期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 建模技术论文

建模技术论文精品(七篇)

时间:2023-03-23 15:14:37

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇建模技术论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

建模技术论文

篇(1)

随着科技的快速发展,社会对应用型人才的需求日趋增加,高校教育必须加强对学生创新能力和解决实践问题能力的培养[1]。数学建模正是衔接创造性思维与实际应用的纽带,通过数学建模课程学习及实践训练,学生不仅能了解数学的应用价值,也能锻炼创新实践能力。由于数学建模课程的内容涉及的领域多,案例式授课,实际应用性强,与所学的高等数学、工程数学课程不同,不能形成连贯的系统性知识点,学生很难接受这门课程的学习方式。为了让学生更好地学习数学建模,教师要改进教学模式,根据教学规律的要求,探索数学建模教学方法,将有助于学生掌握数学建模技能,从而提高解决实际问题的能力[2—4]。

二、数学建模的认知

大学开设基础数学课程能让学生体会到数学的严密逻辑体系及高度抽象的思维方法,但对数学的实际应用介绍的甚少,很难将数学与工程技术、经济管理、生物信息等其他领域联系起来。数学建模是用数学语言来描述实际问题,将它变成一个数学问题,再利用现有的数学工具或发展新的数学工具来加以解决的整个过程。通过数学建模学习与实践,学生在体验建模过程的同时提高了思维能力和创造能力。数学建模课程的学习,可以重新认识数学的作用。课程重点就是介绍数学应用到实际领域中的方法,结合案例,应用初等数学、高等数学等数学知识来解决不同领域问题。在现实中许多现象及问题都可以用到数学来解释,如,我们看到一个四条腿椅子经过简单的移动就可以找到合适的位置放稳现象,用高等数学中的“零点存在定理”很容易解释这个问题;若知道某珍稀动物各年龄段数量信息,来推测未来种群是否会灭绝,可以用线性代数中的“矩阵”预测未来动物数量分布。书报供应商订购多少数量的商品才能得到最大收益呢?用概率中的“数学期望”建立报童卖报优化数学模型可解决这类问题。数学建模竞赛实践能更好地培养和提高学生应用数学知识分析问题、解决问题的能力。几年来,数学建模竞赛赛题背景知识广泛,要想取得好成绩,不仅要掌握扎实的数学基础,较好的计算软件使用方法,还需要较强的自学能力,广泛涉猎诸如物理、生物、信息等知识。例如,2012年美国大学生数学建模竞赛A题“树与树叶”,需要了解植物树叶生长特点,涉及到生物学知识;2014年全国大学生数学建模赛题A题“嫦娥三号软着陆轨道设计与控制策略”涉及到万有引力定律知识。数学建模是以数学为基础,综合自然科学和社会科学的实践活动。学生们可以通过多种途径了解数学建模,如,与数学建模课程教师咨询、与参加数学建模系列教学活动的同学交流,浏览数学建模网上的数学建模课程介绍及阅读数学建模书籍等,以获得更多的数学建模知识与信息。

三、数学建模学习过程

在学习过程中不仅要掌握数学建模的基本方法、数学建模思维模式,同时还要能以团队形式自主完成一整套数学建模训练题目,才能体会数学建模的真正内涵。目前,最行之有效的途径就是参加一次数学建模竞赛。可将数学建模过程分解为三个阶段:数学建模课程学习,数学建模综合培训,数学建模竞赛及课外科技活动。

1.数学建模课程学习

(1)掌握数学建模的基本方法。数学建模基本方法介绍是从案例分析开始,首先了解问题的背景、要解决的问题,分析用什么数学方法描述问题符合的规律,建立数学模型,并对模型求解,解释结果合理性。可以紧跟教师思路,积极展开思考,比较自己的解题思路与教师所讲有哪些不同,从简单的初等数学建模方法入手,了解数学建模的全过程。例如,鱼的重量估计问题,在没有称重的条件下如何根据鱼的长度估计鱼的重量呢?在合理的假设下,利用初等比例方法建立鱼重量与长度数学模型,利用鱼的长度能估计出鱼的重量,经验证结果是有效的。然后,要结合所学的数学知识逐步学习一些基本的建模方法,例如,微分方程建立传染病模型可以预测流感流行趋势问题;概率统计方法建立的报童模型可以预测出订购多少报能获得最佳受益。最后,要学会模仿案例建模过程完成作业,掌握建模的基本方法和技巧。数学建模过程不是解应用题,虽然没有唯一途径,但也有一定规律可循,在学习中要善于思考,慢慢形成建模思维方式,有助于建模能力的提高。

(2)养成良好的自学习惯。数学建模课时有限,许多数学建模方法及案例不能在课堂上介绍,在课余时间同学们可以选读一些教材中的案例和在期刊公开发表的建模论文,细致研读案例的建模思想,学会举一反三,重点是学会分析问题,了解更多领域的数学建模的方法、新颖的建模思想,提高用数学方法解决问题的能力。还可以丰富建模信息量,提高建模能力。同时,还可看到同一问题,可以选用不同的数学方法、从不同角度加以解决,这也是数学建模的魅力所在。例如,锁具装箱问题,可以用排列组合方法,也可用图论方法,都能给出减少锁具互开的装箱方案。

2.数学建模综合培训

(1)数学建模方法再学习和建模能力强化训练。随着数学建模解决问题多元化发展,基本的数学建模方法及计算能力远远满足不了实际问题的需求。因此还应学习一些现代数学方法,如,图论,模糊数学,多元统计分析等。学会熟练运用计算机软件技能,如,数学软件MATLAB,EXCEL数据处理,求解数学规划软件及统计软件。

(2)阅读建模论文。通过仔细阅读刊登在杂志或数学建模网站上的数学建模论文,学习论文的整体层次结构,写作技巧,对问题的分析、假设、模型建立和求解过程。寻找论文的优缺点,并比对论文作者对论文的评价。要善于总结所读的论文中解决问题的适用类型,如,优化类,预测类等,对于不同问题采用什么方法更合适,以备后继数学建模中使用。还可以提出自己的一些想法,改进别人做过的模型,或完成其中运算过程。数学建模是一项没有标准答案的数学应用,模型的研究结果大致符合实际就好。

(3)数学建模模拟训练。选作历年数学建模竞赛题目或实际问题中提炼出来的数学建模题目,学习查阅资料、分析问题、建立数学模型、使用软件求解、论文写作来模拟数学建模全过程。请教师对论文的摘要、结构、模型的准确性、论文语言表述、格式规范等方面提出建议,再经过多轮修改,直至满意为止。

3.参加数学建模实践活动

(1)数学建模竞赛。参加数学建模竞赛是培养综合应用数学知识解决实际问题的最有效途径之一,参加一次数学建模竞赛才能体会数学的真正魅力。目前开展的数学建模竞赛可以分为四个层面,一是美国大学生数学建模竞赛(MCM/ICM),是由美国数学及其应用联合会(CO-MAP)主办,并得到了SIAM,NSA,INFORMS等多个组织的赞助,是一项具有世界影响的国际级竞赛,为现今各类数学建模竞赛的鼻祖。二是全国大学生数学建模竞赛(CUMCM),是由教育部高等教育司、中国工业与应用数学学会联合主办,并得到了高等教育出版社、美国COMAP公司的支持与赞助,是一项全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。三是地区级、省级、专业类别赛事,如,东三省数学建模联赛是由黑、吉、辽三省高校联合发起的科技赛事;电工杯数学建模竞赛是由中国电机工程学会电工数学专业委员会主办的科技活动;数学中国数学建模国际赛(小美赛)是由数学学会与数学中国(www.madio.net)和第五维信息技术有限公司协办的全国性数学建模活动。四是由校级开展的数学建模竞赛活动。在竞赛中,调整好心态、应用好文献资源、积极思考、发挥每个队员的长处、合理分工是取得成绩的必要条件。

(2)数学建模实践。要善于发现学习和生活中的诸多问题,要学会用数学的眼光看待问题,要用数学建模的方法来解决。例如,在课程设计、毕业设计中,在校园生活中,可能面临着方方面面的问题。要学会观察实际现象,提炼出要解决的问题。要真正做到学会发现问题、解决问题,这需要一定的练习过程,也是学好数学建模的必要环节,可以提升自身的综合素质和创新能力。

四、数学建模提高学生的综合能力

一次参赛,终身受益。数学建模最能激发人的潜能,数学建模思维方式会影响学生今后的学习和工作方法。数学建模教学内容及教学方法对培养学生的综合能力尤为突出。主要体现在:

(1)培养学生的想象力、洞察力和创新能力。不论是数学建模课程学习还是实践,都是针对实际问题,需要学生主动查阅文献资料和学习新知识,主动探索,提出解决方案,这种学习方式促进了创新能力的形成,也培养了学生从事科研工作的初步能力;同时增强了运用数学知识和计算机技术解决实际问题的能力和团队协作能力。

篇(2)

关键词三维建模技术;结构优化;模型优化;层次模型

中图分类号TP301文献标识码A文章编号1000-2537(2014)02-0090-05

为了在计算机的虚拟环境中生动形象地模拟自然环境之中人的视觉、听觉、嗅觉以及运动等行为,虚拟现实技术应运而生[1].经过近几年的发展,该项技术已成为计算机领域的一个新型研究方向,获得国内外学者以及企业的广泛关注并引起浓厚的研究兴趣[2-3].在虚拟现实技术中,三维建模是该技术的一个关键步骤和核心技术,也是实现虚拟现实系统的基础[4].由于虚拟现实系统需要较高的实时性,而三维建模的优劣直接影响整个这类系统的实时性[5],这使得三维建模成为了此项技术的研究热点,而三维建模流程的优化又成为了重中之重.

目前,关于三维建模流程的优化研究主要集中在模型阶段,其中部分研究取得了较好的实际应用效果[6-7].然而,如果在三维建模之前各模型分块不合理的话,就会导致建模过程耗时较大,从而大大降低系统的实时性.针对这种情况,论文基于过程的思想,从结构优化、模型优化两方面对整个三维建模流程进行优化.同时,论文还提出了一个新型层次模型简化算法以进一步缩减三维建模流程中模型间优化的时间间隔.

6结束语

论文对三维建模进行研究,基于过程优化思想,提出了一个新的三维建模流程优化方法.同时,针对其中的模型简化也进行了研究,提出了一个层次性模型简化算法.通过模拟联合站系统实验表明,所提三维建模流程优化方法在建模总体效果和实时性两个方面,都具有一定的优越性.

参考文献:

[1]叶南阳. 手机振动影响及模式优化设计研究[J]. 湖南师范大学自然科学学报, 2012,35(2):28-30.

[2]周德吉,武殿梁,邱世广. 虚拟现实环境中包含虚拟人的全要素装配操作仿真[J]. 计算机集成制造系统, 2012,18(10):2183-2190.

[3]傅招国,王天威,倪小鹏. 基于Virtools的虚拟现实技术及在特种设备教学中的应用[J]. 计算机工程与科学, 2012,34(6):97-100.

[4]CHEN G, LI B, TIAN F L, et al. Design and implementation of a 3D ocean virtual reality and visualization engine[J]. J Ocean Univ China, 2012,11(4):481-487.

[5]谭正华,王李管,熊书敏. 基于实测边界线的地下巷道三维建模方法[J]. 中南大学学报:自然科学版, 2012,43(2):626-631.

[6]潘荣江,高孝洋,关防利. 基于平面设计图的高速公路三维建模[J].系统仿真学报, 2012,24(1):17-20.

[7]LI Z L, ZHI R P, ZHAO C W, et al. The 3D modeling of blades of multiphase flow helico-axial pumps rotor based on solidworks[J]. Computer Aided Drafting, Design and Manufacturing, 2011,21(2):1-6.

[8]DU Q L, DU T N, ZHAO H F, et al. The comparison of different degree of convexity and 3D modeling of involute hyperbolic arch dam[J]. Computer Aided Drafting, Design and Manufacturing, 2011,21(2):7-12.

[9]吕翠华,陈秀萍,张东明. 基于三维激光扫描技术的建筑物三维建模方法[J]. 科学技术与工程, 2012,12(10):2410-2414.

[10]许伟冬,刘国栋,刘龙. 机场供电仿真虚拟环境的研究[J].计算机仿真, 2012,29(10):47-51.

[11]董纯柱,殷红成,王超.基于射线管分裂方法的SAR 场景快速消隐技术[J].雷达学报, 2012,1(4):436-440.

[12]韦婷黎,展荣,侯能.基于可编程GPU 的三维地形场景中树的渲染优化技术[J]. 科学技术与工程, 2012,12(26):6834-6839.

篇(3)

关键词:数学建模教学工程理论实践应用

中图分类号:G623文献标识码: A

1、数学建模教学工程的理论

数学建模是应用数学模型来解决各种实际问题的过程,它通过对实际问题的抽象、简化并确定变量和参数,再利用数字、公式、图表、符号等数学语言描述事物的内在规律,借助计算机求解数学问题,并解释、检验、评价所得的解,从而确定能否将其用于解决实际问题的多次循环、不断深化的过程。而对在校大学生系统进行数学建模思想及方法的教育过程则称之为数学建模教学工程。建立和完善数学建模教学工程有利于学生全面素质的培养,既可以丰富、活跃大学生的课外活动,也可以为发现、培养优秀学生创造机会和条件,对提高学生学习数学的积极性,学好难度相对较大的大学数学有非常重要的促进作用。

数学建模在教学工程中的实践应用

2.1.在定积分中的应用

定积分是大学数学教学的重要组成部分,其在理论教学和实际生活中都有所运用。比如某地方矸石不允许堆放在未征用的土地上,那么如何根据下拨经费、设计年产量和预期开采年限这三个变量确定征地与堆放矸石方案呢?首先我们分析问题的关键地方就是征地费与堆积矸石用电这两方面,这时候就可以运用定积分来分析堆积矸石的电费,建立数学模型,从而合理地按照预期开采量来征地和堆放煤矸石。

2.2在微分方程中的应用

在我们生活中会经常运用到微分方程来解决实际问题,比如目前在社会上引起广泛关注的减肥问题,如何利用数学建模思想确定合理的减肥方式呢?对于这个问题可以将减肥的两个主要方法:控制饮食与加强体育锻炼作为变量建立模型,运用微分方程分析不同变量对减肥效果的影响,进而对减肥者提供参考,帮助人们树立科学的减肥理念,取得满意的减肥效果。

2.3在概率统计中的应用

日常生活中会经常遇到概率统计问题。比如某种植物有AA、Aa、aa三种基因类型,如何使这种植物的基因实现纯种化呢?可以利用全概率公式建立若用AA型基因和不同基因类型进行繁殖后第n代与第n-1代基因之间的递推关系式,通过计算极值来预测基因分布趋势,进而分析如何进行纯种化的问题。

3.如何培养大学生数学建模能力

在大学数学教学中,帮助学生去发现问题、分析问题并想方设法利用数学建模思想解决问题是非常重要的。针对不同阶段,笔者认为应采取相应的教学方法来培养学生的数学建模能力。

3.1 感知学习阶段

该阶段主要分布在大一期间,以培养应用意识与简单应用能力为主要目的。这期间的教学结构主要包括以下四个方面:学习初步阶段的应用数学;对数学建模的入门学习;数学软件的入门学习;实际应用高等数学、线性代数思想的例子或者是一些数学小实验。与之相适应的教学方法有:(1)参与一些数学建模协会的活动;(2)参与一些数学知识应用竞赛;(3)开设一些具有针对性的讲座;(4)在高等数学、线性代数学习中应用相关软件并配合实验。

3.2 理论应用阶段

该阶段主要是分布在大二、大三期间,以培养按数学建模思想解决理论的、抽象的问题为主要目的。这期间的教学结构主要有:学习经济、管理学中的数学模型,机电工程技术中的数学模型,生物、化学中的数学模型,金融学中的数学模型,物理学中的数学模型;相应的教学内容主要包括以下五个方面:(1)开设有关的数学建模课程;(2)开设群组选修课程;(3)开展校园文化活动和社会实践活动;(4)学生做专题报告;(5)参与MCM(大学生数学建模竞赛)活动。

3.3 实际应用阶段

该阶段主要是分布在大四期间,以培养解决实用问题的综合应用能力与研究意识为主要目的。这期间的教学结构主要有:学习数学建模特殊方法、特殊建模软件,建立综合解决实际问题的思维方式。相应的教学内容主要包括以下五个方面:(1)参与数学建模竞赛;(2)参与C-MCM(全国大学生数学建模竞赛)活动集训;(3)完成毕业设计与毕业论文;(4)参加相关的校园文化活动(小论文、报告会、协会工作等);(5)参与相关的社会实践活动(课题工作的参加研究、课件制作等)。

结论

数学建模在大学数学教学过程中扮演着非常重要的角色,它既能够培养学生的思维转换能力和空间想象能力,也能够培养学生综合运用数学知识解决实际问题的能力。因此在大学教学过程中,应重视对学生数学建模能力的培养,不断引导、循序渐进,积极鼓励学生参与数学建模实践活动,培养国家紧缺的开拓性、创造性人才。

参考文献:

【1】韦程东 在常微分方程教学中融入数学建模思想的探索与实践[期刊论文]-数学的实践与认识2008(20)

篇(4)

参考文献:

[1]魏连秋,张义红.数学建模竞赛对大学生综合素质的影响[J].河北师范大学学报,2009,11(8):7780.

[2]姜启源等.数学模型[M].第三版.北京:高等教育出版社,2002.

[3]李大潜.数学建模与素质教育[J].中国大学数学,2004,(10):4143.

[4]张克新.依托数学建模竞赛,促进数学教学改革[J].黄冈职业技术学院学报,2011,13(3):4850.

参考文献:

[1]李家才.论大学生创新素质的培养[J].教育创新,24(9).

[2]岳晓东.大学生创新能力培养之我见[J].高等教育研究,24(1).

[3]叶取源.创新人才培养体系的构建与实践[J].中国高教研究,22(9).

[4]李玉华.大学生素质论[M].西安:西安交通大学出版社,2OO1.

参考文献:

[1]朱路芳.发挥科研在培养创新人才中的作用[J].国家高级教育行政学院学报,2000.

[2]刘娟.高校应注重培养学生的创新能力[J].彭城职业大学学报,2001.

[3]宁永录.加强创新能力培养,造就跨世纪优秀人才[J].西安航空技术高等专科学校学报,2001.

[4]张国才.团队建设建与领导[M].厦门:厦门大学出版社,2005.

参考文献:

[1]文思隆著.合唱、指挥及中外合唱作品精选.重庆:西南师范大学出版社,2002.

[2]林彦均.浅谈合唱艺术对学生综合素质的培养[J].海峡科学,2009,(1).

篇(5)

【关键词】高职数学 培养目标 课程改革 数学建模及竞赛

【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2013)12-0027-03

为了适应现代科学技术发展的需要,高职数学教学不应只进行纯数学研究的培养,而是应培养学生运用数学知识及数学思维方法分析、解决复杂实际问题的能力。数学除了能培养学生的理解能力和发现问题的能力外,还能训练学生科学系统的思维能力。学生在数学学习中能获得逻辑思维、演绎归纳、综合计算等能力。数学建模就是运用这些能力与实际的科学技术、生产和工程问题相结合的过程。

一 数学建模活动的现状

随着计算技术的迅速发展,高新技术要运用于生产实际,其中数学建模的运用起到了至关重要的作用。数学建模教学已在高职教育中逐步开展,国内外越来越多的高职教育正在进行数学建模的教学并组织学生参加数学建模竞赛,把数学建模教学和竞赛作为高职教学改革和培养高层次人才的一个重要方面。我院数学教研室也通过选修课的形式,开展了两学期数学建模教学的尝试,作为任课教师,通过两学期的授课与指导,我深深体会到数学建模活动在培养高职高专学生运用数学的思维、方法及理论去分析和解决实际问题等方面的突出意义。

二 开展数学建模竞赛的意义

高等职业技术教育的一个重要目标是培养应用型的高技术人才,学生走上工作岗位后常常要做的是根据错综复杂的实际情况,抓住本质属性和内在联系分析和解决问题,建立有效可行的办法,这正与建模的目的不谋而合。建模的对象涉及工程设计、交通运输、科学技术、经济管理等很多领域,这就要求学生在掌握数学知识的同时拓宽知识面,也对学生的自学能力、分析和解决问题的能力提出了很高的要求。Math Works研究员Jim Tung说道:“在当今人才市场上,数学和工程领域的人才非常抢手,雇主们都在寻找懂得如何使用数学建模工具和方法来解决问题的求职者。”

1.培养大学生素质

第一,开展数学建模教育可以让高职学生认识到数学在实际生活中的应用,从中感悟数学思维和方法、增强解决实际问题的能力、激发学生对数学的热爱、提高学习积极性。

第二,开展数学建模教育可以培养学生良好的数学观和方法论,培养学生用数学思维、方法和应用计算技术解决实际问题的能力,培养学生的综合素质。

第三,开展数学建模教育可以培养学生的创新意识和创造能力,为大学生创业打下良好的基础。

第四,开展数学建模教育可以培养学生与人共事的团队精神和协作能力。

第五,开展数学建模教育可以培养学生的观察力、想象力,有助于学生形成顽强拼搏的意志。

第六,开展数学建模教育可以培养学生论文写作能力,为今后工作中写论文、报告等打下坚实的基础。

第七,开展数学建模教育有助于学生知识水平的提高和自学能力的培养

2.有助于推动高职数学课程改革

第一,开展数学建模教育可以推动教学内容、教学方式的改革,达到让学生快乐学习的目的。

我们周围许多实际问题看起来似乎与数学无关,但通过观测、分析和假设,可发现这些看似与数学无关的问题,都可以运用数学方法解决。针对物流专业的教学中,可让学生调查某物流公司“车辆调度情况”,建立模型并对其可行性进行评估;针对旅游规划的学生,可开发一条新的旅游线路;针对饭店管理的学生,可利用导数对酒店的运营进行边际分析,求酒店利润最大化。这样结合学生所学专业建立数学模型,能使学生体会到学习数学的意义所在,极大地调动了学生学习的主动性。

第二,数学建模竞赛的开展也推动了教学与科研的发展,促进教师队伍的成长。

近年来,我国有大批数学教师在从事数学建模教学工作或赛前培训的辅导工作,为此他们也要通过不断学习来拓宽自己的知识面,提高运用数学工具分析解决实际问题的意识和能力,这样可以增强他们的创新精神和加速对数学建模这个学科的研究。数学建模竞赛指导工作也培养了他们热爱学生、不重名利、无私奉献的精神。所以说,开展数学建模教育可以提高教师的整体素质。

三 高职高专院校开展数学建模竞赛的困难

1.高职学生在校学习时间短、理论基础相对薄弱、学习习惯差

下表是重庆市近三年文理科最低控制分数线,从下表中看到高职分数线低于本科分数线50分以上,最多的时候甚至相差158分(如2011年),且录取分数线呈逐年递减的趋势,这就充分反映了高职学生的中学基础知识差,理论功底较薄弱,学习中非常排斥理论的讲授,学习效率普遍较低。面对这种现状学生们并没有变压力为动力,究其原因,不是智力问题,而是自身学习习惯的问题,主要表现为:自学能力弱、学习缺乏韧性、知难而退、不求甚解,久而久之导致学习积极性不高,如此恶性循环造成学习效果欠佳。

2.数学课程不受重视

当前许多高职院校都积极进行教育模式的改革,压缩了理论教育课时数,作为公共必修课的数学教学学时不断减少,有的专业数学课程学时只有30节,最多的也只有120节左右。而教学内容要涵盖微积分、常微分方程、线性代数、级数等,教学学时相对不足。同时我国的高职数学教育,课程结构、现行教材单一,不能同时满足不同层次学生的需求。

3.数学建模活动发展不平衡

数学建模活动在综合性大学和理工院校开展的较为普遍,而在高职高专院校还不够重视,而且大部分高职院校只是为了竞赛而参与这项活动,这不利于建模活动的长期良性的发展。有些高职院校也在努力实践,在数学建模的教学、培训模式、竞赛方式上都取得了良好的效果,但对于基础薄弱的学生来说还是很难。因此,需要在实践过程中不断探索适用于高职院校所有学生的数学建模活动。

四 如何开展数学建模教育和竞赛

1.加强对数学建模指导教师的培训

对指导教师的培训主要围绕以下几个方面展开:了解数学建模课程的开设和教学改革的最新理念与动态;提高数学建模科研能力与技术的平台建设;熟悉数学建模竞赛培训内容、方法和技巧与典型赛题分析;掌握校级数学建模竞赛的命题与组织方法;开展适合本校的数学建模精品课建设;着手本校数学建模教学建设及师资队伍建设;提高数学工具软件应用与数学实验教学案例开发的能力;展开数学建模、数学实验、数学实验室的建设;促进指导教师数学建模科研论文的整理与发表。

2.把建模思想融入数学教学过程

现在很多高职院校,由于学生在校时间短,为了提高学生专业技能等方面的原因,不断地压缩高等数学的教学课时,所以最好的办法是把建模思想融入到平常的教学过程中去。

第一,开展案例教学创新。教师应紧密联系学生所学专业收集、编制、改造和他们所学专业的建模实例,从而进一步贴近学生生活实际。这样,学生在理论与实践融合的氛围中,学习兴趣会相对高涨,对数学建模的应用更具有好奇感,更容易使学生理解数学理论概念的本质和应用。在教学活动中,教师注意课堂讨论板块的穿插,让学生在受到教师启发性授课的同时,也能够参与互动,表达各自的看法和建议,这有助于高职学生创新思维的开发。

第二,开展小组讨论教学法,开发独立思维,发扬团队协作。教学方法的改革与适用,首先要让学生意识到自己是学习的参与者和探索者,在发挥教师主导作用的同时,发挥学生的主体作用,为学生的积极参与创造条件,引导学生去思考、发现、创新,改变过去传统的教学方法。

第三,使用先进的教学手段。目前,越来越多的课程采取多媒体与板书相结合的授课方法,提高了授课效率。比如,部分教师专门制作的PPT细致、方便、灵活、有针对性,使用效果好。数学类课程还可使用Matlab的优点。

第四,增加信息检索方面的教学。在现有数学建模情境中,往往由涉及多学科、多方面的知识点融汇成一个复杂的知识网络体系。这就要求学生在较短时间内尽可能搜索到有用的知识,所以在教学过程中教会学生利用互联网等手段进行信息检索是现今社会的需要,也是高职院校数学建模教育的当务之急。

3.鼓励学生参加数学建模竞赛

要求学生积极参与,通过竞赛对建模有创意并具有合理性的小组进行鼓励,使建模更加深入人心,更重要的是使学生得到锻炼。鼓励学生参加每年一次的大学生数学建模大赛,展示和拓展自己的能力。

在高校开展建模竞赛,既有助于对大学生创新思维、动手实践能力、竞争意识、团队合作精神的培养,也有助于完善大学生的知识结构,此外还有助于提高大学生的综合素质。在这项赛事的推动下,相关理论的研究不断开展并日趋深入,大量相关出版物陆续出版发行,许多高等院校也相继开设了数学建模课程。随着竞赛逐年开展,参赛队伍越来越庞大,目前数学建模竞赛已位于教育部四大学科竞赛之首,其规模最大,影响力也最大。

4.开设数学建模选修课

当然,由于公选课的授课对象都是非数学专业的学生,因而所选的模型要贴近生活,讲述与生活实际密切相关的模型。此外,在数模教学环节中增加了一定的实践环节,让学生有实际操作的机会,使有兴趣的学生结合日常生活或专业,选择一些由易到难的建模课题。在教师的指导下,每学期完成1~2个建模课题,使建模活动更加有目的、有计划地开展,培养他们动手解决实际问题的能力,让更多的学生参与建模。

5.搭建功能齐全的网络教学平台

网络教学将网络技术作为构成新型学习环境的有机因素,利用网络的特性和资源来创造一种有意义的学习环境,向学生提供丰富的教学资源,提供有利于改善学习效果的条件,让学生自主探索、主动学习,充分体现学习者的主体地位;同时也为师生提供了互动平台。

五 关于数学建模活动的注意事项

1.开展建模时一定要遵循学生的认知规律,切勿急功近利

由于高职院校数学基础相对薄弱,几乎未接触过数学建模培训,所以在开展数学建模活动时,应考虑到学生掌握的知识和现有能力,切勿盲目进行。在建模过程中,要将过去以教师为中心变为以学生为主体;以课堂讲授为主变为以问题发现、解决为主;以知识传授为主的教学模式变为以培养能力为目标的教学活动。整个过程要遵循学生的认知规律,结合学生的实际水平。

2.对选拔竞赛队员的思路

第一,要充分考虑学生的数学素质、计算机应用能力、数学软件应用能力、论文写作能力等,尽量选出能力较强的学生。

第二,开设数学建模选修课。一方面吸引调动学生学习数学的积极性获得更广泛的数学知识;另一方面注意选拔出各方面素质较强的竞赛苗子。

第三,通过学生的数学成绩和上课表现,同时结合任课教师和班主任的意见,初选出大名单,再由建模指导教师逐一挑选,确定最终名单。

第四,所有入围的学生都参加建模集中培训,培训结束时组织校内竞赛,进行第二次考查和筛选,这样既调动了学生的积极性,又吸引了更多学生参与建模学习,更为选出优秀的队员做好了铺垫。

最后,在进行第二次选拔时,指导教师往往会遇到难以取舍的情况,而那些校内竞赛后被淘汰的学生,他们之前以极大的热情投入到培训中,落选使他们既难过又不服气,所以学院可以考虑设立校内奖励制度,使本校的数学建模竞赛工作进入良性循环。

参考文献

[1]北京师范大学数学科学学院采用Matlab为教学课程以及全国大学生数学建模竞赛的参赛队伍提供支持[J].国外电子测量技术,2011(10)

[2]郭思乐、喻玮著.数学思维教育论[M].上海:上海教育出版社,1997

篇(6)

关键词:OpenGL,三维物体,建模

 

0 引言

随着计算机技术的飞速发展,三维立体图象技术也得到了快速的发展,为虚拟现实技术提供了越来越好的软硬件环境,这为设计界广泛采用虚拟现实技术提供了有力的支持。

1 OpenGl简介

OpenGL即开放性图形库(Open Graphic Library)是一个三维的计算机图形和模型库,也似该领域的工业标准。它是一种高性能的开放式且功能强大的3D图像库,具有几百个指令和函数。OpenGL灵活方便的实现了二维和三维的高级图形技术,在性能上表现得异常优越,它具有建模、变换、光线处理、色彩处理以及动画等能力,在图形效果处理上增加了纹理映射、物体运动模糊效果和雾化效果等等。

2使用专业建模软件建模并向OpenGL转化

工业产品设计中的三维模型均是由3DS MAX等专业建模软件构造而成。但是由于3DS MAX交互性较差,而且3DS MAX模型的默认存储格式max,不易被交互性灵活的OpenGL所读取。因此,我们采用3DS MAX模型的另一种易于OpenGL读取的文件格式3ds作为三维模型的存储格式,然后将模型通过OpenGL导入三维场景并实现交互性操作。图2.1和图2.2所示的模型为在专业建模软件3D MAX中创建的两个模型。下面,具体介绍一下将3ds文件导入OpenGL的实现过程。

图2.1 变压器 图2.2 安全器材

2.13ds模型的数据结构

3DS格式文件是一种二进制数据文件,它由块(chunk)组成(见图2.3)。每个块包括块的索引(ID:Indentification)、块所包含的内容、块的组成以及下一个块的位置。论文大全。

图2.3 块结构图

在3DS文件中,判断1个块所存储的内容是由通过这个块的索引(ID)来实现的。不同类型的块具有不同的ID。3DS文件本身有1个主块(MainChunk),这个主块的ID为4D4D。主块始终出现在文件的开始处,通过对文件开始的两个字节内容进行判断,便可知道当前操作的文件是否为3DS文件,这样就可以避免打开不正确类型的文件。

为保证文件结构的完整性以及可操作性,不同的块在文件中是按一定的体系来存储的。在这个体系中,主块(Main Chunk)在最顶端,在主块之下嵌套了各个子块,并且子块之间也是相互嵌套的。这样,块与块之间的关系得到了体现,方便了读取。比如作为整个场景的环境设置(包括视点、光源、材质等)放在其他实体块的前面,对这些实体产生作用。图2.4简单描述了在3DS文件中块与块之间的相互关系。

图2.4 3ds文件结构

由图2.4可以看出,该体系结构和真实环境中的场景构造类似。在该体系结构中,EDIT-OBJECT块(ID为4000)特别重要。论文大全。因为它记录了所需要的各种三维实体的坐标、纹理等数据,正确地对它们进行操作是生成具有真实感图形的保证。

在3DS文件中,每个实体都是由三角形面片组成的。这样,一个三维模型(3DModel)包括一个或多个三维实体(3DObject),一个三维实体又由一个或多个面片(CFace)组成。在记录数据的时候,三维实体的块当中记录了一系列的三维空间坐标和二维纹理坐标,而每个面片块中则通过对这些坐标的索引来表示面片在空间中的位置以及对应的纹理。

材质块中记录了用于检索该材质的名称,如果材质是由文件来创建的,则包括文件名,否则记录材质的颜色。在三维模型当中记录了一个或多个材质(CMaterialInfo),在实体当中则通过对材质的索引来决定当前实体引用了哪个材质。

2.23ds数据模型的读取

根据以上对3DS数据模型结构的分析,能够应用面向对象的方法设计一种能方便、快速、准确对3DS文件进行读取的方法。图2.5是针对3DS文件中三维实体的组成情况而设计的类结构,由此解决3DS模型中数据的存储。

其中的CVector2类和CVector3类存储二维和三维数据,用于记录空间坐标以及纹理坐标。C3DModel类包含了整个三维模型,它由若干个三维实体(用C3Dobject存储)和若干个材质信息(用CmaterialInfo存储)组成。论文大全。C3Dobject中记录了组成这个实体的顶点数量、顶点坐标列表、面数量、纹理坐标列表以及这个实体的材质信息。CFace类记录了组成某个面的纹理坐标索引和地理坐标索引。

图2.5 类关系图

根据3DS文件中各个块之间的嵌套关系,设计了一种递归读取的方法。函数ReadChunk用于读取每个块的开头所记录的块索引(ID)和块的长度。在读取文件的第1个块时,通过索引来判断当前打开的是否为合法3DS文件(索引为4D4D),如果是,则通过调用ReadNextChunk函数将程序带入递归过程。

在ReadNextChunk函数中,同样首先需要调用ReadChunk来读取块索引和块的长度,由块索引来判断块的类型,由块的类型来决定如何读取接下来的数据。在这个过程当中,ReadChunk和ReadNextChunk将会被反复调用。

在读取一个块的时候,始终记录了当前块的大小以及已经读取的数据大小,这样通过比较这两个数值可以知道当前的嵌套块是否读取完成。例如,对于主块(Main Chunk),它贯穿文件的始终,因此,它的大小即代表整个文件的大小,它的结束也代表了这个三维模型的结束。前面说过,块与块之间是相互嵌套的,因此在主块(MainChunk)中就包括了其他的子块,而这些子块又可能包含其自已的子块。通过分别记录每个块的长度和已经读取的数据长度便可以正确控制块的读取顺序。图2.6是读取过程的流程图。

图2.6读取3DS文件的流程图

配合着OpenGL在计算机中生成的虚拟环境,程序将3ds文件读入虚拟环境的运行结果如图2.7所示。这样我们就可以很方便地将3D模型移植到其他的计算机平台当中,从而更好地对产品进行设计和分析。

图2.7 运行效果图

3 结束语

本文分析了基于OpenGL三维建模的实现方法, 使用专业软件建模,再转化为OpenGL程序的方法可以避免直接使用OpenGL建模的复杂工作,又可以通过OpenGL程序进行控制,且模型的外观也更精细,是一种很实用的建模方法。

目前,三维图像技术在军事、医药、商业和娱乐各个领域应用都非常广泛,研究三维建模技术对工业产品的进一步发展具有十分重大的意义。

参考文献

[1]向世明. OpenGL编程与实例[M]. 北京:电子工业出版社,1999

[2]Hearn D,Baker M P. 计算机图形学(第三版)[M]. 蔡士杰等译. 北京:电子工业出版社,2005

篇(7)

关键词:数学建模 数学实验 课程改革

1、引言

进入21世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对解决实际问题的要求越来越精确,这使得数学已经成为一种能够普遍实施的技术,正如伟大的哲学家与数学家笛卡尔所说:“一切问题都可以化成数学问题”,进而,培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。

应用数学去解决各类实际问题时,建立数学模型是十分关键的一步。二十世纪70年代末至80年代初,英国剑桥大学为研究生开设了“数学建模(Pronblem Solving)”课程,牛津大学创设了与工业界的合作研究活动,欧洲和美国也开始将“数学建模”列入研究生和本科生的教学计划中。1985年美国70所大学联合举办了第一届数学建模竞赛,这一活动迅速引起美国以及国际大学生的广泛兴趣。在此期间,我国数学教育界的一些学者了解到西方数学教育的这一重要动向,于1992年成功举办第一届“全国大学生数学建模竞赛”,并逐步将“数学建模”课程引入我国大学本科教学计划。我校于2009年将“数学建模”课程设置为理工科必修课,笔者经过多年数学建模教学和数学建模竞赛指导,总结并探索得出数学建模的课程教学不同于传统的数学教学,传统的数学教学模式是以教师为中心、以课堂讲授为主,而数学建模教学则是突出以学生为中心、以实验室为基础、以问题为主线、以培养能力为目标。

2、数学建模课程的教学特点

数学建模是一门实践性很强的课程,与其它数学类课程的相比,最主要的区别是不能再沿用传统数学教学“课堂讲解—笔记—作业—考试”的教学模式。数学建模的教学形式灵活,在教学过程中强调尊重学生,尽可能把学习的主动权交给学生。课堂上,教师提出事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极展开讨论和辩论,充分发挥学生的主动性、积极性、创造性,教师从旁质疑指导,采取小组讨论,教学互动,学生上讲台做演讲等手段,提高学生的兴趣,调动学生参与的积极性、主动性和创造性,充分发挥学生的主体作用,从而锻炼学生解决问题的综合能力。当然,教师讲课在教学过程中还是占有很大部分比重,教师主要担当引路者的角色,把讲的机会让给学生,把做的过程放给学生,充分体现以学生“自主、探究、合作”为特征的教学方式。教学过程的重点是创造一个诱导学生的学习欲望、培养他们的自学能力,增强他们的应用意识和创新能力,提高他们的数学素质,强调的是获取新知识的能力,从而改变了传统的以教师为中心的课堂教学结构,由以教师为中心的教学结构转变为“以教师为主导—以学生为主体相结合”的教学结构。

“数学建模”课程的练习和考核方式也明显有别于传统数学课程。我们认为,“数学建模”适用多元化的考核方式,不宜简单采用闭卷考试,有标准解答的考试不符合“数学建模”问题的特点。所以,课堂多采用分组讨论,案例分析,上机计算和模拟,最后以论文形式提交作业;考试大多数采用组合考核,即平时练习、阶段论文、期末考试三部分综合评定成绩。学校一般不安排期末考试,而是通过模拟竞赛的论文来评定成绩。

3、数学建模与数学实验

数学实验是计算机技术和数学软件引入教学后出现的新生事物,是数学教学体系、内容和方法改革的一项创造性的尝试。“数学实验”是以计算机为工具,配以各种数学计算软件(如Matlab,Lindo\Lingo,Mathmatical,SAS,Maple,C,Excel等等)作为实验环境,用以加工处理各种数学资料信息,得到计算结论。而数学建模是在简化和假设的基础上,选择适当的数学工具来可挂描述各种量之间的关系,用表格、图形、公式等来确定数学结构。然而,建立模型的目的是为了解释自然现象,寻找规律,以便指导人们认识世界和改造世界,建立模型并不是目的。所以,模型建立后,要对模型进行求解、分析和检验,即用计算机技术和软件包求解数学模型,得到数量结果,并按照一定的数学规律,利用计算机程序语言来模拟实际运行的状态,并依据大量的模拟结果对系统或过程进行必要的定量分析,得到一些定量结果,这通常是解决实际问题的有效手段。

数学建模课的性质决定了它需要做数学实验,一方面,做数学实验可以在数学建模教学过程中加强学生“用数学”的意识,培养学生应用数学知识解决实际问题的能力;另一方面,数学实验可以将数学教学与计算机应用结合起来,培养学生进行数值计算与数据处理的能力。所以绝大部分学校在“数学建模”教学中结合了数学实验。数学实验与物理实验、化学实验一样具有演示作用,更把课堂教学与实际操作结合起来,给学生实践机会,它能将某些抽象的思维过程具体化、形象化,它是对人类思维过程的一种模拟、验证和拓广。因此,数学建模与数学实验的结合是很有必要的。

数学实验课的开设首先要选择合适的数学软件。如Mathematical、Matlab、Lingo\Lindo等,这些软件都是功能强、效率高,便于进行数学计算的交互软件包。它们对于一般的数值计算、矩阵运算、方程求解、高等数学建模、优化设计等都能方便地实施,在这些软件的操作环境下所解问题的语言表述形式和其数学表达形式相同,不须按传统的方法编程。例如在经管类高等数学的教学中,线性规划问题很多,而规划问题的求解需花去大量的时间计算,如果借助Lingo\Lindo软件,则能编制简单的程序,迅速解决计算问题。我们可以布置练习题让学生熟悉软件包,培养学生利用软件包求解模型的能力,并培养学生软件编程的能力。通过这些软件的实验和学习,同学们的实践动手能力得到了极大提高,一方面巩固了数学理论知识,另一方面又掌握了使用数学工具的本领。另外,在数学实验过程中,注意精心安排学生的实验,保证学生上机的时间,确实能让学生自己动手操作。尽量从实际问题引入要讲述的数学实验内容,也可以安排建模中常用的方法,如作图的方法(mathematical),曲线拟合的技巧(matlab),优化工具箱的使用(matlab),整数规划的求解(Lingo)等作为实验的内容。最后要求学生以2—3人为一个小组,在教师的指导下,写出实验报告,实验报告包括问题提出、实验目的、实验内容及要求、实验过程及结果、结果分析、思考与练习,这相当于完成一个实际问题的数学建模论文。

参考文献:

[1] 周义仓,赫孝良,数学建模实验[M],西安,西安交通大学出版社,2007