时激光器的整体性能最为优良),通过调节由R1和R2组成的电阻网络可以设定比较器的参考电压值,在这里称之为基准电压。以25℃为参照,若LD管芯温度相对升高,则热敏电阻的阻值变小,比较器的负输入端电压相对变小,输出电压也随着变化。TEC驱动源将驱使电流从N型半导体流向P型半导体形成制冷面,实现对LD管芯进行制冷。若LD管芯温度相对降低,则热敏电阻的阻值变大,比较器的输入电压相对变大,输出电压也随着变化,TEC驱动源将驱使电流从P型半导体流向N型半导体,形成制热面,实现对LD管芯制热。
1.2.2TEC驱动源类型
半导体激光器的温度控制系统需要满足温度控制精度高、响应速度快且稳定性高的要求,同时要能实现制冷和制热双向控制,以适应外界温度变化和半导体激光器本身工作条件变化。一般情况下,TEC驱动源按驱动工作模式可以分为线性工作模式和脉宽调制工作模式(PWM)两种类型。TEC驱动源线性工作原理:通过控制三极管的开关状态可以控制驱动TEC的电流大小和方向,这种驱动方式的效率一般低于50%,需要为三极管提供良好的导热通道,且有控温“死区”。但这种模式有噪声低和可靠性高等优点。TEC驱动源脉宽调制(PWM)工作原理:在PWM方式下,三极管工作在饱和状态,而不是线性区域,只有当需要向负载供电时才导通。电路通过4个三极管来控制电流的方向和大小,电路结构呈H桥型。PWM方法可以有效地提高效率和降低功率部件的热量,工作效率一般大于80%,能实现无“死区”温控。但这种模式有着噪声高和可靠性低等缺点。两种驱动源在实际使用中各有利弊,具体采用何种驱动方式需要根据实际情况来最终确定。
2航天高稳激光源温控电路设计方案
2.1MAX1968功能及其特点
MAX1968是MAXIM公司研制生产的一款高度集成具有纹波噪声抑制功能的脉宽调制TEC驱动芯片,调制频率为500kHz/1MHz;单电源供电,供电电压范围为3~5.5V;能够实现最大3A双向TEC驱动电流,完成对LD管芯的制冷或制热。MAXIM公司研制生产的MAX1968芯片具有体积小、效率高、价格低和可实现双向无死区温控等优点,但也存在封装材料简单(塑料器件)和工作温度范围较窄等缺陷。
2.2MAX1968芯片设计电路及失效分析
2.2.1MAX1968芯片设计电路分析
MAX1968芯片资料有应用芯片电路推荐,从推荐电路应用方案来看,电路的设计在滤波、抑制纹波噪声、LC滤波谐振电路等都做了详细的考虑。在COMP引脚与GND之间焊接了0.01μF的电容,确保电流控制环的稳定工作。FREQ引脚接高电位,即内部振荡器的开关频率选择为1MHz,这样可以减小电容和电感值。按芯片资料推荐电路搭建芯片电路,将芯片使能引脚(SHDN)直接连接高电位,即当MAX1968芯片上电后芯片就需要工作,根据CTLI引脚的电压输入情况判断TEC需要制冷或制热,并立即实施。在实际使用过程中发现,在给该温控电路上电瞬间,时有MAX1968失效的现象,具体表现为电源输出电流急剧增大。
2.2.2MAX1968芯片失效分析
用立体显微镜、金相显微镜和晶体管特性图示仪等仪器对两只失效的MAX1968芯片进行了详细分析,失效的情况完全相同,都是芯片的第5、6端之间以及第23、24端之间存在异常电应力,导致这几端之间的铝条烧坏短路所致。使用晶体管特性曲线图示仪对这两块芯片进行引脚间特性测试,发现两电路第6、8、10端(LX2)与第5、7端(PGND2)之间短路,第19、21、23端(LX1)与第22、24端(PGND1)之间短路。第9端(PVDD2)与第5、7端(PGND2)之间未见短路现象。将这两块芯片进行开盖,在开盖过程中,由于内部芯片尺寸较大,电路个别引脚经腐蚀后脱落,但经测试,短路现象依然存在,未破坏原始失效现象。在金相显微镜下,对两块芯片表面进行仔细观察,发现两块芯片第5、6端以及第23、24端之间存在烧毁现象,如图2所示。芯片为多层金属化结构,从烧毁形貌分析,可能是下层铝条烧毁后,导致上层铝条烧毁短路。由于两块芯片失效现象一致,因此可以排除器件偶然缺陷导致失效的可能,应该是芯片失效与外部异常电应力导致内部场效应管击穿。
2.3航天高稳激光源温控电路设计方案
2.3.1完善MAX1968芯片电路设计
通过上述分析,结合芯片内部结构和TEC驱动源脉宽调制(PWM)工作原理,我们基本能判断是芯片内部烧毁的通道发生在场效应管上。在试验过程中发现,芯片失效是一个慢性渐变的过程,可以用14引脚(OS2)、15引脚(OS1)分别与GND的阻抗R和R'来表征,随着上电次数逐渐增多,R和R'的阻值从开始的兆欧数量级慢性渐变到欧数量级,并最终失效。失效的原因认为是MAX1968芯片上电后,芯片就根据CTLI引脚电压输入情况判断TEC需要制冷或制热,并立即进行工作,上述过程在上电的一瞬间就会完成。这种输入与输出同时实施势必会导致芯片内部有大的纹波电压或大电流产生,因发热而导致芯片失效。通过完善MAX1968芯片电路设计,在MAX1968的使能引脚中引入了毫秒级的延时,致使MAX1968芯片完成加电后再实施输出工作。具体新的设计电路方案如图3所示。通过大量的试验证明阻抗R和R'的阻值不衰退,这说明对MAX1968芯片电路的完善是有效的。
2.3.2MAX1968新设计方案电路试验验证
根据完善电路特性搭建了对电路性能验证比较的试验平台,试验的基本思路是让两种电路(完善前和完善后)在带同样负载的情况下,分别对完善电路和未完善电路进行上下电连续冲击,上、下电频率同为13Hz,如图4所示。在两组电路的验证中,完善之前的设计电路在经过约32min之后电源输出电流突然增大,经测试发现MAX1968芯片已经失效。完善之后的设计电路在经过28天之后,测试MAX1968芯片的电性能依旧正常。由此可见对MAX1968设计电路的完善是有效的。
2.3.3航天高稳激光源温控电路设计工程验证
航天高稳激光源温控电路,在某项航天测试(包括振动、冲击、热循环和热真空等试验)中各项指标都正常,最终顺利完成了航天相关试验。
3结束语
本项目的主要任务是用EPROM2764(存储单元213,容量为8KB)设计定时控制电路。从存储器角度来看,A0A1……A12是地址码,D7D6……D0是数据,每输入一个地址码,输出端将输出一个数据;从控制过程角度看,A0A1……A12是控制过程对应的时间代码,D7D6……D0是控制电路的开关,每给出一个时间代码,输出将给出该时刻对应的各电路执行信号。基于此,用EPROM再配合时间脉冲发生器与二进制加法计数器,组合成任意的定时控制电路。
2实践活动
2.1电路原理分析
基于EPROM2764设计定时控制电路如图2所示。以半自动加工与装配工作为例,通常由几个工步组成,每个工步完成一定的动作,需要一定的时间,两个工步之间要有一个间歇时间(如刀架的退回,钻头的退出),各工步可以由不同的执行机构(比如电机拖动)完成,需要用多路定时控制电路来控制。(1)工作原理比如:加工一个零件需要三个工步一次完成,第一工步需要10s,间隔2s,第二工步需要4s,间隔4s,第三工步需要2s,间隔2s,然后停止。时间流程表如表1所示。如图2所示,使用EPROM芯片2764实现这一加工过程,此系统供电电压为±12.5V,使用L7805稳压芯片产生5V电压给存储芯片供电,用LED指示灯来指示加工动作(执行工步、间歇、停止),各工步操作时间的最大公约数为2s,以2s为步长设计,用555产生2s的时钟脉冲送入到计数器74HC161,输出的时间代码送入到EPROM地址输入端,输出D6控制第一工步用红灯LED1指示,D5控制第一工步间歇用黄灯LED2指示,D4控制第二工步用红灯LED3指示,D3控制第二工步间歇用黄灯LED4指示,D2控制第三工步用红灯LED5指示,D1控制第三工步间歇用黄灯LED6指示,D0为总控制使机器停止运作用绿灯LED7指示,将74HC161的CET端0,使74HC161的输出的数据保持不再进行计数操作。2764是8K*8字节的紫外线擦除、电可编程只读存储器,单一的+5V供电,工作电流为75mA,维持电流为35mA,读出时间最大为250ns,28脚双列直插式封装。各引脚的含义为:A0-A12为13根地址线,可寻址8K字节;D0-D7为数据输出线;-E为片选线;-G为数据输出选通线;PGM为编程脉冲输入端;Vpp是编程电源;Vcc是主电源。存储器2764的操作方式如下表2所示。(2)编程操作Vpp接+12.5V,-E接低电平,-G接高电平,输入一定频率的脉冲(如70Hz,不超过1KHz),该脉冲由uA741产生,D0-D7为数据输入。使用拨码开关对每个用到的地址进行编码。(3)读操作Vpp和接+5V,-E接低电平,-G接高电平,D0-D7为数据输出。(4)EPROM2764的输入输出真值表如表3所示。
2.2PCB设计
运用Protel99SE,绘制原理图,设计PCB。本控制电路的PCB设计如图3所示。维护成本等诸多优点。海上风电的兴起,使得部件吊装成本大幅度增加因此维护成本低廉的直驱式逐渐成为未来风力发电场使用的主力机型。目前大多数故障模拟实验台用来模拟双馈式风力发电机组,主要关注齿轮箱故障。但对于直驱式风力发电机组,其关注的重点部件如图1所示。由图1可见,除了主轴上的传动部件,基础塔架、叶片也是近年来出现较多故障的部件。而传统的双馈式风力发电机组故障模拟试验台,对于直驱式风力发电机组重点关注的低速主轴承,叶轮部位以及基础塔架等部位,相应的故障模拟较少。对于直驱式风力发电机组故障模拟试验台的研究,目前的文献较少。对于此类故障模拟平台,其未来发展方向是在模拟风力发电机组工况的情况下,对机组故障进行模块化模拟,综合考虑低速主轴承故障,发电机故障,叶片故障,变桨轴承,塔架基础故障等。
3总结