期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 数学论文

数学论文精品(七篇)

时间:2023-03-25 10:52:28

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇数学论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

数学论文

篇(1)

论文当中的参考文献是有国家统一写作规范标准的,本文将针对数学思想数学论文参考文献的写作标准格式做范例,帮助大家在论文的参考文献撰写的过程当中阅读和借鉴,同时也能更好的掌握和理解。

数学思想数学论文参考文献:

[1]范璐璐.解析数学思想、数学活动与小学数学教学[J].中国教育学刊,2014,(06).

[2]姜嫦君,刘静霞.小学数学教学中数学思想方法的渗透[J].延边教育学院学报,2010,(02).

[3]邹益群.试论数学思想、数学活动与小学数学教学[J].才智,2015,(15).

[4]俞元苗.论数学思想、数学活动与小学数学教学[J].才智,2013,(36):104-104.

[5]范璐璐.解析数学思想、数学活动与小学数学教学[J].才智,2014,(6):47-47.

[6]曾国栋.数学思想、数学活动与小学数学教学[J].现代教育科学(普教研究),2014,(6):154-154,116.

[7]邹益群.试论数学思想、数学活动与小学数学教学[J].才智,2015,(15):169-169.

数学思想数学论文参考文献:

[1]于芳.小学数学课堂教学的现实性研究[D].湖南师范大学,2012.

[2]朱黎生.指向理解的小学“数与运算”内容的教材编写策略研究[D].西南大学,2013.

[3]刘勋达.小学数学模型思想及培养策略研究[D].华中师范大学,2013.

[4]张桂芳.小学数学解决问题方法多样化的研究[D].西南大学,2013.

[5]俞祥龙.分类思想在中职数学中的渗透[J].数学学习与研究,2015(13):16-17.

[6]李祎.高水平数学教学到底该教什么[J].数学教育学报,2014(6).

[7]雷会荣.浅谈数学思想在极限教学中的渗透[J].教育探索,2011(12):58-59.

数学思想数学论文参考文献:

[1]林雪.关于转化思想方法在高中数学解题中的应用探讨[J].中国校外教育,2016,23(13)

[2]韩云霞,马旭.浅谈函数思想在高中数学解题中的应用[J].宁夏师范学院学报,2016,22(3)

[3]常海波.关于数学思想方法在高中数学解题中应用的探讨[J].数理化学习(高三版),2014,17(12)

篇(2)

同时它又是启发学生思维,引起学习兴趣的主要手段。学生在操作实验的过程中,需要用眼、耳、手等多种器官,可以变抽象为具体,降低思维难度。如一年级在教学“9加几进位加法”时,学生要理解和掌握“凑十法”,这要在数的分解和组成上进行,例如,教学9+3=?可以先让学生在左边摆出9根红色的小棒,在右边摆出3根绿色的小棒,然后教师启发:“9+几得10?”学生答后教师指出:把3分成1和2。于是把右边的一根绿小棒放到左边,这样就和9根小棒凑成10。再想10和剩下的2加起来得多少。又如在教学“三角形的面积公式推导”时,让学生自己动手,用剪刀把准备的三角形剪、补、拼,转化成学过的图形,找出三角形与其他图形的关系,从不同角度推导出三角形的面积公式。学生参与整个过程,不但加深印象,明其道理,还增强了学习的自主精神。

二、课堂游戏鉴于儿童在课堂上容易疲劳

注意力易分散的特点。在巩固运用知识的教学过程中,可以适当设计一些形式新颖,灵活多样,喜闻乐见的游戏。如一年级在教学“10以内数的认识”时,可采取“拍手凑数”“对口令”“开火车”“找朋友”“开设数学医院”等游戏。像在教学“同样多”时,可让学生扮作小白兔,做小白兔找萝卜的游戏,在戏耍过程中感知,掌握同样多,多些少些的具体内涵。又如运用乘法分配律做简算,教师先出示一个例子23×87+23×13问:“从乘法意义上看,式子中的两个积表示什么?”合起来是几个23连加?然后教师指出:这样我们便找到了简便运算的好朋友。最后,教师可让学生利用上面知识做找简便计算的好朋友的游戏。游戏规则:让学生两人一组互相出题,合起来能简算。这种寓知识于游戏中,寓教于乐的方法生动、形象,可让学生在欢笑中学习掌握知识。

三、精心设疑疑问是思维的源泉

篇(3)

论文关键词:先“丢”后“拾”,皆为顺应学情

 

2011年5月26日、27日,我有幸参加了盐城市教科院举办的“关注常态课堂,聚焦有效教学”观摩研讨活动。在教学“圆的面积”一课时,执教老师都能启发学生运用数方格方法得到圆面积的多少,并且不约而同地要求学生填好书上表格,以期发现圆的面积与它半径的关系。

作为听课者,我当时头脑中不自觉地冒出如下疑惑:上面教学旨在激活学生已有经验,数出圆的面积。表格中却给出“正方形的面积”,甚至最后一栏还要算出“圆的面积大约是正方形面积的几倍”,是先知的老师强拉着学生“鼻子”走,还是学生内在探究要求?

二、我的尝试

师:(呈现3个大小不同的圆)哪个圆的面积最大?哪个圆的面积最小?

学生轻松回答。

小结:圆的大小就是圆的面积(板书课题)。

师:(手指第一个圆)这个圆的面积有多大?

学生面露困难色。

师:我们上学期怎样研究自己手掌面积的?

有相当部分学生争着说:数方格论文怎么写。

生1:(似有所悟)也可以用数方格的方法知道圆的大小。

教师顺势在圆上蒙上方格透明膜,并说明每小格表示1平方厘米。

学生用数方格的方法得出圆面积大小。

师:对用数方格方法研究圆面积的大小,你有什么看法?

生2:可以数出圆面积的大约数据。

师:(追问)怎么是大约的数据呢?

生2:(急切地)整格很准确,把不满一格当成半格就不够精确。

师:那么,我们怎样才能准确算出圆的面积有多大?

(接下来,教师激活平行四边形、三角形、梯形等图形面积公式推导经验,启发引导学生把圆剪拼成长方形,进而推导出圆面积的计算公式。)

三、我的追问

上面的尝试实践,我感觉教学过程顺畅了许多。从小学生认知特点来看,运用学生已有的数方格经验得出圆的面积小学数学论文,进而反思结果不够精确,产生研究圆面积计算公式的需要,符合学生的现有水平和学习的内在要求。但我心中的“结”并没有解开,教材例题中“圆的面积大约是正方形面积的几倍”真的毫无价值吗?

四、且行且思

【练习环节】:

出示课本“练一练”:

学生尝试解决后汇报做法和结果。

教师小结:知道圆的半径,直接用公式计算;知道圆的直径,先求出圆的半径,再用公式计算。

师:(追问)如果知道圆的周长,你又会怎样求出圆的面积呢?

生3:也是先求出圆的半径,再用公式计算圆的面积。

再示例9:

教师引导学生文图对照理解题意,解决问题。

又示:

左图中,正方形的面积是4平方厘米小学数学论文,

求圆的面积有多大?

多数学生根据“正方形的面积是4平方厘米”,推想:边长×边长=4(平方厘米),边长是2厘米,圆的半径也是2厘米,圆的面积为22×3.14=12.56(平方厘米)。

改上题为:

左图中,正方形的面积是5平方厘米,

求圆的面积有多大?

学生读题,思考,教室里一片安静论文怎么写。

师:(富有挑战地)不就是把上题的“4”改成“5”嘛,怎么不好做呢?

生4:边长×边长=4(平方厘米),边长是2厘米,圆的半径也是2厘米;现在边长×边长=5(平方厘米),边长是几没法知道,也就是圆的半径不能知道,怎么求圆的面积?

(其他学生点头称是)

师:(反问)要求圆的面积一定要知道圆的半径吗?

(经过一段思考)

生5:这题可以这样做:5×3.14=15.7(平方厘米)

师:(假装)我没搞明白小学数学论文,你们清楚他的做法吗?

生5:(急切地)知道圆的半径,也要先算出它的平方,再乘3.14,求出圆的面积;现在知道“正方形的面积是5平方厘米”,也就是半径的平方为5平方厘米,直接乘3.14,就是要求的圆面积了。

(从学生表情看,我知道大部分学生已经搞懂了,还有少部分同学似懂非懂。于是,我继续引导学生反思S=πr2 , r2 在图中指什么?S在图中指什么?这里,圆的面积和正方形面积有着怎样关系?帮助学生深刻理解本题做法的道理。)

五、我的收获

教材是教师教学的蓝本。在实施教学时,我们尊重教材无可厚非,但更该顺应学生认知规律,因为教学的终结目标是促进人的发展。以人为本,是教学的第一要义。“圆的面积”教学中小学数学论文,我用学习者的眼光审视教材,丢掉“圆的面积大约是正方形面积的几倍”的探索,直接由数方格结果的不精确,引入圆面积计算公式的研究,顺乎自然。练习环节,学生思维定势于求圆的面积必须知道圆的半径,我毅然拾起丢掉的“宝贝”,反思圆的面积计算公式,结合图示让学生明白:这里,圆的面积是正方形面积的π倍,从而知道用正方形的面积乘3.14就可以求出圆的面积,训练了学生思维的灵活性。

篇(4)

1.试论如何做好高职数学与本科数学教学的衔接

2.数学建模教学是应用型本科数学人才培养的有效途径

3.将数学建模思想融入应用型本科数学教学初探

4.应用型本科数学实验课程改革的探讨

5.以数学建模为突破口,促进应用型本科数学课程改革 

6.浅谈国内外本科数学公共基础课的实践教学

7.独立学院工科类本科数学教学浅谈

8.应对基础教育课程改革的新疆高师本科数学专业课程设置策略

9.本科数学专业常微分方程教学改革与实践 

10.基于大众数学理念的中职起点本科数学改革

11.应用型本科数学教师教学素养的培养与思考  

12.应用型本科大学数学课程的教学定位分析 

13.河南高师本科数学专业学生就业形势及对策

14.应用型本科数学类专业职业技能培养研究  

15.新课标体系下高师本科数学分析教学所面临的问题和所采取的措施

16.应用型本科高校数学与应用数学专业建设的探索与实践 

17.工程教育模式下本科数学教学评价的探索 

18.应用型本科人才的数学素质和创新意识教育的研究与实践

19.基于高中课改形势下的地方本科院校高等数学教学改革 

20.将数学建模思想融入大学本科数学基础课程

21.本科数学教学与强化素质教育研究  

22.“问题驱动法”在新建应用型本科数学教学中的应用 

23.对本科数学教学改革的思考与对策 

24.应用型本科工科数学的现状与教学改革探析 

25.应用型本科大学数学课程的教学定位分析

26.以就业为导向的数学本科专业学生创新能力的培养

27.浅谈工科本科数学教育改革 

28.独立学院实现应用型本科数学教学的研究

29.新建地方院校金融数学专业本科人才培养探讨

30.对地方本科院校数学专业应用型人才培养的探索与实践

31.普通本科院校文科数学素质教育的对策探究 

32.新建本科院校本科《高等数学》学习状况调查报告

33.“以学生为中心”的本科数学教学范式研究

34.应用型本科高等数学教学改革的研究

35.新建本科院校特色专业建设与改革探索——以凯里学院数学与应用数学省级特色专业为例

36.应用型本科大学数学课程考试模式研究

37.民办应用型本科数学课程改革初探

38.应用型本科数学基础课程群建设的探讨

39.应用本科院校高等数学走班制分层次教学探究——以河南科技学院为例

40.本科数学教学应提倡“研究性学习” 

41.民办本科《数学分析》课程的实践与认识 

42.构建高师小学教育本科专业数学类课程的若干思考 

43.高校应用型本科数学建模队员培训与选拔方式的探析

44.应用教学型本科数学实践课程教学模式探讨 

45.新升本科数学专业(师范)课程设置的特点与启示 

46.新建本科院校文科数学教育的问题与对策研究 

47.工科类本科数学基础课程教学基本要求 

48.高师本科数学分析教学改革的研究与实践

49.应用型本科高校金融数学专业建设的思考 

50.本科数学专业常微分方程教学改革的探讨  

51.本科数学专业高等代数课程教学改革初探——“推拉”教学法的尝试

52.应用型本科院校数学建模教学与创新

53.应用型本科院校数学教学改革 

54.大学本科数学教学应重视的几个问题 

55.论本科小学数学教师教育课程的整合 

56.地方本科院校公共数学类课程的教学改革与实践 

57.应用型计算机本科中离散数学课程目标定位与课程改革的探讨 

58.应用型本科院校数学与应用数学专业定位与课程设置研究 

59.数学建模在应用型本科人才培养中的实践与探索

60.应用型本科高等数学教学与“CDIO”教学改革初探 

61.应用型本科院校高等数学教学存在的问题与改革策略 

62.新建本科院校计算机专业离散数学教学研究 

63.本科层次小学教育专业数学课程设置的本源性分析 

64.农林本科数学教育的现状与存在问题分析 

65.提高一般本科院校学生学习数学积极性初探 

66.数学建模思想融入应用型本科院校高等数学课程教学的途径

67.应用型本科高等数学课程教学改革的探究  

68.山东省高师专科升本科《数学分析》试题的研讨 

69.一般本科院校《大学数学》教学现状分析与改革思路研讨

70.关于提高数学类专业本科毕业设计质量的研究

71.西藏高校数学类本科专业设置及课程体系建设研究——以西藏大学为例 

72.整合数学类课程,提高小学教育专业本科学生的数学素养

73.理工科院校数学本科专业学生就业初探 

74.应用型本科院校高等数学课程现状与对策 

75.工程应用型本科类高校数学通识课现状分析及其改革途径探讨

76.应用型本科院校大学数学教学改革的探索 

77.新建本科高校数学教学改革的探索与实践 

78.地方本科院校扩大数学建模竞赛受益面的探索 

79.新升本科院校数学分析教学的几点思考  

80.本科院校数学实验室管理研究  

81.大学本科经济数学教学现状及相关思考  

82.应用型本科院校高等数学课程的教学改革 

83.应用技术型本科院校高等数学教材的建设模式研究与实践 

84.工程数学教学如何适应技术应用型本科教育  

85.新建本科院校安全工程专业数学课程教学改革探讨 

86.关于国外高校经济学本科数学基础课程设置的探讨 

87.四年制高职本科高等数学课程体系的研究

88.概率统计在数学建模中的应用——以2012年全国大学生数学建模竞赛(本科组)A题为例 

89.高等数学思想在本科毕业设计中的运用研究 

90.应用型本科数学实验课程教学改革探索

91.新建本科院校考研数学的现状与策略研究 

92.应用型本科院校高等数学教学若干问题的思考

93.数学史:探求真理的“心”路历程——大学本科数学史教材改革初探 

94.地方本科院校数学与应用数学专业课程群建设的理论与实践  

95.应用型本科院校高等数学教学改革研究

96.“产学研”合作视域下高校实践教学体系的构建——以宿州学院数学类本科专业为例 

97.与时俱进构建人才培养新模式——东华理工学院《数学与应用数学专业本科人才培养计划(06版)》解读 

98.地方一般本科院校数学建模活动推广模式探讨 

99.本科小学教育专业学生数学素养的培养研究 

100.新建本科院校数学与应用数学专业实践教学体系探索 

101.应用型本科高校大学数学分层次教学改革探讨 

102.基于职业创新能力培养的数学课程构建——以高职本科分段铁道供电专业为例 

103.大学本科数学考试模式改革探索与思考  

104.浅论下轮工科本科数学教材编写的原则 

105.应用型本科院校中高等数学教学体会  

106.应用型本科数学建模课程教学改革探索 

107.应用型本科高校高等数学课程优化教学新探 

108.应用型本科院校数学课程教学改革与建设探索——以银川能源学院为例 

109.高等本科院校学生数学建模能力的调查与分析

110.本科院校工科高等数学软件实验的改革 

111.河南省高师数学本科专业学生就业探微

112.新建本科院校高等数学课程中实施分层教学的探索——以安阳师范学院为例

113.民族地区新升本科院校高等数学分层教学模式研究

篇(5)

新课程中要求培养发展学生各方面的素质能力,那么,在数学的课堂教学中也会要求培养发展学生的多方面的能力,例如动手能力、表达能力等。数学游戏也是可以帮助推动新课程实施的一种方式,在数学游戏中,有许多游戏是需要学生自己亲自动手实践的,也有许多游戏是需要学生组成团队进行实践的,这也无形中锻炼了学生的沟通表达能力及合作能力等。因此,数学游戏可以较好地推动新课程的实施,培养学生各方面的素质能力,提高数学课堂教学的效率。

二、数学游戏应用于初中数学教学中的实施策略

(一)应用于引言、绪论教学中

教师把要介绍的新知识通过游戏的形式放在引言、绪论的课堂教学中,以此介绍给学生,不仅能够激发学生非常强的兴趣,而且激发起的兴趣能够持续到接下来的教学中。例如引入概率的知识时,可以设计一个概率的小游戏,能够很快地让学生了解什么是概率,而且还可以让学生很容易地对概率产生兴趣。

(二)应用于数学新概念的教学中

新概念常常是需要学生用比较长的时间来理解和掌握的,但是在新概念教学中引入数学游戏,便可以更快地让学生理解和掌握并运用相关知识。例如,在教学生平面直角坐标系各个象限时,可以设计一个全班学生都参与的游戏,让几位学生猜某个象限是正、是负,而让全班的其他学生用游戏别安排的方法给出提示。通过这样的游戏,使得本来非常难以理解的象限,变得生动活泼起来,让本来需要记很久的各个象限的正负,变得很容易的记住。很多学生表示,他们非常喜欢这样的教学方式,在做关于平面直角坐标系各个象限的相关题目时,他们会非常容易地联想到游戏,然后很快地便记起了相关的知识,做起题目来准确率也非常得高。

(三)应用于数学定理、性质教学中

篇(6)

一年级新生进入学校学习,是儿童生活中的一个重大转折,他们正脱离幼儿学习的主要活动方式——“游戏”,逐步转向以”学习”为主的主导活动,这种转变不是随着学生跨进小学大门而自然发生的,而是从以游戏为主逐渐过度到以学习为主,这一时期儿童的主要心理特征是:①无意注意占优势;②以具体形象思维为主;③观察随意性;④意志自觉性较差;⑤学习习惯未形成;⑥思维非逻辑性,操作能力很差。针对学生的这一年龄特点,我们在教学中应充分发挥教学的直观性原则,注重唤醒学生的生活和知识经验,激发学生的学习兴趣,构建学生的数学知识体系。帮助他们顺利地完成从游戏活动向学习活动的转变。

(一)注重直观操作,促进学生形象思维和抽象思维的发展。

小学生的思维由具体形象思维为主向抽象逻辑思维为主发展,小学生的数学思维同时具有形象思维和抽象思维的形式,一年级儿童更多的是具体的形象思维,这时期的学生,不能依靠抽象的数学概念进行思考,往往还需要具体行动和直观形象的支撑。例如教学9加几的加法时,可以先让学生观察两个可以装满十瓶牛奶的盒子,一盒里装了9盒牛奶,另一盒里装了5盒牛奶,想一想,怎样装牛奶更容易看出牛奶的总瓶数?唤醒学生“凑十”的经验,在此基础上让学生摆小棒,左边摆9根,右边摆5根,想一想,我们怎样操作,能使我们一眼看出这些小棒的总数?由于有了放牛奶的经验,学生很快想到从右边的5根小棒中拿出一根和左边的9根凑成10根。然后和剩下的4根合起来就是14根。老师这时将学生的想法用算式写在黑板上,把操作活动和数学符号联系起来,从而使操作活动和抽象的算理紧密结合,一步步引导学生理解了算理,掌握了抽象的计算方法。再如在教学“长方体,正方体,圆柱和球的初步认识”时,可以提供给学生大量的感性材料,开展丰富的活动,让学生通过看一看,摸一摸,玩一玩等操作活动,来认识体会这些立体图形的主要特征。边操作边提出问题让学生思考:长方体摸上去有什么感觉?轻轻推一下,你发现了什么?为什么长方体能在桌面上滑动?(因为它有平平的面),摸一摸球,有什么感觉?轻轻推一下,你发现了什么?为什么球能在桌面上滚动?(因为它鼓鼓的,没有平平的面。)把圆柱拿出来玩一玩,你发现了什么?(有时会滑动,有时会滚动?)为什么会这样?(因为圆柱上既有平平的面,也有鼓鼓的面。)圆柱可以在桌面上滚,球也可以在桌面上滚,它们的滚动是一样的吗?(不一样,圆柱只能朝一个方向滚,而球可以到处滚。)为什么不一样?(因为圆柱上有平平的面,而球上没有平平的面。而且圆柱的粗细是一样的,也就是说圆柱的上下两个平平的面是一样大的。)这样学生一边操作一边思考,对这几种立体图形的特征有了更深刻的体验和领悟。

(二)注重经验唤醒,促进学生以已有经验为基础建构数学知识。

荷兰著名数学家和数学教育家弗兰登塔尔曾经提出“普通常识的数学”的观点,他认为数学的根源在于普通常识,对小学生来说,小学数学知识并不是新知识,在一定程度上是一种旧知识,在他们的生活中已经有许多数学知识的体验,学校数学学习是他们生活中有关数学现象经验的总结与升华,每一个学生都从他们的现实数学世界出发,与教材内容发生交互作用,建构他们自己的数学知识。小学生学习数学离不开现实生活经验。

一年级一册教材中,“求一个数比另一个数多(少)几”是一个难点,主要表现在学生能根据已知条件判断出多(少)几,但不能正确列算式,表示比较的过程,也就是不能将比较过程和算式建立联系。他们有的是用数数的方法,想3再数2个数就是5,所以5比3多2,有的想3再加几等于5,所以列式3+2=5,还有的是记住公式大数减小数,然后套用公式得出结论。出现这些现象的原因,一方面是学生的逆向思维能力较差,另一方面是对算理的不理解,而这个算理是很抽象的,对于一年级学生来说,学习掌握它的确有很大难度。在教学中,我首先创设了一个现实的情境,我们教室里有一些男生,还有一些女生,怎样才知道是男生多还是女生多?你有什么好办法?同学们通过思考,得到一个方法,让男生和女生站队,一个对着一个,对齐之后看看是男生有多的,还是女生有多的,就知道谁多谁少了。这样的比较方法来自学生的生活实际,在比较多少时,他们通常就是这样操作。他们在以往的生活中积累了这样的比较经验,只是在课堂上提出问题让学生重温这个经验,学生通过重温进一步明白比多少时一个重要的方法,就是一一对应,在明确这样的方法之后,出示主题图让学生比较学生和老师的人数:学生有8人,老师有2人,学生比老师多几人?学生用圆形和三角形分别代表学生和老师,用一一对应的方法摆出来,这时再让学生指出哪几个学生是多出来的?这部分学生包括与老师对齐的那2个吗?如果果把这2个去掉,剩下的是哪一部分?(剩下的就是学生中比老师多的)怎样求这一部分?然后再让学生列出算式。这时学生体会到从较多的事物中去掉与较少事物一一对应的部分(也就是同样多的部分),就能得出较多事物比较少事物多的部分。我们知道,学生总是对发生在自己身边的熟悉的事物感兴趣,对自己生活中体验过的事情有热情,为了降低学习的难度,可以从学生经历过的熟悉的事件入手,创设合适的情境,充分唤醒知识经验。在此基础建构属于他自己的数学知识。

(三)注重习惯养成,促进学生数学学习的有效进行。

初入学的儿童,往往还没有建立学习的雏型,因此小学一年级是培养儿童学习习惯的重要时期。要努力培养学生良好的听说读写小组合作等习惯。以保障数学学习的顺利有效的进行。首先,要教学生学会倾听,听老师和同学的发言,懂得听清他人的想法;可以要求学生复述老师或同学的话,以提醒开小差的学生集中注意力听讲。其次要教学生学会表达,要学会在倾听的基础上大胆提出自己的意见和想法。用完整通顺的语言说出自己对数学知识的理解。最后还要教儿童学会操作,学会轻拿轻放,有理有序操作学具。要在每次操作活动前给学生提出明确要求,并在操作过程中检查学生有否按老师的要求去做。此外还要培养学生按时完成作业,认真学习,有错题及时改正等习惯。

由于学生的无意注意占主要优势,一年级学生还不能很好控制自己的行为,我们在课堂组织教学中要加强调控,多多开展小组竞赛,定期评价小组表现,宣布比赛结果。可以将老师的要求物化量化,设倾听星,操作星,守纪星,智慧星,作业星等多个奖项。开展小组与小组之间,个人与个人这间的竞赛。以激励学生养成良好习惯。

1、题目。应能概括整个论文最重要的内容,言简意赅,引人注目,一般不宜超过20个字。

2、论文摘要和关键词。

论文摘要应阐述学位论文的主要观点。说明本论文的目的、研究方法、成果和结论。尽可能保留原论文的基本信息,突出论文的创造性成果和新见解。而不应是各章节标题的简单罗列。摘要以500字左右为宜。有时还需附上英文的论文摘要。

关键词是能反映论文主旨最关键的词句,一般3-5个。

3、目录。既是论文的提纲,也是论文组成部分的小标题,应标注相应页码。

4、引言(或序言)。内容应包括本研究领域的国内外现状,本论文所要解决的问题及这项研究工作在经济建设、科技进步和社会发展等方面的理论意义与实用价值。

5、正文。是毕业论文的主体。

6、结论。论文结论要求明确、精炼、完整,应阐明自己的创造性成果或新见解,以及在本领域的意义。

7、参考文献和注释。按论文中所引用文献或注释编号的顺序列在论文正文之后,参考文献之前。图表或数据必须注明来源和出处。

而参考文献是人们长忽略的一部分:

参考文献是期刊时,书写格式为:[编号]、作者、文章题目、期刊名(外文可缩写)、年份、卷号、期数、页码。

参考文献是图书时,书写格式为:[编号]、作者、书名、出版单位、年份、版次、页码。

8、附录。包括放在正文内过份冗长的公式推导,以备他人阅读方便所需的辅数学工具、重复性数据图表、论文使用的符号意义、单位缩写、程序全文及有关说明等。

毕业论文标准格式:格式及排版

1、论文份数:一式三份。一律要求打印。论文的封面由学校统一提供。纸张型号:A4纸。A4210×297毫米。页边距:天头(上)20mm,地角(下)15mm,订口(左)25mm,翻口(右)20mm。统一使用汉语:小五号宋体。分割线为3磅双线。

2、论文格式的字体:各类标题(包括“参考文献”标题)用粗宋体;作者姓名、指导教师姓名、摘要、关键词、图表名、参考文献内容用楷体;正文、图表、页眉、页脚中的文字用宋体;英文用TimesNewRoman字体。

3、字体要求:

(1)论文标题2号黑体加粗、居中。

(2)论文副标题小2号字,紧挨正标题下居中,文字前加破折号。

(3)填写姓名、专业、学号等项目时用3号楷体。

(4)内容提要3号黑体,居中上下各空一行,内容为小4号楷体。

(5)关键词4号黑体,内容为小4号黑体。

(6)目录另起页,3号黑体,内容为小4号仿宋,并列出页码。

(7)正文文字另起页,论文标题用3号黑体,正文文字一般用小4号宋体,每段首起空两个格,单倍行距。

(8)正文文中标题

一级标题:标题序号为“一、”,4号黑体,独占行,末尾不加标点符号。

二级标题:标题序号为“(一)”与正文字号相同,独占行,末尾不加标点符号。

三级标题:标题序号为“1.”与正文字号、字体相同。

四级标题:标题序号为“(1)”与正文字号、字体相同。

五级标题:标题序号为“①”与正文字号、字体相同。

(9)注释:4号黑体,内容为5号宋体。

(10)附录:4号黑体,内容为5号宋体。

篇(7)

“辩论发言”教学模式非常重视学生综合能力的培养。比如:通过分组讨论,可以培养学生语言表达能力和团队意识;教师引导学生进行思考,可以锻炼学生的思维能力;每个小组选代表上前展示讨论成果,又可以锻炼学生当众讲话能力和动手实践能力。探究性。“辩论发言”教学模式中教师通过引导学生思考,让学生自己得出答案,使学生从中体会数学学习方法和数学问题的研究方法。

二、“辩论发言”教学模式实践

1.教师提出问题,由学生进行讨论

“辩论发言”教学模式就是要把课堂还给学生,让学生成为主人,教师只是一个引导者。所以上课后首先由教师提出与本课内容相关的问题,然后让学生分小组进行讨论。这里要注意的是小组的人数不要太多,一般以4~6人为宜,确保每位学生都有阐述自己观点的机会。比如,在上“三个数的最大公约数求解”这节课时,教师就可以说:“上节课我们学习了两个数的最大公约数的求解方法,下面我们先复习一下它的求解方法。”然后教师在黑板上写下18和24两个数,请学生上台做,该生顺利得出了正确答案。然后教师就说:“很好,这位同学做得完全正确,那么我往后面再加一个数字36,求18、24、36三个数字的最大公约数,该怎么办?下面大家分小组进行讨论。”然后教师在教室来回走动,一方面了解各组的讨论情况,另一方面给予学生一定程度的提示[2]。

2.学生当众展示讨论成果

经过分组讨论后每个小组都有了自己的答案,下面教师要做的就是让学生展示他们的讨论结果。同样以“三个数的最大公约数求解”为例。当全班大部分学生都找到求解方法以后,教师就要停止讨论,进入展示环节。请愿意当众展示自己讨论成果的学生上台。

3.继续讨论,升华提高