期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 系统论文

系统论文精品(七篇)

时间:2023-03-27 16:42:47

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇系统论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

系统论文

篇(1)

关键词自动微分切线性模式数据相关分析统计准确率

1.引言

计算微分大致经历了从商微分,符号微分,手写代码到自动微分几个阶段。与其它几种微分方法相比,自动微分具有代码简练、计算精度高及投入人力少等优点。自动微分实现的基本出发点是:一个数据相对独立的程序对象(模式、过程、程序段、数值语句乃至数值表达式),无论多么复杂,总可以分解为一系列有限数目的基本函数(如sin、exp、log)和基本运算操作(加、减、乘、除、乘方)的有序复合;对所有这些基本函数及基本运算操作,重复使用链式求导法则,将得到的中间结果自上而下地做正向积分就可以建立起对应的切线性模式,而自下而上地做反向积分就可以建立起对应的伴随模式[1]。基于自动微分方法得到的切线性模式和伴随模式,在变分资料同化[2]、系统建模与参数辨识[3]、参数的敏感性分析[4]、非线性最优化以及数值模式的可预测性分析[5]等问题中有着十分广泛的应用。

迄今为止,已有数十所大学和研究所各自开发了能够用于求解切线性模式的自动微分系统,比较典型的有TAMC系统[6]、ADJIFOR系统[7]和ODYSSEE系统[8]。在一些特定的运用中,它们都是比较成功的,但在通用性和复杂问题的处理效率上还存在许多不足。通常,自动生成切线性模式的关键难题在于对象自身的强相关性,这给系统全局分析(如数据IO相关分析和数据依赖相关分析)和微分代码的整体优化都带来了很多困难。同时,对于程序对象不可导处的准确识别和微分处理,至今仍还没有一个统一而有效的算法。另外,最优或有效求解稀疏雅可比矩阵一直是衡量一个自动微分系统有效性的重要尺度。

统计准确率被我们视为评价一类自动微分工具及其微分模式代码可靠性与有效性的重要尺度。其基本假设是:如果对于定义域空间内随机抽样获得的至多有限个n维初始场(或网格点),微分模式输出的差分和微分逼近是成功的;那么对于定义域空间内所有可能初始场(或网格点),微分模式输出的差分和微分逼近都是成功的。微分模式统计准确率评价的具体方法是:在所有随机抽样得到的初始场(或网格点)附近,当输入扰动逐渐趋向于机器有效精度所能表示的最小正值时,模式输出的差分和微分之间应该有足够精度有效位数上的逼近。

DFT系统具有许多优点,它能够完全接受用FORTRAN77语言编写的源代码,微分代码结构清晰,其微分处理能力与问题和对象的规模及复杂性无关。它基于YACC实现,具有很强的可扩展性。DFT系统具有四个重要特色。它通过对象全局依赖相关分析,准确求解雅可比矩阵的稀疏结构,自动计算有效初始输入矩阵,从而可以用较小的代价求得整个雅可比矩阵。同时,它可以自动生成客观评价微分模式效率与可靠性的测试程序,对奇异函数做等价微分处理,并采用二元归约的方法,在语句级层次上实现微分代码优化。

2.系统概况

DFT系统主要由两部分组成:微分代码转换和微分代码评价,图2.1。微分代码转换部分接受用户输入指令并自动分析对象模式,生成切线性模式代码及其相关测试代码,后者直接构成微分代码评价系统的主体。微分代码评价是DFT系统的一个重要特色。DFT系统的开发小组认为,一个微分模式如果在可靠性、时间和存储效率上没有得到充分的验证,至少对实际应用而言,它将是毫无意义的。

原模式切线性模式

统计评价结果

图2.1DFT系统结构简图

2.1微分代码转换

DFT系统是基于YACC在UNIX环境下开发的,其结构图2.2所示。通过DFT系统产生的切线性模式代码成对出现,并在语句级程度上做了简化,可读性很强,如图2.4。

切线性模式

评价函数集

图2.2微分代码转换

微分代码转换部分从功能上分为四个部分:词法分析,语义分析,对象复杂性及数据相关分析和微分代码转换。对于一组具有复杂数据相关的程序模式对象,通常需要系统运行两遍才能得到有效而可靠的微分代码。这主要有两方面的考虑:其一,根据对象的复杂性(如最大语句长度、最大变量维数、子过程或函数数目、子过程或函数内最大变量数目等对象特征)选择合适的系统参数以求最优的运行代价;其二,模式内各子过程或函数之间以及一个子过程或函数内往往具有很强的数据相关性,需要事先保存对象的相关信息并且在考虑当前对象的属性之前必须做上下文相关分析。

图2.3PERIGEE源程序代码图2.4DFT系统生成的切线性代码

2.2微分代码评价

通常,评价一个编译系统的性能有很多方面,如处理速度、结果代码可靠性及质量、出错诊断、可扩展和可维护性等。对于一类自动微分系统来说,由于软件开发人力的局限以及对象模式的复杂多样性,通过自动转换得到的微分模式并非常常是有效而可靠的(即无论是在数学意义上还是在程序逻辑上应与期待的理想结果一致),因而在微分模式被投入实际应用前,往往需要投入一定的人力来对其做严格的分析测试。

对切线性模式做统计评价测试的主要内容可以简单叙述为:在网格化的模式定义域空间内,选择所有可能的网格点形成微分模式计算的初始场;在不同的网格点附近,随机选取至少个线性无关的初始扰动,对每个扰动输入分别进行网格点逼近,统计考察模式输出差分和微分在有效位数上的逼近程度。图2.5描述了整个测试过程,它包含网格点数据随机采样(1)和网格点数据逼近(2)两级循环。

图2.5切线性模式代码的测试过程

3.系统主要特色

DFT系统并不是一个完整的FORTRAN编译器,但它几乎可以接受和处理所有FORTRAN77编写的源模式代码,并且可以很方便地扩展并接受FORTRAN90编写的源模式代码。本节将着重介绍DFT系统(版本3.0)的以下几个重要特色。

3.1结构化的微分实现

DFT系统采用标准化的代码实现,切线性模式的扰动变量和基态值变量、微分计算语句和基态值计算语句总是成对出现,并具有清晰的程序结构。微分代码保持了原模式本身的结构和风格(如并行和向量特性、数据精度等),即语句到语句、结构到结构的微分实现。在奇异点或不可导处,DFT系统对微分扰动采取简单的清零处理,实践证明这对抑制扰动计算溢出具有重要意义,但并不影响评价测试结果。

3.2全局数据相关分析

DFT系统具有较强的数据相关分析能力,它包括全局数据IO相关分析、全局数据依赖相关分析、全局过程相关分析以及数据迭代相关分析几个不同方面。数据依赖相关与数据IO相关关系密切,但又存在根本不同。前者强调每个变量在数学关系上的依赖性;而后者描述了一个对象的输入输出特性,且具有相对性,即任何一个变量参数,无论它是独立变量还是依赖变量,在数学意义上都可等价为一个既是输入又是输出的参数来处理。

DFT系统记录所有过程参数的IO属性表,通过深度递归相关计算,准确计算每个过程参数的最终IO属性。DFT系统通过对数据相关矩阵做模二和及自乘迭代计算(An+1=AnAn2)来完成数据的依赖相关分析,这种算法具有很好的对数收敛特性。DFT系统通过全局过程相关分析的结果,自动生成模式的局部或整体相关引用树结构(如图3.1),这对用户分析复杂数值模式和微分评价测试都具有很好的指导作用。DFT系统还具有分析局部数据迭代相关和函数迭代相关的能力,这两种形式的数据迭代相关是自动微分实现颇具挑战的难题之一。

图3.1GPSRayshooting模式的相关树结构片段

3.3自动生成测试程序

基于IO相关分析的结果,DFT系统自动生成微分测试代码,分别对切线性模式的可靠性和运行代价做统计评价测试。特别地,DFT系统还可将任何模式参数都视为输入输出参数,生成在数学意义上等价的测试代码,这样处理的不利之处在于往往需要极高的存储开销。

3.4基于语句级的代码优化

目前,DFT系统仅仅具备局地优化能力。在语句级微分实现上采用二元归约的方法对微分代码进行优化是DFT系统的一个重要特色。根据右端表达式的乘法复杂性及含变元数目的不同,DFT系统采取不同的分解策略。二元归约的方法避免了微分计算中的许多冗余计算,在一些复杂的非线性表达式的微分计算中具有最小的计算代价,同时也非常适合于微分系统的软件实现。同时,对于某些特殊的运算操作(除法、乘方)和特殊函数(如sqrt、exp),DFT系统较好地利用了基态值计算得到的中间结果,避免了微分实现中的冗余计算。

4.系统应用

运用自动微分工具得到的切线性模式,可以在无截断误差意义下求解函数的数值微分和导数、稀疏雅可比矩阵。同时这些结果在数值参数敏感性分析、非线性最优化以及其它数值理论分析中有着非常重要的应用。这里简单介绍切线性模式的几个基本应用。

4.1符号导数和微分

如果输入为数学关系式,DFT系统可以自动生成对应的微分表达式和梯度,而与数学关系式的复杂程度无关。例如我们输入关系式:

,(1)

DFT系统将自动生成其符号微分形式及其梯度形式分别为

,(2)

4.2数值导数和微分

切线性模式最基本的应用就是在一定扰动输入下求解输出变量的扰动(响应)。表4.1给出了DFT系统在对IAP9L模式、GPSRayshooting模式和GPSRaytrace模式三个数值模式做切线性化的具体应用中,一些不同计算粒度、不同引用深度和不同程序风格的核心子过程,以及它们的切线性模式在SGI2000上运行的统计评价测试结果,其中切线性模式的可靠性指标都准确到六个有效数字以上,在运行时间、存储开销和代码复杂性方面分别是原模式的两倍左右,比较接近于理想的微分代价结果(1.5倍)。除了IAP9L模式由于过于复杂仅做粗略统计外,其余模式都用非注释语句行数来表示各自的代码复杂性。

表4.1DFT系统在三个数值模式中的统计评价测试结果

性能指标

对象模式运行时间(10-3秒)存储开销(字节数)代码复杂性

原模式切线性

模式

原模式切线性

模式

原模式切线性

模式

Xyz2g2.5306.1605524110485589

IntCIRA1.5602.750133426614165

Dabel0.0350.072601202749

LSS8.30017.50669133879143

RP42.4085.10360572102238

Vgrad10.1000.21218564368282454

RefGr43.0086.0071865414373083578

LL2JK0.6261.350262252442232

RayFind462.70

×103125.4

×103985618212111179

EPSIMP1.76011.50445589101327

Hlimits0.8301.8802425774842543774

Int3sL26.9051.2082002916394584690

MAKE

NCEP1340392072292514458504584

Curvcent0.0130.038527542754

DYFRM3.800

×1037.250

×1035000*9500*161279

PHYSIC2.750

×1035.385

×10330005000*1399*

(含注释行)2826*

(含注释行)

适当设置输入扰动的初值,运用切线性模式可以简单求解输出变量对输入的偏导数。例如,对于一个含有个输入参数的实型函数

(3)

这里设,。运用DFT系统,可以得到对应的切线性模式

(4)

其中,为切线性模式的扰动输入参数。可以通过以下办法来求得偏导数:

(5)

其中。如果对于某个既是输入参数又是输出参数,可以类似以下过程引用的办法来处理。对于过程引用的情形,例如一个含有个输入参数的子过程

(6)

其中,为输入参数;,为输出参数;,既为输入参数又为输出参数。运用DFT系统,可以得到对应的切线性模式为

(7)

其中,,,分别为切线性模式的微分扰动输入、输出和输入输出参数。可以通过以下输入扰动设置并引用切线性模式(7)来求得偏导数:

a)设置;(,);()可以同时求得()和(),其中。

b)设置();;(,)可以同时求得()和(),其中。

4.3稀疏雅可比矩阵

运用上节讨论的方法来求解稀疏雅可比矩阵,具有极高的计算代价。例如,一个含个独立和个依赖参数的子过程,为求解整个雅可比矩阵就需要反复调用次切线性模式,当相当大时,这对许多实际的数值计算问题是不能接受的。事实上,如果雅可比矩阵的任意两列(行)相互正交,那么可以通过适当设置扰动输入值,这两列(行)的元素就可以通过一次引用切线性模式(伴随模式)完全得到。设和分别为雅可比矩阵的行宽度和列宽度,即各行和各列非零元素数目的最大值,显然有,。这里介绍几种常用的求解方法。

正向积分当时,通常采用切线性模式来计算雅可比矩阵。根据雅可比矩阵的稀疏结构,适当选择右乘初始输入矩阵,可以获得接近的计算时间代价。DFT系统采用一种逐列(行)求解的方法,来有效求解右(左)乘初始输入矩阵。其基本思路是:按照某种列次序考察雅可比矩阵的各列;考察当前列中所有非零元素,并对这些非零元素所在行的行向量做类似模二和累加运算(即将非零元素视为逻辑“1”,零元素视为逻辑“0”),从而得到一个描述当前列与各行存在“某种”相关的标志向量(其元素都是“1”或“0”);依据此标志向量,就很容易得到一个与之正交的列初始向量,其中与当前列序号对应的元素设置为“1”,而与标志向量中非零元素序号对应的元素设置为“0”,与标志向量中非零元素序号对应的元素设置为“-1”,显然,该列初始向量是唯一的,并且对应着当前右乘初始输入矩阵的最后一列;逐一考察已求解得到的列初始向量,如果某列初始向量与当前求解得到的列初始向量按下面定义的乘法(见过程4)正交,那么这两列就可以合并,即将当前列初始向量中非“-1”的元素按照对应关系分别赋值给该初始向量,并从记录中删除当前列初始向量;重复以上过程,继续按照给定列次序考察雅可比矩阵的“下一列”。不难说明,按照不同列次序求解得到的右乘初始输入矩阵可能不同。其中逐列求解右乘初始输入矩阵的过程可以简单叙述为:

1)将右乘初始输入矩阵所有元素的初值均设置为,,。。

2)如果,转6)。否则,如果雅可比矩阵的第列中的所有元素均为,,重复2)的判断。否则转3)。

3)计算标志向量。令,做如下计算:

,;

4)设为的列向量。在上定义乘法,对任意的,我们有:a);b)如果,必有和。然后,做如下计算:

,;

,6);

2);

5)令,并做如下计算:

,;

令,。如果,转6);否则,重复2)的判断。

6)对,,如果,则。取的前列,这样,我们就得到了一个维右乘初始输入矩阵。

这里需要说明的是,运用上面的方法求得的右乘初始输入矩阵不仅与求解雅可比矩阵的列序有关,而且与过程4)中的合并顺序也有关系。至于如何最优求解右乘初始输入矩阵,目前还很难讨论清楚。但是,大量模拟试验结果表明,运用上面自然次序求得的右乘初始输入矩阵宽度已经非常接近于其下界值。

反向积分当和时,通常采用伴随模式来计算雅可比矩阵。根据雅可比矩阵的稀疏结构,适当选择左乘初始输入矩阵,可以获得接近的计算时间代价。其中左乘初始输入矩阵的求解过程完全可以按照上面的方法进行,但是在处理前必须先将雅可比矩阵转置,最后还需将得到的初始输入矩阵转置才能最终得到左乘初始输入矩阵。同时,其行宽度也已经非常接近于其下界值。

混合积分如果将切线性模式和伴随模式相结合,往往可以避免梯度向量运算中的诸多冗余计算。例如,ADJIFOR系统在求解雅可比矩阵时,在语句级微分实现中首先用伴随方法求得所有偏导数,然后做梯度向量积分;其计算时间代价与和模式的语句数目有关,而其存储代价为。具体讨论可参考文献[7]。

5.结论

切线性模式在无截断误差意义上计算函数的方向导数、梯度或雅可比矩阵,以及在模式的可预测性及参数敏感性分析、伴随模式构造等相关问题中有着广泛应用。DFT系统主要用于求解FORTRAN77语言编写的切线性模式,具有很强的全局数据相关分析能力。此外,DFT系统还具有其它几个重要特色,如结构化的微分实现、自动生成微分测试程序以及基于语句级的微分代码优化。本文简单给出了DFT系统在求解数值和符号导数和微分、稀疏雅可比矩阵中的应用。为评价一类自动微分系统,本文初步提出了统计准确率的概念。

参考文献

[1]AndreasGriewank.OnAutomaticDifferentiation.InM.IriandK.Tanabe,editors,MathematicalProgramming:

RecentDevelopmentsandApplications.KluwerAcademicPublishers,1989

[2]LeDimet,F.XandO.Talagrand,Variationalalgorithmsforanalysisandassimilationofmeteorological

observations:theoreticalaspects,Tellus,1986,38A,97-110

[3]P.Werbos,Applicationsofadvancesinnonlinearsensitivityanalysis,InsystemsModeling

andOptimization,NewYork,1982,SpringerVerlag,762-777

[4]ChristianBischof,GordonPusch,andRalfKnoesel."SensitivityAnalysisoftheMM5WeatherModelusing

AutomaticDifferentiation,"ComputersinPhysics,0:605-612,1996

[5]MuMu,etal,Thepredictabilityproblemofweatherandclimateprediction,ProgressinNatureScience,accepted.

[6]GieringR.etal.RecipesforAdjointCodeConstruction.ACMTrans.OnMath.Software.1998,24(4):

437-474.

[7]C.Bischof,A.Carle,P.Khademi,andG.Pusch."AutomaticDifferentiation:ObtainingFastandReliable

Derivatives--Fast"inControlProblemsinIndustry,editedbyI.LasieckaandB.Morton,pages1-16,Birkhauser,

篇(2)

继电器控制,PLC控制,单片机控制,其中PLC检测控制系统应用最为广泛。其具有以下特点:

1.1可靠性PLC不需要大量的活动元件和连线电子元件。它将控制逻辑由传统的继电器硬件运算变为软件运算,使得它的连线大大减少。PLC经过多年的不断发展,具有工业针对性,有很高的抗干扰能力。在各大PLC厂家的不断更新发展下,PLC各模块可靠性已经有很大提高。与此同时,系统的维修简单,维修时间短。PLC进行了一系列可靠性设计,例如:冗余的设计(包括硬件冗余技术和软件冗余技术),断电保护功能(电容电源和UPS的应用使得断电时有充分的处理时间),故障诊断和信息保护及恢复。PLC具有编程简单,操作方便,维修容易等特点,一般不容易发生操作的错误。PLC是为工业生产过程控制而专门设计的控制装置,它具有比PC控制更可靠的硬件和更简单的编程语言。采用了精简的编程语言加上强大的编译诊断功能,编程出错率大大降低。

1.2易操作性对PLC的操作包括程序输入和程序更改的操作。通过专业的编程软件进行编程并进行下载,更改程序的操作也可以直接根据所需要的接点号或地址编号进行搜索或程序寻找,然后进行更改。PLC有多种程序设计语言可供使用。由于梯形图与电气原理图较为接近,容易掌握和理解。PLC具有强大的自诊断功能降低了维修人员维修技能的要求。当系统发生故障时,通过软件和硬件的自诊断,维修人员可以很快找到故障部位进行故障维修和故障排除。

1.3灵活性PLC采用的编程语言有梯形图、功能表图、功能模块和语句描述等编程语言。编程方法的多样性使编程简单、可以使得不同专业的人员都有自己习惯的编程语言。操作灵活方便,监视和控制变量变得十分容易。以上特点使用PLC控制系统具有可靠性高,程序设计方便灵活,运行稳定,扩展性能好,抗干扰能力强等诸多优点今后PLC控制系统还会得到更广泛的使用。

二、PLC控制系统组成

该系统包含完整的PLC系统模块。其中包含电源模块,CPU-315,PLC与电气回路的接口,是通过输入输出部分(I/O)完成的,I/O包含开关量输出(SM321DO),开关量输入(SM321DI),模拟量输入(SM331AI),模拟量输出(SM331AO)等模块。通讯模块PS305。I/O组成:数字量输入模块(DI):包含油箱液位高,油箱液位低,循环泵、主泵运行状态,管路阀门状态等。开关量输出(DO):包含循环泵、主泵启停控制,加热器启停控制,冷却器启停控制。模拟量输入(AI):包含液位,流量,油温,压力等。

三、PLC逻辑控制

启动逻辑:液位正常,油温正常,管路阀门状态正常等。停止逻辑:液位超低,压力超低,流量超低,急停信号等。报警逻辑:液位低,压力低,流量低,油温低,油温高等。

四、HMI设计

上位机与PLC通讯模块通过Profibus总线连接,将各个参数传给上位机通过人机界面Wincc显示,并可以通过上位机人机界面控制液压站的启停。

五、液压站群的控制

当多个液压站需要配合工作时,可以将每一个液压站设置一个ET-200远程I/O站,将采集的参数通过通讯模块传入一个总的PLC站进行集中控制。且可以通过一个HMI就可以监视各个参数和人工参与控制。这样就可以更加集中地控制多个液压站组成的液压站群,是的多个液压站有序有计划的协作运行。

六、液压站稳定性的提高

篇(3)

RFIDIT资产管理系统平台使用的C/B/S的架构方式,来分别满足手持终端、电脑终端、多服务器协同的要求。

1.1系统设计原则根据IT资产RFID标签操作管理流程,RFID系统设计遵循以下原则:(1)通过RFID手持终端设备更新设备现场信息,实现数据信息在ITSM系统、SCCM工具平台及RFID系统等不同系统间的共享与交互,完善设备资产信息,建立高可信度的IT设备台账,提高IT资产数据的准确性和真实性。(2)IT资产变更流转历史数据可追溯。完成设备入库-设备申领-设备调拨出库-设备退库报废一系列IT设备资产全生命周期运转在系统流程内有效实现,建立行而有效的IT设备资产全生命周期管理体系。(3)通过RFID电子化标签进行IT设备日常运维、巡检及资产盘点等常态化工作。(4)实现IT设备资产运行状态监控,预防设备发生严重故障,提高对IT设备资产管理时效性。

1.2系统整体架构RFIDIT资产管理系统从ITSM系统中自动获取设备台帐和设备使用人信息等,利用RFID手持终端到现场进行任务办理,任务完成后,相关功能模块数据结果同步到RFIDIT资产管理平台,经过资产管理人员审核批准后,同步到ITSM系统中。

1.3总体技术路线RFIDIT资产管理系统的功能是通过整合其他两个系统中的数据和服务,共同提供服务。为了更好的实现数据的及时性,避免数据冗余带来的数据不准确,该系统设计使用数据库集群、应用分离的架构设计,如图(2)、图(3):

1.4系统安全设计

1.4.1系统运行平台采用Tomcate平台作为应用系统的平台,Tomcat是一个轻量级应用服务器,在中小型系统和并发访问用户不是很多的场合下被普遍使用,是开发和调试JSP程序的首选。

1.4.2访问权限管理系统分开为三大子系统,即网络服务器、中间件、手持设备,采用统一的用户权限管理,用户需要通过用户名、密码才可以访问系统。为了确保各个组件之间的数据交互的安全,我们在WebService上也进行了用户名和密码的设置,确保数据安全稳定。

1.4.3审计日志在WEB服务器、中间件上,配合每个环节的历史日志,记录了用户的登录、同步、任务获取提交分配等全部行为。

2系统功能包含功能模块

2.1IT资产新增管理模块IT资产新增是从IT资产采购入库到IT设备调配工作环节中采用RFID技术进行实现的功能模块,此功能包含以下模块:(1)IT资产入库初始化:RFIDIT资产管理系统获取ITSM系统中入库设备,作为入库任务,通过RFID手持终端收集设备信息(it设备网卡MAC地址、SN码和RIFD),经系统批准后同步到ITSM系统中。(2)IT设备新增:RFIDIT资产管理系统从ITSM系统数据库获取设备申请单,作为任务到RFID手持终端,由RFID手持终端收集设备信息(it设备网卡MAC地址、SN码和RIFD),设备信息收集完善后可同步到ITSM数据库。

2.2IT资产RFID初始化、盘点、巡检管理模块(1)IT设备RFID初始化:系统同步ITSM系统中的IT资产列表,作为IT设备RFID初始化任务分发到RFID手持终端,通过RFID手持终端绑定设备四项(it资产设备编号、网卡MAC地址、SN码和RIFD)关键信息,经系统绑定后同步到ITSM系统中数据库。(2)IT设备盘点:系统自动获取ITSM系统的IT资产列表,作为盘点任务分发到RFID手持终端,通过RFID手持终端按部门方式对所有IT设备进行逐个盘点,回馈盘点结果到系统中,并同步ITSM系统中。(3)IT设备巡检:系统自动同步ITSM系统的中IT资产列表,作为巡检任务分发到RFID手持终端,通过RFID手持终端按部门方式快速读取设备RFID标签(有效距离内每分钟完成200个IT设备的巡检),并把巡检结果同步到系统中,同时经IT资产管理人员批准后,同步到ITSM系统中。(4)IT设备退库:系统自动同步ITSM系统中的退库申请单,作为退库任务分发到RFID手持终端,按任务要求查询退库设备,退库任务完成后,同步退库结果到ITSM系统中。

2.3IT资产配置监控及报告管理模块IT资产运行状态监控,是通过RFIDIT资产管理系统自动分析和判断IT设备运行状态,包括设备配置变更自动提醒和告警,方便IT资产管理及时定位处理,具体功能如下:(1)IT设备监控:结合RFIDIT资产管理系统完成的数据库信息,通过系统状态监控列表,实时对珠海供电局所有IT设备进行实时的状态监控,监控内容涵盖设备的运行配置信息、配置变更信息、配置变更历史查询和变更处理,同时经过IT资产管理人员确认批准后,可把IT设备配置变更数据同步到ITSM系统中。(2)IT资产报表:系统可按要求自动生成个性化的IT资产报表,管理人员通过IT资产报表窗口,对报表条件进行筛选,系统自动生成相应的IT资产报表,并加以图形界面展示,同时可对自动生成的报表进行导出。

2.4区域内重点资产安全监控管理平台系统对重点数据保护区域和重大IT资产的实时监控,通过图形化的监控画面,资产管理人员可随时获取IT设备所处位置状态,防止设备“非法”移出监控区域,并及时以短信通知相关资产管理人员进行处理。

2.5系统维护管理包括对登录系统和RFID手持终端的用户进行登录名、密码和系统使用权限分配的管理和维护。

篇(4)

1资料与方法

1.1标准

(1)诊断标准:①清洁离心中段尿沉渣白细胞数>10/HP或有尿路感染症状者。②正规清洁中段尿细菌定量培养,菌落数≥105/ml。具备上述两项可以确诊。(2)纳入标准:①病程>2年且反复发作者。②年龄在30~70岁。③长期应用西药抗感染治疗或中西医结合治疗未能根治者。④病程不足2年而清洁中段尿细菌培养长期阳性者。⑤受试者知情,自愿签署知情同意书。(3)排除标准:①对头孢菌素过敏者及有青霉素过敏性休克或即刻反应史者。②处于妊娠期或者哺乳期妇女。③有神经系统疾病或造血系统疾病者。④有心脏、肝及肾功能严重损害者。

1.2分组情况

病例均来自于2012年6月-2014年3月在我院门诊与住院治疗的患者,诊断为难治性泌尿系统感染的患者54例为观察对象。其中男21例,女33例。随机将患者分为治疗组和对照组各27例,两组在性别、体重和年龄上均无显著性差异(P>0.05)。详见表1。

1.3治疗方法

对照组给予盐酸左氧氟沙星氯化钠注射液[规格100ml:盐酸左氧氟沙星0.2g(以左氧氟沙星计)与氯化钠0.9g],500mg/次,静脉滴注,滴注时间不少于60min,1次/d。治疗组给予注射用硫酸奈替米星(2ml:10万U),按患者体重每12h1.5~2mg/kg,稀释后静脉滴注,3周为1个疗程。

1.4评价标准

1.4.1临床疗效评价:根据临床症状、体征、实验室检查进行综合评价,分为痊愈、显效、进步、无效4级。将痊愈和显效合计为总有效,据此计算临床有效率。痊愈为症状、体征、实验室检查及病原菌检査均恢复正常;显效为病情明显好转,但上述4项中有1项尚未完全恢复正常;进步为用药后病情有所好转,但不够明显;无效为用药72h后病情无明显进步或有所加重。

1.4.2细菌学疗效评价:按清除、部分清除、替换、再感染、未清除5级评定。细菌学疗效分析包括各种致病菌感染的有效率、细菌清除率等。

1.4.3药物不良反应评价:试验期间发生的任何不良事件或实验室检查结果的异常,评价其与试验药物间的关系,按肯定有关、很可能有关、可能有关、可能无关、肯定无关5级进行评价,前3者计为药物不良反应。

1.5统计学方法计量资料结果用(x±s)表示,样本自身前后比较采用配对t检验,满足方差齐性检验条件者两样本比较采用t检验。计数资料采用χ2检验。所有统计分析均采用SPSS20.0软件包完成。结果均以P<0.05为具有统计学意义,P<0.01为具有显著性统计学意义。

2结果

2.1疗效评价结果

由表2可以看出,对照组痊愈15例,有效8例,痊愈率55.6%,有效率66.7%;治疗组痊愈20例,有效7例,总有效率92.6%。经Ridit分析,治疗组疗效与对照组疗效具有显著性差异(P<0.05)且治疗组的疗效优于对照组。

2.2细菌学疗效评价

两组共分离出病菌40株,其中对照组分离出19株,治疗组分离出21株。细菌学疗效评价结果显示,对照组的痊愈率为36.8%,有效率为73.7%;治疗组的痊愈率为66.7%,有效率为95.2%,两组在痊愈率和有效率方面比较有显著性差异(P<0.05)。见表3。

2.3安全性评价

本试验对照组和实验组各27例。对照组不良事件发生4例,其中3例可能与药物有关,2例表现为头昏头痛,1例表现为恶心,不良事件发生率为14.8%。治疗组发生不良事件3例,其中2例可能与药物有关,1例表现为恶心,1例表现为腹泻,不良反应发生率为11.1%。两组均未发生严重不良反应,且治疗组不良反应发生率低。

3讨论

奈替米星主要成分为硫酸奈替米星,属于氨基糖苷类抗生素,对铜绿假单胞菌、大肠埃希菌、变形杆菌属(吲哚阳性和阴性)、肠杆菌属、克雷伯菌属、沙雷菌属及枸橼酸杆菌属等所致的尿路生殖系统感染、新生儿脓毒症、呼吸道感染、败血症、胃肠道感染、腹膜炎、胆道感染等有良好的疗效[5]。其不良反应较小,治疗各种难治性感染效果良好。

篇(5)

本文主要介绍如何利用机器视觉方法从CCD图像中提取用于导星的星像及计算星像中心实际位置。第一节介绍自动导星定心系统及通用的自动导星定心算法,第二节介绍自动导星系统星像提取算法及相关参数估计方法。第三节首先介绍利用LM算法非线性最小二乘拟合对星像二维高斯拟合,计算实际星像中心位置,然后使用丽江2.4米望远镜的观测数据对系统进行测试,最后将高斯拟合结果与IRAF软件二维高斯拟合结果相比较。第四节说明了星像偏移量的六常数模型计算方法。

自动导星定心系统及定心算法介绍

自动导星定心系统工作流程如图1左图所示,其软件界面如图1右图所示,系统以Linux(Debian)(1)为平台,利用开源代码库WXWIDGETS(2,3)开发GUI界面、CFITSIO库读写FITS文件(或SBIG相机读写驱动)、使用计算机视觉库OPENCV/LAPACK(4)(5)开发星像识别算法、MATHGL(6)库生成各种图像以及LEVMAR(7)库作最小二乘拟合,算法底层为LAPACK矩阵计算,可以快速完成OPENCV和LEVMAR程序中所需矩阵运算,LAPACK有很强拓展能力,可以实现多线程或者多台计算机的并行计算,大幅提高运算效率。系统现可以从FITS(Pence(8))文件读入数据、系统自动统计完成阈值设定、星像中心计算等。同时提供界面可以监视CCD图像、调试参数及相关结果统计显示。一般的定心算法(10-14)主要有阈值一阶矩质心、平方加权质心、高斯拟合中心(15,16),及(17)PSF相关运算质心算法。若定义图像中坐标(x,y)的修正灰度值为G(x,y),则:一阶矩质心为:如果一阶矩质心与平方加权质心之间各个方向误差随机分布,说明CCD中天光背景均匀,反之需要天光背景补偿。高斯拟合公式:高斯拟合算法的Stone(13,18)简化公式:及高斯公式用于拟合的对数形式:其中B为背景天光值,P为星像最大灰度值,H对应实际星像峰值,R为拟合的高斯分布标准差,测试表明,完整模型比Stone简化模型拟合有更好拟合精度。此外,系统中所用椭圆拟合算法,使用OPENCV库函数效率极高,但返回结果为整型数据,有舍入误差,只能用于确定星像区域,中心位置不可靠。

机器视觉星像搜索算法与参数估计

OPENCV提供了一系列机器视觉处理算法,这些算法基于LAPACK矩阵计算库可以快速高效完成星像轮廓识别。针对CCD图像中星像集中的特点,首先对8位图像中值滤波去除异常噪声,接着对图像域值滤波并二值化,通过设定高于天光背景的域值可以区分星像与背景,然后可用Canny边缘检测得到星像轮廓,最后再用最小二乘法拟合椭圆轮廓,估计星像区域。为简化运算及数据存贮量,使用8位对数化整数数据完成星像识别,再使用32位原数据计算星像中心位置。

1Canny边缘检测、图像滤波与椭圆拟合

Canny边缘检测(19)的算法是集低通滤波与边界检测于一体的算法,其内容如下:第一步:利用高斯算子对图像平滑卷积滤波去除噪声,再计算图像各点的灰度变化梯度,实际OPENCV的Canny算法源程序中直接采用同时有高斯平滑和边缘检测效果的Sobel算子与原图像卷积计算,分别计算X与Y方向一阶图像差分。计算中采用3x3的模板计算。其数值如下:第二步:计算绝对值范数或L2范数作为梯度强度和计算梯度方向。梯度方向arctan(Dy/Dx),其中Dy与Dx是由Sobel算法算得的Y与X方向一阶差分值。

第三步:梯度图像非极大值抑制,将非局部最大梯度值点设为零。第四步:双阈值检测和连接边缘,沿梯度方向将图像中梯度强度大于高阈值的都存为边界点,低于高阈值且高于低阈值的梯度强度保留,再利用连通性筛选保留的梯度坐标,将与大于高阈值边界点连通的梯度强度保留,其余无效区域设为零。对图像的滤波包括中值滤波去除异常数据点,但滤波仅对提取轮廓的8位数据进行,对用于拟合及定心计算的32位数据不进行滤波。图像Canny提取轮廓图像前利用天光背景估计值作为阈值将图像二值化,可以大幅降低Canny算法对梯度强度阈值的敏感性,程序中使用(50,125)的阈值对可以获得比较好的效果。Fig.2Theoutlineofstarsimagesextractedwiththreshold154,160andtheellipseimagesfittedwiththreshold155然后利用轮廓提取函数可以获得相互隔离又独立连通的轮廓,最后使用最小二乘法拟合椭圆轮廓,获得星像区域。图2中测试文件为丽江2.4米望远镜观测数据,视场10′x10′,曝光时间30秒,JR滤波片,范绪亮同学提供。

2图像灰度值直方统计与CCD图像天光背景估计

天光背景值在高斯拟合中具有很大影响,CCD图像像素直方图统计与实验表明,直方图中峰值对应灰度值为众数,可以作为天光背景值。通常可以将8位对数化灰度直方统计峰值对应灰度值加2以上值判为有效星光灰度值。

程序中考虑到众数附近的灰度值分布比较稠密,因此,在图像的不同区域叠加后只有分布在众数附近的灰度值才有可能在同子位置的值非常相近。程序首先将原数据做3x3小邻域的均值滤波,获得每个点邻域内的均值作为该点的新灰度,并将滤波结果图像边缘近1/10CCD尺寸的区域屏蔽,接着将有效区域分为11x11不重叠的子区域,然后对相邻子区域的灰度值对应相减取绝对值,再与其他相邻子区域计算结果重叠相加,接着求取最小值所在位置作为天光背景的众数所在位置,最后将各个子区域此对应位置的灰度值相加取平均,作为天光背景值的众数估计,同时也是天光背景值估计。同理地利用均值滤波对3x3邻域标准差计算得到标准差,再求得区域叠加的最小位置,求得天光背景标准差σ(众数)估计,当然算法对星像过度稠密及天光背景不均匀的图像可能会有估计不准的问题,算法目前还未对各星像分别计算天光背景值。为了在椭圆轮廓内限制有效区域,选择灰度值接近1/5峰值处为边界,对应于IRAF中测光孔径值,可以减小天光背景的影响,获得较好的拟合结果。

高斯函数拟合算法

正常星像受大气影响,图像灰度分布近似于二维高斯分布,且在各个方向应当有相同的标准差。系统采用非线性函数最小二乘拟合的方法,将参数估计问题转化为最小化目标函数问题,得到独立噪声干扰下中心位置和标准差的最大似然估计。利用Levenberg–Marquardt优化算法(9,20)拟合星像,该算法以均方误差为目标函数,兼有梯度下降和牛顿-高斯方法的下降的速度,不直接求取复杂Hessian矩阵,用Jacobi行列式估计拟Hessian矩阵,程序中采用LEVMAR开源代码作高斯最小二乘拟合。

为避免复杂的梯度函数,采用对数化数据拟合,全高斯公式Jacobi行列式为:其中计算时P的初始值为星像峰值减天光背景值(+3σ),(x,y)为图像中星像峰值坐标,为防止局部陷入给一定的初始偏差,测试表明算法有很好的收敛性。图4是高斯拟合结果与原数据比较,底部为残差密度图。下图是对丽江2.4米望远镜YFOSC观测数据高斯拟合星像位置与IRAF软件高斯拟合结果比较,其最大误差不超过0.08Pixel。拟合得到高斯分布标准差为2.5,与当时记录的视宁度为1.7角秒相符。

星像偏移量计算

自动导星算法对同一天区、相邻曝光时间的两幅图像分别计算星像中心位置,并对相对应的星像计算位置偏移量,作为自动导星的误差信号。一般认为由于相邻CCD图像间可能存在平移、旋转和缩放影响,可以用Stone(12,21,22)的算法,以六常数线性变换方程表示星像位置变换关系,如下,实际中i标识的数据量远多于变换系数个数6。以下是对同一目标的观测结果分析,其中:编号97图像:拍摄时间:2011-10-08T15:02:42.859,曝光时间30s。编号102图像:拍摄时间:2011-10-08T15:07:20.998,曝光时间50s。编号105图像:拍摄时间:2011-10-08T15:10:34.361,曝光时间50s。解六常数模型得:图6为六常数模型拟合的残差,其标准化残差都小于0.06pixel,对其残差进行Kolmogorov-Smirnov正态性检验,得到残差数据都服从0.05显著性水平的正态分布。可以认为六常数拟合已得到比较优化的结果。

总结

篇(6)

1开放性

开放性是实现系统和谐有序的前提。系统只有开放,才有可能从外界环境不断地引入负熵流,把自身的熵排入到外界中,从而实现系统的有序,推动系统发展。系统的孤立或封闭只能导致系统的死亡或使系统处于紊乱无序状态。

循环经济是由环境和经济系统构成的开放、动态的系统,正是因为系统的开放,从而使得循环经济系统异常活跃,并能对相关环境做出积极反应。传统经济所形成的则是一个孤立的、封闭的系统。在传统经济系统中的物质和能量转化是以资源的使用为开端,经过能量的转化,除了被系统吸收的能量之外,其余的能量则被排出系统之外,不再参与物质的循环,整个过程是一次性的。这意味着传统经济的整个经济活动只能朝一个直线向上的平衡方向发展,一旦平衡达到,过程结束了,整个系统也就瓦解了,在此过程中,能量的输入和输出互不相干,输出对输入没有形成反馈。因此,传统经济往往会因为资源的短缺而危及到物质基础,使经济活动难以为继。而循环经济则不同,循环经济系统不断从外界输入能量补充内部消耗,经过能量的转化,其中一部分能量在系统内部被吸收,还有的能量和物质被损耗,另外一些能量和物质则被反馈到输入过程,与外界的物质和能量相结合,形成一个物质和能量不断转化的循环回路。因此,循环经济的内部物质和能量的转化可以持续不断地进行,这个过程是不可逆的,也是系统走上有序的基本途径。社会经济运行具有生产者、消费者和分解者的三大功能,实施循环经济战略从本质上要求恢复和重建“自然一经济一社会”的合理规则和运行路线,它以绿色技术为支撑,在企业内部、企业之间和企业与环境之间通过建立稳定、健康的物质流、能量流和信息流,实现了经济效益、生态效益和社会效益的“三赢”。循环经济的运行方式通过完整的物流分析,不仅延长了线性经济,而且实现了闭合循环,在“资源利用—绿色工业—资源再生”各个环节实施了“减量化”、“再利用”和“资源化”原则,真正体现了可持续发展的经济涵义。循环经济系统所表现出的结构与功能以及相应的生态、反馈、抗逆、共建共享,形成了一个有序的、具有自组织功效、有较强抗干扰能力和取得物质、能量损耗最小而系统内部寻求优化的整体运行模式。

2动态性

复杂性系统总是在不断变化的,动态演化性是产生系统复杂性的主要原因之一。复杂系统总是从一种状态变化到另一种状态,其中稳定与平衡是运动的一种趋势,而波动、不平衡、矛盾等才是运动的常态,系统在矛盾运动中表现出十分复杂的现象。复杂系统运行的有序化取决于系统内部相关因素的相互作用能否形成动态演化态势。动态演化态势的形成和发展与复杂系统运行有着内在的必然联系。复杂系统是动态的,处于不断的演化过程中,总趋向于进化。随着时间发展,其结构、功能、行为不断变化,总的趋向是通过自适应、自组织作用向更高级的有序化演化,具有自适应和进化能力。循环经济系统同样也要遵循这一系统动态演化规律。

循环经济系统是由多种元素构成的复杂系统,它以生态学、经济学、管理学等学科为基础,以绿色技术为技术载体,目的是实现人、生态和经济的协调发展。因此,循环经济系统的正常运转不仅要受到系统内部各种因素的影响,同时也会受到外部条件的制约。随着科学探索的不断深入和技术的向前发展,循环经济也必然不断丰富自身的内容,它的发展也会更科学,更符合社会发展的要求。事实上,循环经济本身就是在可持续发展思想的提出和绿色技术日臻完善的条件下产生和发展起来的,它的形成就是经济活动与科学技术、社会发展战略相互作用的结果。目前,循环经济正处在一个市场需求多样化,技术快速发展的动态环境中,它与环境的交流越来越频繁。循环经济只有不断从外部环境中吸收新的能量,接受新的信息,才能增强它的生命力,更好地实现它的目标。发展循环经济就必须遵循动态性的原则,关注前沿科学,引进生态技术。资源利用率的提高,资源综合利用的实现,都需要以科学和技术的进步为依托,不吸收先进的科技成果,循环经济的发展就无法适应社会的要求和时代的潮流。

3多层次性

系统是由相互联系的部分组成,系统的整体性的维持和发展,有赖于一个连续的等级结构,即层次性。系统的层次性主要是指任何复杂系统都可以从纵向上可以分为若干等级,其中低一级系统就是高一级系统的若干组成部分,不同的层次之间存在隶属关系。系统层次性是系统在进化过程中形成的,系统的层次与层次之间具有不可分割的相互联系和作用,系统的层次性突出了部分与整体之间的质的差异,强调高层次向低层次的不可还原性。

循环经济有着不同的等级及层次结构。

首先,循环经济中物质循环的场所具有层次性。这可以从三个层面来说明:①企业层面。即物质资源在企业内部的循环,也叫基础循环。企业推行清洁生产,选择清洁生产工艺,建立生产全过程的环境管理系统,减少产品和服务中物料和能源的消耗量,实现最终排放废物减量化、资源化、无害化。企业生产过程产生的废弃物、污染物经本企业自身的物理化学处理,使之成为再生资源,实现低排放或零排放,建立生产者责任延伸制度,促进产品生态设计。②区域层面。即物质资源在产业部门之间的循环,也叫中观循环。这个层次的资源流动既可以在同产业部门间实现,也可以跨产业进行。若干互相关联的企业建立共生的工业园区,甲企业的废弃物、污染物由乙企业处理利用,乙企业的废弃物、污染物由丙企业处理利用,从而形成较大的链式循环。区域内企业或行业间建立生态产业群落,上游企业的副产品或废弃物用做下游企业的原料,形成企业间的工业代谢和共生关系,在生态工业、生态农业、生态化的服务业内实现废弃物资源化。③社会层面。即在全社会的生产、流通、消费之间建立的循环,也称宏观循环。以生产链为纽带,统筹规划工业与农业、生产与消费、城市与农村的发展,大力发展资源循环利用产业,实行可持续生产和消费,逐步建成资源节约型和环境友好型社会。在社会层面上就要建立相关的政策体系,倡导绿色消费,建立绿色政府、绿色办公、绿色采购,建立节约型的社会,包括节水、节能等。

其次,循环经济中物质循环的反馈过程具有多层次性。在物质和能量的转化过程中,输入和输出相互作用,形成多层次、多步骤的循环过程。其中,在每一次输出进入新的循环成为输入部分时,又会形成新的步骤和层次。如农场为酒厂提供酿酒的原材料——稻谷,稻壳作为酒厂的废弃物输出,又成为生态农药厂发酵提取菌种的原材料,每次的输出对输入都是一个质能的反馈。输入和输出的循环就构成循环经济复杂的网络和层次,这也是循环经济多层性的一个显著特征。

4非线性

非线性是指变量与变量之间没有正比例那样的直线关系,在非线性系统中,凡是非线性都可以找到一条直线和它至少有两个以上的交点,这就引起多值性,叠加原理失效,不具有加和性和可分性。在非线性系统中,系统一个变量的微小变化,可能导致系统其他变量产生不成比例的甚至灾难性的变化,从而导致“蝴蝶效应”。

循环经济是国际社会推进可持续发展战略的优选模式之一。它是以物质流动为特征的一种生态经济,它与传统的资源消费、产品生产、废物排放这么一个单向线性流动经济不同,它是一种再生的资源、一种流动的资源,是物质和能量在整个经济活动中得到合理的利用,最大限度地提高资源配置的效益,实现经济生态化转向。它强调以循环生产模式替代线性生产模式,表现为“资源——产品——再生资源”这一最有效利用资源和保护环境的路线,体现在循环经济的构成是多层次的技术、知识、管理的长期积累,显示出与外界环境相联系的多层次、多目标的开放性和彼此间的耦合特征。循环经济将传统的线性、开放式的经济系统转变为非线性的经济系统,逐步实现很小的排放性和环境友好性,使市场生产的产品能够持久的使用,并延长使用的寿命。

根据非线性系统的特征,循环经济系统涉及无数的因素(或变量),这些因素(或变量)又构成错综复杂的相互联系,在这些因素、关系之间很难区分谁主谁次、谁重谁轻,它们之间的机制不是简单的径直的因果规定,而是复杂的交互作用、双向甚至多向的构建方式。一旦其中的某个要素受到干扰,都会反馈到系统的整体功能上,影响到系统的稳定性。因此,不能从循环经济局部的个别目标去判断它的发展方向,也不能仅仅通过子系统的功能来确定它的整体功能。如在循环经济系统中,采用清洁技术可以减少或者避免污染的产生。资源的再利用环节则形成了物质的循环,如果在生产中运用了清洁技术,但产生的废弃物却没有进行再利用,而是直接排出系统外,这样就不能称这次经济活动为循环经济,因为它没有履行其中一个环节的功能,从而无法实现循环经济的整体功能。因此,在发展循环经济时,要把握系统的整体性,从系统的各个方面进行合理规划,让每个环节都充分实现各自功能,保证循环经济系统各要素的相互衔接,实现整体功能的最优化,达成系统的目标。

5自组织性

自组织是开放系统在大量子系统合作下出现的宏观的新结构。系统随着时间而变化,经过系统内部和系统与环境的相互作用,不断适应、调节,通过自组织作用,经过不同阶段和不同的过程,向更高级的有序化发展,涌现出独特的整体行为与特征,具有自适应、自组织的趋向有序化功能。维纳提出的控制论,阐述了以正反馈和负反馈为基础的“自组织”科学概念。

篇(7)

从2007年美国次贷危机引爆以后,美国资产价值泡沫连续消散,不少手持次级房贷的银行和涉及金融机构都陆续破产,金融商品危险和流走性缺失进一步扩展,导致产生世界重要金融市场剧烈的波动。房价一落千丈、房地产业不停走低、抛售银行股、银行提挤状况十分严重,使几个月下来华尔街五大投行三家关门两家改革,次贷危机自然成为金融危机。这次金融危机危害性已伸展至全球,且不停、严重地侵蚀实体经济,金融学者常对此类事件都称作经济危机。

2美国金融管理系统归纳和教训

2.1美国金融管理系统总体态势

国家金融竞争力主要组成要件是金融管理系统,领先于其他国家和地区的美国金融业从侧面体现它管理系统已经适应市场发展并占有优势。据实证调查,美国金融管理系统是典型分权型多头管理模式,被称作伞式管理+功能管理体制,是功能管理和机构管理综合体。在这样管理系统里存在各种各样的类型、层次的金融管理机构,美国执行在分业管理与统一管理间的一种金融管理模式。其中,金融持股公司采取伞式管理规定,作为伞式管理人的美联储负责公司综合管理;且金融持股公司又按所营运业务类别来接纳各种行业管理人的督导。伞式管理人和功能管理人联合促进美国金融业发展。

2.2美国金融管理系统存在不足

2.2.1“双重多头”管理系统易发生监管重叠与真空

出于管理机构繁多而对某一行为具管理权力产生的现象就是管理重叠。管理过程中它的最大缺陷在于出现管理多余内耗和资源浪费,正常可采取合理的权力区分方法处理。而全部管理机构职权都不涉及某些金融风险是管理真空。美国金融管理系统中还没有统一法定最高管理机构,在相同分业管理模式、金融混业经营环境下,“各管其一”的机构设置容易使各管理部门发生对某些金融市场状态特别是部分金融衍生商品管理出现漏洞。所以,从根本上与此相同的全面管理“双重多头”的机构设置是存在管理重复和漏洞的。

2.2.2金融管理制度发展滞后于金融创新发展

金融管理体制发展给出新规定是金融业全面发展和金融产品创新脚步迅速。在逐渐激烈市场竞争环境中、金融风险无法完全管控状况下,可惜美国金融管理体制未适时地进行改革,金融机构持续拓展市场和展开创新业务反而成为危机形式的累积。在风险扩展进程中,美国分散管理体制决定机构并没有进行负责,实际管理系统与各类金融市场之间的密切发展态势并不吻合,进而面对市场不断变化和发展,管理者没得到有关法规明确授权,使本来具有优势的分散管理体制反而变成致命弱点。

2.2.3次贷源头贷款缺乏监督,管理机构职责未履行到位

特殊客户层在接受发放次级贷款时,没有抵押资产、连带保障,管理部门就事后向贷款机构财务情况实行评判,事前管理没有履行相对应责任。出于此类贷款机构可积极介入资产证券化过程,所以,财务状况无法及时体现贷款效益,因而,管理当局只在最后资金链破坏时才认识到是存在风险的。

2.2.4缺乏对信用评级机构管理

次贷产品属于结构复杂性融资商品,投资者不太清楚估价内在价值与险情。所以,信用评级便成为投资者决策重要的唯一凭据。不过,信用评级制度被美国政府及管理部门归于联邦证券管理法律系统以后,还未成立针对信用评级机构自身的管理与问责体制。正是因为缺乏对信用评级机构管理和权重责轻制度错位,引起了信用评级业道德风险,为危机广泛延伸和爆发埋下隐患。

3借鉴美国经验深入分析我国金融管理系统

作为一名大学生应借鉴美国经验对我国金融管理系统进行深入探讨和分析。通过对相关资料的考证,我国金融业于上世纪90年代真正兴起并发展,我国通过金融改革实行严格分业经营和管理制度。金融管理系统由中国人民银行、银监会、证监会、保监会四个并不互管的行政和事业机构组成,还设置除这四部门外的财政部等多部委领导参与的金融管理联席会议。据有关资料及学习研究,多头监管、自律组织弱化、法律配套措施不足、执法力度不够等仍是目前我国金融管理存在缺陷,特别是多头管理监管权力分散,不利于管理实施且有悖效益原则。