期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 数学建模论文

数学建模论文精品(七篇)

时间:2023-03-28 15:02:16

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇数学建模论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

数学建模论文

篇(1)

关键词:数学建模;应用能力;发展

一、开展数学建模活动及竞赛的意义

全国大学生数学建模竞赛问题涉及面广,不仅对学生数学知识要求高,对学生综合能力方面要求更高。通过比赛的方式,可以有效地检验一个学校学生综合素质能力及创新能力等方面是否过硬,从而可以侧面反映出该学校教学过程中存在哪些问题,对学校教学方面改革发展具有重要作用。从2004年开始,我院积极组织号召学生参加全国大学生数学建模竞赛,该项赛事组织以来,在我院得到快速发展,并且取得了骄人的成绩,其中获得国家奖项6项,省级奖项70余项,培养了许多创新能力、应用能力强的优秀毕业生。学生各方面能力提升的同时,更重要的一点,这对于我院数学教学方面改革指明方向,教学中如何有效促进数学教学。数学建模竞赛作为一个学习交流平台,对培养学生数学知识运用及创新方面起到很好的作用,而将建模活动贯穿于整个数学教学过程中,无形中提升学生综合能力,十分符合我院实行项目化教学的要求,也符合社会上用人单位对学生基本能力的要求。通过对我院参加建模竞赛活动学生调查问卷追踪并进行访谈得出,82%的学生认为,通过建模活动,自身综合能力得到极大地提高,工作后查阅资料等方面学习能力进一步提升;14%的学生认为一般,并不是说数学建模不好,主要在于自己学习能力弱,压根不想学新知识,有份工作就好;4%的学生表示不关心,没兴趣,工作中很难遇到相关数学问题。根据调查结果及数学建模指导教师长期经验,本文得出一些结论值得肯定:(1)数学建模竞赛及活动有利于学生数学应用意识及能力的提高;(2)数学建模竞赛及活动有利于学生以后小组合作能力及交往能力的提高;(3)数学建模竞赛及活动有利于学生探索、创新能力的提高;(4)数学建模竞赛及活动有利于学生自身自学能力的提高。

二、开展课堂有效数学建模活动,提高学生综合能力策略

(一)课堂教学采取建模竞赛活动方式使学生

学习观念转变,提升兴趣高等职业学校学生数学基础明显欠缺,且高等数学课程体系已成,传统的围绕定义、定理、公式等理论填鸭式教学方式已不再适合学生学习,即使学生被认为掌握了非常重要的数学知识,却难以在实际生活中应用或根本不会应用,导致学习兴趣降低或毫无兴趣。课堂开展数学建模活动,则可以为数学和实际问题架起一座桥梁,通过该活动,可以促进学生想方设法将实际问题归纳、整理并转化成数学问题,并加以解决,这样学生也感到有成功感。让学生学会知识的同时,更感受到数学真的有用,无处不在。因而,利用数学建模活动教学方式,激发学生兴趣是很有必要的。

(二)数学建模活动可以促进学生创造力培养

全国大学生数学建模竞赛题目多是从工程技术、农业、管理等方面遇到的实际问题提炼而成,而建立模型求解的过程就是对这些问题进行合理解决。针对实际问题从分析开始,到建立模型、求解模型及最后对结果分析,这一系列过程没有固定的方法可用,也没有相同模式遵循,求解过程主要依赖学生知识掌握的功底及充满想象力的思路和方法,这就要求学生必须具有良好的独立思考的能力,极大地发挥自己创造力的能力。所以,教师在实际的教学过程中,利用数学建模竞赛活动教学方式对学生创造力培养具有很好的效果。不断地重复引导学生分析问题、收集资料、建立模型,逐步使学生学会用所学数学知识有针对性地、创造性地解决问题,这样,既拓展学生视野,又能促进学生创造力的培养。

(三)数学建模活动可以促进学生自学能力

既然大学生数学建模题目从工学、农学、社会科学等实际问题提炼而成,那么学生要想真正意义上解决一个实际问题,就必须了解掌握该问题的相关背景,进而必须查阅行业相关资料,自学并掌握行业相关方面知识,这样才可以做到游刃有余。这一过程,学生不知不觉中自学能力得到较大提高,其综合能力潜移默化中得到增强,因此,数学建模活动教学方式对学生自学能力培养很有必要。

(四)数学建模活动可以促进学生之间互相合作

从参加该项赛事开始,我院积极鼓励学生参与,吸引不同专业数学爱好者参加,并成立数学建模协会。针对数学建模的特点,我们数学教师利用暑期对学生进行培训,并根据学生特长优势,将其三人分组,进行实战性训练,有效发挥学生所学。数学建模竞赛解决的是一个综合性问题,相关背景、明确问题、建立模型等涉及学科方面很广,一个人很难完成,这就要求小组成员互相合作,充分信任,取长补短,并得出相对完善结论。通过这一系列活动,既增加了学生间感情,更让他们体会到团队合作的重要性。

篇(2)

高职院校目前在高等数学课程教学过程中只注重理论学习,学生处于被动接受状态,参与度低。忽略了用数学解决实际问题的能力的培养,缺失了应用性。教师在高等数学教学过程中往往采用满堂灌,填鸭式的教学方式,学生只有大量重复的机械训练,才能掌握一些基础知识,套用现成公式做一些计算。教师的这种教学方式大大的影响了学生的学习兴趣,对数学学习长生厌恶情绪,学生学习的主观能动性也受到影响。另外,高等数学课程教学过程教学模式落后,缺少多样化,不能适应不同专业学生的要求。学生在解决实际问题时思维僵化,无从下手。为了解决这一问题,在高职数学教学中融入数学建模思想显得尤为重要。

2数学建模教学要以学生为主体,注重综合素质培养

随着科学技术的发展,传统的教学手段也发生了变化。现代的要改变传统的教学模式,须以学生为主体,突出学生的主体地位,使他们成为课堂教学活动的主角,并积极对他们进行引导,让他们发现问题、提出问题,对教堂中的问题积极进行探索,主动思考,增强学习的能动性。由于我国教育模式一直为应试教育,学生在学习过程中只是被动的接受知识,独立思考能力和动手能力较差,并且应用意识薄弱。所以,在教学过程若想实现学生的主体地位,教师必须要培养他们学习的主观能动性。此外,不论在课堂上或者是课外教师要充分尊重学生的个人意见,并适当的给予鼓励,不要轻易否定他们思考问题的方式。在学生发表自己的意见之后,教师对他们进行表扬,鼓励他们善于思考、勇于提问和辩论,让他们始终处于主动学习的状态,使他们成为教学实践活动的主体。在数学建模教学过程中,要对学生进行全方面的培养,既培养他们应用所学的数学知识的解决实际问题的能力,又要培养他们的综合素质,使他们具有强烈的求知欲、坚强的意志、宽广的兴趣、坚定不移的信念及积极主动进取的品质。在实际的教学过程中,还可以引入竞争机制,对他们进行分组然后进行讨论或者是竞赛,通过这样的方式既可以增加他们之间的同学友情,又可以让他们共同进步。每组学生还可以布置一些比较难的题目,他们合作解决问题,最终完成题目的解答。在解决问题过程中,让他们意识到创新的价值和合作的重要性,从而培养他们的创新精神和团结协作精神。另外,当今学生的薄弱方面主要是语言能力及表达能力,所以对他们进行特定的培养,提高他们这两方面的能力。在教学过程中,教师要尽量给予学生更多的机会进行语言表达,包括表述自己对问题的认识和解题思路等,从而完成数学建模论文。在训练他们语言表达能力的过程中,教师要有耐心,在语言的准确性、逻辑性、简洁性等方面及时进行指导和纠正错误,从而提高他们的语言表达能力。

3教师采用多媒体教学手段,提高教学效果

教师在数学建模教学过程中,教学方法要由传统的黑板加粉笔转化为利用多媒体教学,以此来培养学生的应用能力,也提高教学效果。多媒体教学可以包含大量信息,可以直观形象的呈现教学内容,学生的学习兴趣和热情也得到很大程度的提高。采用多媒体教学手段,增加了师生之间的互动性,课程教学过程变得顺利,授课速度变快,教学效果也变得更好。在数学建模教学过程中为了实现更好的教学目标和教学效果,采用大量贴近生活的案例进行数学建模教学。

4开展数学建模竞赛,培养应用型人才

近几年来,全国高职院校开展数学建模竞赛成为大学生最重要的课外科技活动。大学生通过竞赛,可以提高查阅收集资料的自学能力,可以运用所学的数学知识来解决实际问题,提高了自身运用计算机解决数学模型问题的能力,使学生的竞争意识和探索研究精神增强,为成为全面性的高技能应用型人才打下基础。在竞赛活动中,教师对学生进行培训指导的同时也有助于自我提高各方面能力。高职数学教师指导数学建模竞赛可以改变其缺乏研究主动性的现状,可以摒弃老旧的知识学习。有利于开展理论联系实际的数学教学模式,对高职数学教学改革创新有很大的推动作用。

5总结

篇(3)

所谓数学建模,从字面意思看,其以数学理论与实际生活的关联为教学重点,其教学内容的设定目标在于培养学生的动手能力、实践能力,力求帮助学生从实践中深入体会数学理论知识.对于高中数学中的建模教学,在国外被重视的时间早于国内,我国1993年的数学课程改革研讨会上才首次提出“建立数学模型”的议题,2003年的高中数学课程标准中才明确了数学建模这一学习活动在高中数学教学大纲中的必要性.

虽然我国正式明文提出有关高中数学中的建模教学的相关内容,但在实践效果来看并不理想.不少高中对于这一议题的实施常常会因不同学校的差异、这样那样的实际情况限制等条件而不完全落实指导思想.加之高中学习阶段的紧张性,常常会形成建模被冠以浪费时间的名号而不被应用.然而,就现状分析来看,高中生们对高中数学的应用能力远不如预想的好.相关教育者及研究人员也逐渐意识到这一严峻问题,终于将眼光投入到建模教学对于高中生思维发展的重要性.

以“高中数学,建模”为关键词查询2000年至2014年十余年时间内的研究理论文献,得出结果29600篇,这一结果是值得我们欣慰的,越来越多的人们关注到高中数学建模的重要性,并不断探索其有效实践方式及效果分析.就建模教学对于高中数学的意义而言,具有多重性.首先,建模教学的内容特殊性可以在学生与老师之间形成良性制动系统,也就是说,老师们在研究建模教学具体操作时,会多方面权衡各方条件及因素,对于课堂设计有促进意义.此外,通过以小组学习为主要教学方式的建模教学过程,可以培养学生们对于高中数学的非智力因素.目前,数学建模在高中数学中的实施难点在于多数教师并不具备数学建模的教学经验,教师们在不断尝试,因此,数学建模的收效性一般.

二、高中数学建模对学生的多方位影响

(一)拓宽学习范围,以数学为中心融合进其余学科的知识,有利于学生视野范围的扩大.数学学科以基础学科的身份在其余学科中常常出现,比较常见的包括物理、化学、生物,而表面看关联不大的语文学科也处处体现着数学的思想.原本传统高中数学教学过程中,往往忽视了这一点,造成学生们的思维局限性.而数学建模的出现对这一现状的改善有促进作用.其中,通过有效的课堂教学模式及教学内容的设计,建模教学可以集合数学与物理、化学、生物甚至是美术的问题来供学生们思考.换言之,在教学过程中体现数学与其他学科之间的呼应关系,既可以帮助学生巩固数学知识,更能起到辅助学生进一步理解其余学科内涵的作用.学科间的交叉无形中培养学生自主建立建模意识,有利于学生们思维的发散性发展.

(二)以创新性思维影响学生的思维过程,在潜移默化中提升学生的思维水平.建模教学区别于传统教学的明显特征在于其创新思维的引入.通过课堂上的多元化教学方式的促进,可以培养学生的创新思维能力,在面对贴合实际的理论问题时,学生们会受到建模思想的印象而自发地运用多维度分析、辨别能力,这对于学生们发散性思维的养成很有益处.而建模教学中的创新性并不是空谈,其有实际的理论支撑以及丰富的知识源储备作依托.同时,建模教学对于学生的思维深刻度与灵活度也有一定要求,可以在过程中锻炼学生独立、自觉寻求问题最佳解决方案的能力,对其今后的工作、生活能力的提升也有帮助.

(三)以倡导学生自主学习、实践的操作过程,培养学生自主探索问题解决方法的良好学习习惯.区别于传统高中数学单一的教学方式,建模教学不再将学生们的学习过程局限于接受传输、记忆要点、模仿练习的枯燥过程,而是将自主探索、主动实践、合作学习、多样性自学等教学模式融入到高中数学的课堂教学中.从学生心理条件的分析中我们可以看到,上述几种建模教学的常用方式有助于学生在思维养成中的主动性的培养,改变传统教什么做什么的呆板模式,令学生的学习过程成为教师初期引导、学生后期再创造的愉快过程.此外,多样性、多元化、信息化的教学过程也符合现代社会的发展趋势,对于高中生思维的锻炼有很大帮助,在学习能力提升的同时,可以令学生掌握很多学习之外非常有用的实践能力,真正实现学生们各方面能力的综合提高.

三、议题要点概括

建模对于培养学生思维能力及实践能力有重要意义,在当前建模思想被广泛重视的时代背景下,相关教育工作者及研究人员需要注意自身对于学生们的引导方式及方向.以对实际问题进行抽象分析的原则对教学内容建立对应的、恰当的数学模型.值得注意是,在当前建模教学依旧处于探索期的阶段,教师们或许需要借助于传统教学与建模教学的对比方式,在效果及便捷性方面给学生提供直观感受,以明显的实践结果令学生自主体会建模教学的优点与优势.此外,在建模教学对学生思维发展的影响的探究过程中,需要注意不能忽视学生的非智力因素的培养与课堂教学的融合.

高中数学的建模过程所包含的问题应该来源于学生的生活实际,而不能以学生较难接触到或不具备普遍性的生僻现象作为建模对象,否则将因与实际生活脱节而增强学生对建模过程的反感情绪.此外,高中学生的数学知识储备与解决问题能力水平相对不高且具有一定局限性,因此,高中数学中的建模过程不能设计得过于复杂.

篇(4)

教师在数学建模课堂上的引导作用首先体现在教师对新课的引入上。教师一段精彩的导入会点燃学生学习的热情、激发学生的学习兴趣、唤起学生的好奇心,能把学生的注意力迅速集中到要学的知识上来。这对提高教学质量、提高学生的学习效果起着不可估量的作用。同时,新课前的导入环节是对学生进行情感教育的最佳时刻。学生只有在教师的引导下才能够体会到数学建模的价值、增强学好数学建模的信心。俗话说:“好的开始是成功的一半。”数学建模课堂也是这样。因此,在新课引入时要充分发挥教师的作用。

二、在教学任务的设计上需要发挥教师的作用

数学建模课堂一般应采用任务型教学模式,是让学生通过自主探究、合作学习、交流展示的方式完成一系列学习任务来达到特定的教学目标和学习目标。学生在课堂中的主体作用能否得到有效发挥取决于教师对问题设计质量的高低。教师应通过设计一系列高质量的问题把复杂的数学建模问题分解成若干简单问题来引导学生更好地发挥其主动性。学生也只有在这些问题的正确引导下才能突破难点并向着学习目标努力,有效防止学生思考、探究、交流的内容偏离学习目标等现象的出现。这些任务的制订需要充分发挥教师的作用。

三、在新旧知识的联系点上需要发挥教师的作用

建构主义强调新知识是在学生已有知识的基础上通过学生自身有意义的建构获得的。笔者认为,学生自主建构知识应在教师的科学引导下进行。尤其是对于数学建模这样高难度的知识更是这样。失去了教师的科学引导,学生易产生疲倦感,久而久之会丧失学习数学建模的兴趣和信心。因此,在新旧知识联系点上应发挥教师的作用。教师应在准确掌握教学目标、难点的基础上,充分考虑学生的认知能力、习惯、思维方式,通过有针对性的具体问题唤起学生对旧知识的回忆,再通过启发性问题引导学生去发现新知识,从而实现温故知新的目的。在教师引领下学生自主建构知识可以使学生少走弯路,从而使学生更加高效地自主探究、掌握新知识。

四、在教学重点、难点上需要教师的引导

篇(5)

1.1简述数学及数学建模

美国科学院院士Glimm在他编著的《数学科学、技术和经济竞争力》的报告里指出:“数学科学对于经济竞争是生死攸关的”,认为“在数学科学里,技术转化远低于其潜力”“,这种由研究到技术转化,对加强经济竞争力具有重要意义”。从而,数学向一切领域渗透以及实现数学科学技术转化,是当代数学发展最具生命力的方面。近代计算技术的快速发展,为数学的发展提供了最有力的工具。在高新计算机技术支持下的数学建模,成为目前发展数学向一切领域渗透及数学科学技术转化的主要途径。由于利用数学方法解决实际问题时,首先要进行的工作是建立数学模型,而建立一个较好的数学模型成为解决实际问题的关键。

1.2对模型与数学模型的认识

一般地说模型是我们所研究的客观事物有关属性的模拟,它应当具有事物中使我们感兴趣的主要性质。好的模型应当具有它所模拟对象的主要功能。例如:航模飞机就是对机的一种模型。但模拟不一定是对实体的一种仿制,也可以是对某些基本属性的抽象。例如:日常生活中使用的各种图纸。那么什么是数学建模呢?数学建模就是指将某一领域或部门的某一实际问题,经过抽象简化、明确变量和参数,并依据某种“规律”建立变量和参数间的一个明确的数学关系(即数学模型),然后求解该数学问题,并对此结果进行解释和验证。若通过,则可投入使用,否则将返回去,重新对问题的假设进行改进。按照E.A.Bender的提法,认为数学模型乃是“关于部分现实世界为一定目的而作的抽象、简化的数学结构“。由于个人的讲法不一,不必过于追求严格的定义。总之,数学模型是一种抽象的模拟,它用数学符号、数学式子、程序、图形等刻画客观事物的本质属性与内在联系,是现实世界的简化而又本质的描述。它或者能解释事物的各种性态、预测它将来的性态,或者能为控制这一事物的发展提供某种意义下的最优策略或较好策略。例如,在科学发现上比较有名的万有引力定律的发现是牛顿在力学上的重要贡献之一,正是为了建立这一定律,他发明了微积分方法,通过数学建模的方法,推导出万有引力定律。

1.3数学建模的一般步骤

由于数学建模面对的是现实世界中的形形的事物,不可能用一个统一的格式来说明,下面大致归纳建立数学模型的一般步骤。1)了解问题的实际背景,明确数学建模的目的,掌握必要的数据资料,为进一步数学建模做准备。为了做好这一步工作,有时要求建模者作一番深入细致的调查研究,有时需向有关方面的专家能人请教,以便掌握较为可靠的第一手资料。2)在明确建模目的,掌握必要资料的基础上,抓住主要矛盾,对问题作必要的简化,提出几条恰当的假设。十六世纪初,著名天文学家开普勒正是在第谷二十年积累起来的资料基础上,提出了科学的假设。如果当时没有开普勒的假设,人们对现实世界天文学的感性认识就不可能迅速上升到理性的阶段。一般在提出假设时,如果考虑的元素过多,过于繁复,会使模型过于复杂而无法求解,考虑的因素过少、过于简单,又会使模型过于粗糙得不出多少有用的结果而归于失败。此时,应当修改假设重新建模,一个较理想的模型往往需要经过反复多次地修改才能得出。3)之前已经根据问题背景提出了适当合理的假设,在此基础上,各变量之间存在某种关系,采用恰当的数学工具来表示以上这种关系,为其构造相对应的数学结构,根据构造的数学结构建立相应的数学模型。在建立数学模型时要综合考虑建模所要达到的要求目的、问题的特征的问题,此外还要考虑负责数学建模人员的数学特长等问题。在建立数学模型时可能会用到任意一个数学分支,即使是同样的问题也可以建立不同的数学模型,只因所采用的数学方法有所差异。人们可以采用多种数学方法达到所预期的要求目的,通常在这种情况下,人们会采用较为简单的数学工具。4)分析并检测所建立的数学模型。人们之所以建立数学模型是为了解决问题,更好的解释自然现象并改造自然以此来满足人们生活需要,所以说数学建模不是我们的最终目的。在建立数学模型时我们应该充分考虑模型求解的问题,模型求解包括以下几部分内容:逻辑推理、图解、解方程、定理证明、讨论稳定性等。建立模型并将模型所得结果与实际情况进行比较,通过这种比较来检测数学模型的正确性。通常,一个较成功的模型不仅应当能解释已知现象,还应当能预言一些未知的现象,并能被实践所证明。例如:牛顿创立的万有引力定律就经受了对哈雷彗星的研究、海王星的发现等大量事实的考验,才被证明是完全正确的。如果经验结果与事实不符或部分不符,就应当象前面所讲的那样,修改假设,重新建模。综合起来讲,数学建模的一般过程可以概括为:从实体信息(数据)提出假设建模求解验证修改应用的一个反复完善的过程。

1.4数学建模中应当注意的两个方面

1)要具备广泛的数学基础知识,懂得它们的背景含义及各种数学应用问题的解法。2)重视观察力和想象力的培养。要学会数学建模除了要学会灵活应用数学知识外,还应当注重培养自己的观察力和想象力。著名科学家爱因斯坦曾经说过:“想象力比知识更重要,因为知识是有限的,而想象力概括着世界上的一切,推动进步,并且是知识的源泉”。

2对投资问题数学模型的探讨

当国家或地区财力有限时,要使有限的投资能发挥出最大的效益,必须制定最佳投资方案,使国民经济获得最优增长。关于投资问题就是经常要提到的一个重要问题,下面采用数学方法建立模型,并对某些结论进行讨论。社会生产可以分为两大部类,第Ⅰ部类和第Ⅱ部类。第Ⅰ部类的生产是用于非消费品的生产;第Ⅱ部类的生产是消费品生产。经济学理论分析,用于第Ⅰ部类的生产资金是通过消费品的生产转化来的,同时生产出来的第Ⅰ部类产品,在一定时期内又服务于消费品生产。那么,要使投入生产的总资本产生最大的经济效益,需确定资本的最佳投入。

2.1投资问题数学模型的建立

假设1)t时刻,国家投入生产的总资本为K(t),K(0)=K0,K(T)=KT,K0与KT是已知量,国民经济总收入为Y(t),并且有Y(t)=〔fK(t)〕,(1)其中〔fK(t)〕是生产函数;2)国民收入主要用于两方面,消费资金C(t)和扩大再生产的积累资金I(t),且有Y(t)=C(t)+I(t)(2)消费资金产生的效益记为U〔C(t)〕,消费越高,为生产带来的效益越大,因此3)人是劳动力资源,从t=0到t=T这段时期内,劳动力保持不变。在上述假设下,考虑最佳投资方案,即确定投资函数K(t).当充分小时,有,令,得,(3)(3)式表明t时刻用于扩大再生产的资金正好是t时刻总资本的变化率。将(1)式(、3)式代入(2)式得到关于K(t)的常微风方程(4)现在的问题是求K(t),使得(5)约束条件为K(0)=K0,K(T)=KT,状态方程为求最佳投入资本的问题归结为解具有固定端点的变分问题(5).注意到,得变分问题利用Euler方程得常微风方程(6)因为,所以(6)式就变为(7)

2.2模型探讨

篇(6)

1.1农产品的变质函数农产品在运输过程中容易腐烂,Dave对物体变质宿点进行了分析,提出了包含生命周期的易腐物品的函数形式较为复杂,采用指数表示农产品的变质速度。本文采用定义农产品的指数变质函数描述农产品的鲜活度随时间和温度的变化情况。农产品在运输过程中的温度已经设置完,本文设置农产品运输在一个稳定的温度环境下完成,设置农产品的变质函数如式(1)所示:Q(t)=Q0•K•e-βt(1)其中,Q0用于描述农产品在新鲜情况下的质量;t用于描述运输农产品消耗的时间;K用于描述农产品随温度变化而变质的速度常数,也就是农产品变质速度,K值较小说明农产品呈现静态变质特征,K较大说明农产品呈现动态变质特征,β用于描述农产品对时间的敏感系数,也就是农产品的变质程度,如果农产品对时间敏感度相对增加,则β的取值降低,否则提升。

1.2数学建模对农产品运输距离问题进行优化,需要设置的前提条件是:(1)所有农产品需求点的地理位置和需求量事先设置;(2)农产品配送中心保存的农产品量可以满足全部需求点的要求量;(3)应一次性满足需求点的要求量,并且执行任务的车辆是唯一的;(4)农产品在运输时的变质损失可忽略不计,通过充分符合时间窗限制,调控农产品的变质损失。则构建的农产品运输距离与变质关系的数学建模,如式(2)所示:Z=∑i=0n∑j=0n∑k=1mCijXijk+A∑j=1nmax(ETj-tj,0)+A∑j=1nmax(tj-LTj,0)+∑i=0n(Qi-gi)•p(2)其中,tj=∑i=0n∑k=1mXijk(ti+tij+si),tj表示车辆到达需求点j的实际时间,tij表示i到j的行驶时间,si表示在需求点i卸车的时间,i,j=1,2,,n。设置的农产品运输过程的限制规范如下述各式所示:∑i=1ngiyik≤q(k=1,2,,m)(3)∑k=1myik=ìím(i=0)1(i=1,2,,n)(4)∑i=1nxijk=yijk(j=1,2,,n;k=1,2,,m)(5)∑j=1nxijk=yijk(i=1,2,,n;k=1,2,,m)(6)xijk=0或1(i,j=1,2,,n;k=1,2,,m)(7)yik=0或1(i=1,2,,n;k=1,2,,m)(8)其中,配送中心的编号是0,农产品需求点编号为1,2,…,n,农产品运输任务和配送中心都用点i描述;Cij表示通过点i到j消耗的费用;xijk表示决策变量,用于描述车辆k是否从i到j;k用于描述车辆号;车辆数量为m;农产品需求点数量为n;农产品运输的时间制约系数是A;gi用于描述i点的需求量;q表示车辆载重量;éùETiLTi表示农产品运输任务j的时间限制区间。Qi=gi/(K•e-βtik)表示车辆k在tik时间运输到i点,并且符合点i要求情况下的载货量。p表示单位农产品在运输过程中由于变质产生的损失价值。式(2)表示目标函数;式(3)表示每辆车都不超载;式(4)表示确保各需求点都有1个车辆进行配送;式(5)、(6)用来限制到达和离开需求点的车辆数量是1;式(7)用来描述i同j间有无距离;式(8)表示yijk的取值。

1.3农产品变质情况下最佳运输距离上述分析的农产品运输距离优化模型是NP-Hard问题,采用指数变质函数对该模型进行约束,会提高农产品带时间窗的运输距离问题更加复杂。农产品在运输过程中受到时间的相对限制,可分为静态农产品变质和动态农产品变质两种类型,其中静态变质的时间相对较短,变质程度较弱,产生的损失也较低;而动态变质的时间较长,变质程度较强,产生的损失较高。本文采用最大最小蚁群算法,求解静态农产品变质情况下,最佳农产品运输距离。具体的过程为:(1)对变量进行初始化处理,初始时刻τij=0,各条距离上的信息素值是τij=1,迭代次数nc0,k1,车辆行驶时间Tsolu=0,车辆剩余载重Q-net=Q,不能符合需求点要求的需求点集为V-net={V}1,V2,,Vn,Zbest=M,M为较大正数。(2)按照车辆载重以及时间窗口的限制,明确蚂蚁后续可选的转移点集V-allowed。分析V-allowed是否为空集,如果是空集,设置kk+1,Tsolu=0,Q-net=Q,V-allowed=V-net。(3)运算蚂蚁选择不同需求点的转移概率是pkij=[τij]α•[ηij]β∑I∈V-allowed[τij]α•[ηij]β,产生随机数,按照随机数以及概率选择蚂蚁后续转移点Vt,调整Q-net,Tsolu以及V-net。(4)分析V-net是否为空集,若不是,返回(2);若是,则说明需求点都被配送到货,n个点都处于解集中,记录蚂蚁数量mk。(5)采用式(9)对各边(i,j)进行信息素调整:τij(t+1)=pτij(t)+τij(t)τij(t)=ìí2L(gb)IE边(i,j)在本次求解的运输路径上0otherwise(9)其中,L(gb)表示当前时刻蚂蚁距离搜索中获取的全局最优路线长度,且有0.1≤ρ≤0.9。(6)对信息素值的上下限进行判定和调整。τmaxij(t)=ìíρk•τij(0)+11-ρ•2f(Sgb),0<k<811-ρ•2f(Sgb),k≥8(10)其中,f(Sgb)表示当前全局最优解距离的长度。τmin=τmax/10,实时调整τij的值。IEτij>τmax,τij=τmaxIEτij<τmin,τij=τmin(7)对各边(i,j)设置τij0;ncnc+1,运算目标函数值,并分析目标函数值是否变化,若有,记录所得解。(8)IEnc<NC(预定迭代次数),重新迭代,否则跳出。

1.4采用动态规划算法求解动态农产品变质情况下最佳运输距离假设从配送中心发出m辆车,有配送需求的客户n个,某t时刻出现p个新需求客户,m辆车从配送中心出发,配送完所有有需求的客户,最后回到配送中心[6]。其阶段数为2m+n+p,某一车辆k从客户点i到客户点j,(i,j)用于描述农产品运输过程的变质状态变量,某一t时刻出现p个新需求客户,按照这些客户的位置、配送时间窗、需求量和现今车辆的剩余载重量,将新需求客户插入原来的车辆配送计划中。用Xijk描述车辆k从客户点i到客户点j则记为1,反之记为0;Yjk表示车辆k配送客户点j则记为1,反之记为0。车辆k由客户点i行驶到客户点j,将车辆运输成本、农产品动态变质损失成本和客户惩罚成本组成的综合最低成本作为目标函数。

2实例验证

为了验证本文模型的有效性,需要进行相关的实验分析。实验选取某城市农产品配送中心,对10个配送中心需求点进行瓜果配送。配送中心车辆载重约束为6t,运行速度为50km/h。10个需求点要求量、配送车辆到达时间窗口和到达后的处理时间用表1描述。配送中心和不同需求点间的距离用表2描述。设置变质函数为Q(t)=Q0°e-t/200,确定瓜果运输距离同变质关系模型,确保满足总体需求点不同需求条件下的运输成本最低问题。采用Matlab编制基于最大最小蚁群算法程序并且结合实例问题进行求解,设置α=1.5,β=3,m=30,Q=8,ρ=0.7,运行次数为6000。运行10次结果分别是2827.5,2827.5,2827.5,2764.5,2754.5,2754.5,2728.5,2727.5,2728.5,2728.5。本文方法获取的最佳瓜果运输距离为2727.5,最优解趋势用图1描述。Fig.1Theoptimalresultstrendchart分析图1可得,本文模型的性能较为稳定,10次求解最差与最优结果相差很小,有效解决了求解瓜果运输距离陷入局部最优的缺陷,是处理农产品运输距离优化的有效方法。

3结论

篇(7)

论文关键词:供水管网,三卤甲烷,EPANET水质模型

 

水经氯消毒进入供水管网后与水中有机前驱物质发生反应生成消毒副产物[1]。三卤甲烷(THM)是饮用水中含量最大的消毒副产物,具有致癌、致畸作用,会引起肝、肾等器官的病变。许多供水行业学者对三卤甲烷的生成规律进行了研究,试图建立THM生成模型,以便于对供水管网中的THM含量进行预测。本文介绍了供水管网THM动力学模型的建立原理,首次应用EPANET建立真实供水管网三卤甲烷(THM)的生成模型,并对该水质模型进行验证,得到整个供水管网各点三卤甲烷浓度的水质模型。

1 给水管网THM动力学模型

当氯气加到水中数学建模论文,它与水中天然有机物(NOM)发生反应生成三卤甲烷以及其他消毒副产物,饮用水氯化消毒生成三卤甲烷反应可以写成:

Cl2+P→THM(1-1)

式中P――表示三卤甲烷形成的前驱物质。

根据质量作用定律,THM生成的速率表达式为:

(1-2)

式中[Cl2]――水中余氯的浓度;

[C]――形成三卤甲烷的前驱物质浓度;

n――相对于氯的反应级数;

m――相对于前驱物质的级数;

k­――THM生成的速率常数cssci期刊目录。

据文献报道[2]:三卤甲烷的形成相对于氯和前驱物都是一级n=1、m=1,总的反应级数是二级。

THM生成潜能(THMFP)是在一定的加氯量下,在足够的反应时间内原水体中的天然有机物与氯反应生成THM的能力[1],将THMFP代入(1-2),可得:

(1-3)

式中t――反应时间(h);

K――反应速率常数(L/mgh);

[THMFP]――THM的界限浓度(μg/L)。

在配水管网中,当t=0时,[THM]= [THM0],式(1-3)积分得:

(1-4)

2 EPANET给水管网THM生成模型

EPANET跟踪供水系统THM的增长,通过管道内部(主流区)和管壁处两个区域反应来处理的[3]。在主流区,自由氯(HOCL)与水中天然有机物(NOM)反应;在管壁处,氯与附着在管壁上的藻类等其它前体物质发生反应,存在管壁生长环作用[2]。

2.1 主流区反应

EPANET模拟具有n级反应动力学的主流区水体反应,其中反应的瞬时速率依赖于浓度,同时也考虑到THM极端增长中存在着极限浓度反应数学建模论文,THM属于一级饱和增长反应动力学模型,n=1,Kb>0,[THMFP]>0,即

R=Kb ([THMFP]-[THM]) [THM] (n-1) = Kb ([THMFP]-[THM]) (2-1)

式中R­――浓度反应的瞬时速率(μg/L/d);

Kb――主流区反应速率系数(d-1);

n――反应级数;

[THMFP]――THM的界限浓度(μg/L);

[THM]――THM的浓度(μg/L)。

主流区的反应系数Kb常常随着温度的增加而增加,取决于原水的水质,可通过棕色玻璃瓶中的水样静置来估计,分析瓶中三卤甲烷浓度与时间的关系。对于属于一级饱和增长反应的THM,自然对数([THMFP]-[THM0]) / ([THMFP]-[THM t])与时间t的曲线为一条直线,其中[THMFP]为THM的界限浓度,[THM t]为t时刻THM的浓度,[THM0]为零时刻THM的浓度,于是Kb由该直线的斜率来估计。

2. 2 管壁处反应

靠近管壁处的水质反应速率,可认为取决于主流区的浓度,THM管壁反应级数n= 1,即采用以下公式[3]:

R = (A/V) Kw C n= (A/V) Kw C(2-2)

式中 Kw――管壁反应速率系数;

(A/V)――管道内单位容积的表面积。

管壁反应系数Kw取决于温度数学建模论文,与管龄和管材相关,由模拟人员设置。

3 管网THM生成模型的应用与验证

3.1 实例简介

本研究所用的是横山桥镇配水管网,横山桥镇用水由西石桥水厂供给,输水管线长达17km,在横山桥进行二次增压并二次加氯,通过两条输水管线供给全镇(自来水普及率100%),管径为100~600mm,节点数248,管段数261。管网除镇区为环状外,周边农村均为枝状。在此供水管网中设置了7个水质调查点,分别位于供水干管和管网末梢(见图1)。

图1 实际管网水流方向及7个水质监测调查点

Fig.1 The actual flowdirection of pipe network and 7 water quality monitoring sites

注:1. 增压站;2. 横山家苑;3. 营业所;4.加油站;5.曹巷村;6. 龙塘村;7. 谢家村cssci期刊目录。

3.2模型建立与验证

3.2.1模型建立

在EPANET模型中选择模拟周期为96h,水力步长为30min,水质步长为5min,每5min输出一组水质数据。通过对比模型计算结果和管网实测数据,调整模型输入数据,使模型计算误差达到最小数学建模论文,模型校核后输入初始参数见表1及THM时变曲线图2。局部管网的THM水质模型结果见图3。

表1 THM模型的输入数据

Tab. 1 Input data in THM model

 

THM平均

浓度/μg/L

主流区的反应系数

Kb­/ d-1

管壁反应系数

Kw/m/d

16.2