期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 高强混凝土论文

高强混凝土论文精品(七篇)

时间:2023-03-20 16:17:24

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇高强混凝土论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

高强混凝土论文

篇(1)

关键词:高强混凝土;收缩开裂;应对措施

中图分类号:TV534文献标识码: A

引言

高强混凝土作为一种新的建筑材料,以其抗压强度高、抗变形能力强、密度大、孔隙率低的优越性,在高层建筑结构、大跨度桥梁结构以及某些特种结构中得到广泛的应用。但在工程实践中,由于高强混凝土具有水胶比较低、水泥用量较大,以及砂率较高等特点,使得混凝土收缩较大,容易开裂。由于高强混凝土与普通混凝土有着不同的材料配比及结构特点,引起高强混凝土收缩开裂的主要原因也与普通混凝土有所不同,因此,对高强混凝土的收缩开裂问题,进行系统地深入地研究,很有意义。

一、混凝土收缩开裂的表现形态

在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。

1、塑性收缩

发生在施工过程中、混凝土浇筑后4~5小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。塑性收缩所产生量级很大,可达1%左右。在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。

2、缩水收缩(干缩)

混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要就是缩水收缩。如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。

3、自生收缩

自生收缩是指混凝土在恒温、与外界无水分交换条件下发生的体积收缩变形。自生收缩的作用机理,可以通过混凝土的自干燥现象得到很好的解释。随着水泥水化的进行,在硬化的水泥石中就会形成大量的微细孔。而自由水量逐渐降低,水的饱和蒸汽压也会随之降低,从而使水泥石内部的相对湿度降低。但同时水泥石重量没有任何的损失,我们把这种现象称为自干燥。如图1所示,自干燥使得混凝土内部的毛细水凹液面的曲率半径逐渐减少,则毛细管压力逐渐增大,毛细水表面张力就会逐渐增大,使得混凝土受到的来自于自身的压力增大,自生收缩随即产生。

高强混凝土的原材料与配合比,决定了它的早期水化速度快、自干燥程度高、自收缩大等特点。因此,高强混凝土的自收缩比普通混凝土大得多。

4、炭化收缩

大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。炭化收缩只有在湿度50%左右才能发生,且随二氧化碳的浓度的增加而加快。炭化收缩一般不做计算。

混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。

二、混凝土收缩与开裂的关系

湿度梯度、温度梯度、结构过载和化学因素,通常产生0.1~1mm的裂缝。一般由于干燥和冷却时产生的收缩应变,导致早期开裂。在一定的温度、湿度情况下,当处于硬化阶段的混凝土则会产生温度收缩、干燥收缩以及自生收缩。环境的温度、湿度、构件尺寸、混凝土的温度、混凝土所用原材料特性以及拌和物的配合比等,对不同的收缩有着不同的影响力。

混凝土的收缩是导致其自身开裂的最主要原因,是材料开裂的导火线。可见,研究收缩的意义,并不仅仅在于收缩值的大小,主要还包括收缩对混凝土开裂趋势的影响,但也不能忽视其他影响混凝土开裂的因素,例如混凝土的徐变、弹性模量、抗拉强度以及断裂韧性等。

混凝土的收缩和徐变对混凝土开裂的综合影响可以用图4表示。

由上述分析可知,在混凝土结构受限时,由于收缩应变所诱发的弹性拉伸应力,与由于徐变应变所导致的松弛应力之间的相互关系,是多数混凝土结构变形与开裂的核心所在。显然,为了使混凝上结构具有最小的开裂危险,那么就要求材料具有较低的弹性模量。这样就会使得一定收缩量所引起的弹性拉应力较小,也就具有高的抗拉强度,以使得拉应力超过材料的抗拉强度而使材料开裂的危险减小;同时,要求材料具有较高的断裂韧性,以使得微裂纹的扩展变得困难。但是,仅仅从纯理论角度,来考虑实际的混凝上的工艺,是有相当的困难的。例如,增加混凝土配合比中骨料的用量,将会减小混凝土的干燥收缩,但同时又会增加材料的弹性模量及减小材料的徐变能力;而增加混凝土中的水泥用量,可提高材料的抗拉强度,但同时也会使材料干燥收缩变大,徐变能力减小,不利于提高材料的抗裂能力。

纵观上述影响混凝土开裂的各种因素可知,收缩在混凝土的开裂中,处于举足轻重的地位。但是也不能忽视弹性模量和徐变等其它因素对开裂的影响。应对混凝土的收缩开裂进行综合分析。

三、高强混凝土收缩开裂的抑制措施

1、高强混凝土自生收缩的抑制措施

引起高强混凝土收缩开裂的主要原因是自生收缩。因此,抑制高强混凝土的自生收缩可采取下列几种办法。①使用高C2S和低C3A或C4AF的硅酸盐水泥;②要尽量避免使用高细度的水泥和矿渣;③参入适量的粉煤灰等矿物掺合料;④选用高弹性模量的骨料配制高强混凝土;⑤掺入纤维来抑制高强混凝土的自收缩;⑥掺加膨胀剂、减缩剂等外加剂;⑦将轻质材料浸水饱和后,作为骨料掺入到高强混凝土中,通过“自养护”来抑制收缩。

2、高强混凝土收缩开裂的抑制措施

高强混凝土的收缩开裂明显大于普通混凝土,且与其所使用的矿物掺合料有着紧密的关系。为了改善高强混凝土易于收缩开裂的缺点,可以从两个方面进行。一方面是通过优化原材料性能及配合比,从混凝土材料本身来克服其收缩开裂大的缺陷;另一方面,可以采取“复合”的手段,通过掺加纤维等物质来提高混凝土的抗裂性。

结束语

针对收缩引起的开裂问题的原因分析与研究,本文从纤维增强、膨胀剂补偿收缩及减缩剂减小收缩三个方面,初步概括出提高高强混凝土抗收缩开裂能力的措施。⑴可以掺入有较大的弹性模量和较好的粘接的钢纤维,这样可以有效的阻止混凝土中裂纹的产生和扩展,降低高强混凝土的收缩开裂趋势;⑵在高强混凝土中,掺入适量的膨胀剂,能明显地提高高强混凝土早期抗收缩开裂的能力;⑶掺入适量的减水剂在高强混凝土中,可以降低高强混凝土在龄期内的收缩量,也就可以显著地降低高强混凝土的收缩开裂趋势。

参考文献

[1]张凤臣.高性能混凝土的收缩和应用研究[J].兰州理工大学硕士学位论文[D],2005,5.

[2]周双喜.混凝土的自收缩机理及抑制措施[J].华东交通大学学报.2007(5).

[3]庄其昌,裂缝对混凝土耐久性影响研究[D],青岛:青岛理工大学,2010.

[4]柴鹏,混凝土裂缝自愈合影响因素研究[D],武汉:长江科学院,2011.

篇(2)

关键词:建筑工程,结构裂缝,防治

 

一、工程概况

该工程为地上30层,地下3层,建筑总高度为120m。其建筑平面呈D:38m 的圆形,外围是16 根框架柱,内筒采用双筒型式,里侧为边长9.78m×11.83m的方筒,外侧为D:17m的圆筒。最初设计采用双筒一直到顶的结构体系,而且已按此设计完成地下室及地面4 层的主体结构施工,后来新业主要求扩大20 层以上客房的使用面积,把20层以上的圆筒取消,只保留方筒。这一结构体系的大调整,使传力路径发生了重大改变,于是有关设计人员进行了深入研究和处理。随后第5层以上按新图纸施工,并在19 层楼面按要求取消了圆筒。

二、裂缝的原因分析

对裂缝的界定一般以可见缝宽>0.05mm 的称为“宏观裂缝”,反之则称为“微观裂缝”。工程中构件产生裂缝的主要原因可以分为两大类,一类是由动、静荷载和其他外荷载引起的裂缝;另一类是由温度、收缩、不均匀沉降的变形荷载引起的裂缝。本工程剪力墙裂缝可认为是由于混凝土收缩及其温差所引起,而且前者是主要的因素。混凝土收缩是指混凝土在不受力的情况下因变形而产生的体积减小,主要包括:①硬化收缩,即混凝土在水化结硬过程中,由于水泥颗粒不断水化,毛细管及各孔隙游离水逐渐与水泥矿物质水化,转化为凝胶及结晶成水泥石,体积略有收缩,亦称“自生收缩”;②失水收缩,即混凝土内水分不断蒸发,引起体积显著收缩,其收缩量占总体积收缩量的80%~90%,亦称“干缩”;③碳化收缩,即大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。混凝土自生收缩发生在初凝至终凝期间,干缩发生在终凝后,初凝前的收缩因混凝土尚具塑性而不影响裂缝的产生。

三、混凝土收缩裂缝的主要起因

80年代以前,民用建筑中出现混凝土早期收缩裂缝的机率是相当小的,90 年代后随着我国泵送流态混凝土施工工艺的逐步推广,工程中出现早期收缩裂缝的比例逐渐增大,说明与泵送及商品混凝土的广泛使用有一定的对应关系。泵送流态混凝土由于流动性及和易性的要求,以及坍落度、水灰比增大,水泥标号提高,水泥用量增加,骨料粒径减小,外加剂用量增多等诸多因素的变化,导致混凝土的收缩及水化热作用比以往低流动性混凝土大幅增强,前者的收缩变形量约为(6.0~8.0)×10- 4,而后者仅为(2.~3.5)×10- 4。美国ACll305委员会在1991 年发表的《炎热气候下的混凝土施工》中指出,混凝土入模温度高,环境相对湿度低和阳光照射引起混凝土表面水分蒸发快是产生混凝土早期干缩裂缝的原因。

(1)水泥。水泥水化热被一致认为是引起混凝土裂缝的主要原因,主要通过控制水泥用量来实现对其的控制。常规概念认为水泥用量越大,混凝土强度越高,尤其是随着高强混凝土的大批量使用,混凝土配中的水泥用量逐渐增大,混凝土收缩裂缝也就相应增多,这已成为目前建筑界的突出问题。论文格式,建筑工程。。而实际上现代高强混凝土的研究表明,由于混合材料的出现,混凝土强度与水泥用量之间并非一定成比例关系,在低水泥用量的情况下同样可以配制出高强混凝土。

(2)混合材料。目前为了提高混凝土的施工可操作性,使混凝土硬化后获得高性能最常用和最有效的方法是采用“双掺”技术,即同时掺人高效减水剂及活性掺合料。减剂能有效降低混凝土水灰比,改善混凝土拌合物的工作性能,提高混凝土强度,节省水泥用量。混凝土中的添加物当所占比例<5%时称为掺量,超过的则称为混合材料。

(3)水灰比。若水灰比过大,则混凝土结构内部的水孔及毛细孔增多,骨料与水泥石界面的泌水也增多,造成结构疏松,混凝土拌和物的总用水量对干缩的影响较显著。

四、本工程裂缝现象解释

从以上分析可知,本工程筒体剪力墙裂缝是由于混凝土收缩引起的,不是结构性裂缝,对所出现的各种现象可以解释如下:

(1)当圆筒与方筒同时存在时,裂缝出现在圆筒外侧是因为方筒受圆筒所包裹,且环境相对较阴暗潮湿,空气对流也不明显,处在这样好的墙体养护环境下,水分不易蒸发,因而混凝土收缩不明显;同样,圆筒墙体内侧也较少发现裂缝。

(2)随着楼层的增高,墙体裂缝呈增多的趋势,这是因为高空风速加大,日晒时间延长,温差大,在相同时间里混凝土失水更多,导致收缩裂缝发展迅速,但最终收缩量相差不大,因此呈现裂缝条数多则细、少则宽的规律。

(3)裂缝呈“枣核形”( 即梭形) ,不穿过楼层,是由于楼面的“模箍作用”所致。其机理是由于被约束体(墙体)的变形受到约束体(楼板及墙暗梁)的约束,随着逐渐远离楼面及暗梁,该约束力逐渐减弱并形成收缩裂缝。在裂缝形成过程中,裂缝处必然会产生变形,而这种变形往上下伸展在接近楼板处因受到约束而其延伸受到限制,直至逐渐消失,因此可以认为约束作用既引起剪力墙开裂,又限制了裂缝的发展。

五、对剪力墙裂缝的处理措施

5.1“放”的措施

“放”就是尽量减少对混凝土收缩变形的约束,如同治水中的“放水疏导”法。本工程设计上可采取开“小结构洞”的方法,把方筒东西面长墙分成2 个墙肢,洞口用砖墙封实,不影响使用功能。由于在水平力作用下剪力墙结构变形曲线呈弯曲型,到建筑上部剪力墙位移较大,其剪切刚度的局部削弱对结构综合刚度影响不大,因此在设计上是可行的。由于开洞后混凝土的收缩应力得到释放,可以从源头上控制裂缝的发展。

5.2“防”的措施

“防”就是采取措施减少混凝土的收缩。从前述对混凝土材料的分析可知,把混凝土配比中的水泥从365kg/m3 减小至300kg/m3,粉煤灰用量从80kg/m3 增加至120kg/m3 甚至更多,水灰比0.8适当调低,都仍留有很大的余地。

5.3“抗”的措施

“抗”就是采取措施提高混凝土抵抗收缩变形的能力,一般可以用提高配筋率或减小钢筋间距的办法。本工程剪力墙配筋率合适,所以可在配筋率不变的情况下用等面积代换法,调整钢筋间距,减小钢筋直径,让水平构造筋“细而密”,钢筋间距由200mm 缩小至100mm 甚至80mm,把混凝土一部分的拉力转移到钢筋上来,使混凝土的收缩趋于均匀,只在构件中产生微裂缝,释放应力以避免或减少宏观裂缝。

六、裂缝的评价及处理

混凝土裂缝虽然是不可避免的,但其有害程度却是可以控制的,有关标准可根据使用条件而定。从结构的耐久性要求、承载力要求及正常使用要求等方面考虑,按照我国混凝土结构设计规范的规定,室内正常环境钢筋混凝土结构最大裂缝宽度允许值为0.3mm,基本上是本工程裂缝宽度的上限值。论文格式,建筑工程。。论文格式,建筑工程。。裂缝深度H 与结构厚度h 的关系为:h≤0.1H 为表面裂缝,本工程裂缝均属此范围;0.1H<h<0.5H 为浅层裂缝;0.5H≤h<1.0H 为纵深裂缝;h=H 为贯穿裂缝。论文格式,建筑工程。。论文格式,建筑工程。。根据对该工程在7 月后贴石膏的情况观察,没有发现裂缝有发展的趋势。论文格式,建筑工程。。1- 4 层剪力墙原来是应该有裂缝的,但在抹灰批荡一段较长时间内均没有发现裂缝,说明裂缝已趋稳定而不需进行修补。

篇(3)

关键词:高性能混凝土,发展现状,前景

 

传统的混凝土在200年来的发展中,经历了几次大的飞跃,但今天却面临着前所未有的严峻挑战:首先,随着现代科学技术和生产的发展,各种超长、超高、超大型混凝土构筑物,以及在严酷环境下使用的重大混凝土结构,如高层建筑、跨海大桥、海底隧道、海上采油平台、核反应堆、有毒有害废物处置工程等的建造需要在不断增加。论文参考。这些混凝土工程施工难度大,使用环境恶劣、维修困难,因此要求混凝土不但施工性能要好,尽量在浇筑时不产生缺陷,更要耐久性好,使用寿命长;其次,进入20世纪70年代以来,不少工业发达国家正面临一些钢筋混凝土结构,特别是早年修建的桥梁等基础设施老化问题,需要投入巨资进行维修或更新;最后,混凝土作为用量最大的人造材料,不能不考虑它的使用对生态环境的影响。传统混凝土的原材料都来自天然资源。每用1t水泥,大概需要0.6t以上的洁净水,2t砂、3t以上的石子;每生产1 t硅酸盐水泥约需1.5 t石灰石和大量燃煤与电能,并排放1tCO2,而大气中CO2浓度增加是造成地球温室效应的原因之一。尽管与钢材、铝材、塑料等其它建筑材料相比,生产混凝土所消耗的能源和造成的污染相对较小或小得多,混凝土本身也是一种洁净材料,但由于它的用量庞大,过度开采矿石和砂、石骨料已在不少地方造成资源破坏并严重影响环境和天然景观。所以未来的混凝土必须是高性能的,尤其是耐久的。耐久和高强度都意味着节约资源。“高性能混凝土”正是在这种背景下产生的。

高性能混凝土作为一种新的建筑材料,其耐久性为普通混凝土耐久性的两倍以上,可增加混凝土结构安全使用寿命,减少造成修补或拆除的浪费和建筑垃圾;可大量利用工业副产品和废弃物,尽量减少自然资源和能源的消耗,减少对环境的污染;收缩徐变小,适合建造高效预应力结构;高性能混凝土适用于高层、大跨、大体积、大跨桥梁、海底隧道、高速公路及严酷环境中使用的结构物,如核反应堆、海上结构和处于有腐蚀性介质环境的结构等的建筑和修补。其他用于特殊用途的智能高性能混凝土更有着其独特的、其他混凝土难以替代的优势。正因为高性能混凝土具有以上诸多优越性能,自从产生以来,便大放异彩,世界各国对其研究和应用势头的发展十分迅猛。具体如下:

1.高性能混凝土在国外的研究应用现状

1986~1993,法国由政府组织包括政府研究机构、高等院校、建筑公司等23个单位开展了“混凝土新方法”的研究项目,进行高性能混凝土的研究,并建立了示范工程。1996年,法国公共工程部、教育与研究部又组织了为期4年的国家研究项目“高性能混凝土2000”,投入研究经费550万美元。论文参考。法国修建的3座高性能混凝土的斜拉桥一佩尔蒂大桥以及最近建设的埃洛恩河大桥和诺曼底大桥也都使用了高性能混凝土。论文参考。

1994年,美国联邦政府16个机构联合提出了一个在基础设施工程建设中应用高性能混凝土的建议,并决定在10年内投资2亿美元进行研究和开发 各大州政府也致力于高性能混凝土的推广和应用。在纽约州已建成了100多座具有高性能混凝土桥面的桥梁。在华盛顿州,公路部门正在制定高性能混凝土梁的标准。

目前德国现行的混凝土结构设计规范已达C110级,强度等级为当今世界之最。挪威皇家科技研究院的科学与工程研究基金持续资助高强混凝土和高性能混凝土的研究。丹麦的大贝尔特工程是一座大型的隧道与桥梁连接结构,规定的设计使用寿命为100年。国外的这些抗议应用高性能混凝土的历程,对我们很有启发的参考价值。

2.高性能混凝土在国内的研究应用状况

1992年,吴中伟首次将高性能混凝土介绍到国内。近年来,我国高性能混凝土的研究、应用发展较快。我国是生产和使用混凝土的大国,混凝土的质量在不断地提高,涉足高性能混凝土的研究和应用还是近10年的事。随着高性能混凝土的优越性不断地得到认可,混凝土应用技术的进步,城市建设速度的加快,高性能混凝土获得了迅速发展。

高性能混凝土在实际工程中获得了越来越广泛的应用,尤其是在高层建筑、大跨度桥梁、海上采油平台、矿井工程、海港码头等工程中的应用日益增多。

全国很多研究单位已经研制出普通泵送高性能混凝土、大掺量粉煤灰高性能混凝土、高流态自密实高性能混凝土、纤维增加高性能混凝土、轻骨料高性能混凝土、水下不分散高性能混凝土港工与海工高性能混凝土、高抛纤维高性能混凝土等等,研制出C30-C80的各种强度等级的高性能混凝土和完备的混凝土耐久性检测设备,以及掌握了配套的施工成套技术和各种混凝土耐久性检测技术等。其中具有优异耐久性的C30高性能混凝土即将在地质条件复杂的深圳地铁工程中大规模使用。

3.高性能混凝土的发展趋势

高性能混凝土的发展,不过十几年的时间,习惯了普通混凝土的人们对它的认识还不够,阻碍了高性能混凝土广泛应用。高强高性能混凝土已基本被接受,而中低强度高性能混凝土还没得到工程人员的普遍认可,这就为中低强调高性能混凝土的普及带来很大障碍。同时,人们应该认识到“优质工程必须要高性能”的。

在绿色环保日益深入人心的今天,混凝土能否长期作为最主要的工程结构材料,关键在于能否成为绿色建筑材料,于是高性能混凝土便将承担历史的责任。高性能混凝土能更多的节约水泥熟料,更有效地减少环境污染,同时也能大量降低料耗与能耗;能更多的掺加以工业废渣为主的细掺料,节代熟料,改善环境,减少二次污染;能更大地发挥高性能混凝土的优势,尽量减少水泥与混凝土的用量,达到节省资源、能源与改善环境的目的。

参考文献

[1]吴中伟.高性能混凝土的发展趋势与问题[J].建筑技术.

[2]冯乃谦.高性能混凝土[M],北京:中国建筑工业出版社.

[3]冯乃谦.高性能混凝土的发展与应用[J].施工技术,2003,32(4):1-6.

[4]胡晓波.新型建筑材料讲义.长沙铁道学院.

[5]唐建华,蔡基伟.高性能混凝土的研究与发展现状.论文天下.

篇(4)

关键词:钢筋混凝土、剪力墙、施工质量、控制

Abstract: combined with years of the actual construction experience, he reinforced confuses soil shear wall construction quality control, discussed some some of his own comments, and borrow to illustrate examples of reinforced concrete shear wall construction technology and quality control.

Keywords: reinforced concrete, shear wall, construction quality, control

中图分类号:TU37文献标识码:A 文章编号:

建筑高强混凝土的运用随着高层建筑的不断出现而日趋广泛,但是由于高强混凝土的施工质量不易控制性,本论文就施工质量控制要点来研究剪力墙高强混凝土,并以某高层建筑工程的实际事例来探讨这些施工要点和措施的实施,通过事例证明这些要点和措施能够比较好的保证高强混凝土的施工质量。

1 选用材料

1.1 低用水量和低水胶比

为了保持投拌合物在低用水量时的流动度就必须掺入高效减水剂,此时配和的比例:高强度混凝土的水胶比要小于0.40,C60~C70高强度混凝土的水胶比宜低于0.36,C80以上水胶比一般小于0.30。

1.2 选用材料-- 水泥

适于配置高强度混凝土的水泥主要有硅酸盐类和硫铝酸盐系此两大类,在建筑工程中的硅酸盐水泥主要有:快硬硅酸盐水泥、高强度硅酸水泥以及快硬无收缩硅酸盐水泥,而硫铝酸盐类得主要作用则是用于配制补修工程用的高强水泥。因此配制高强度混凝土在选择水泥时应注意它与可能选用的高效减水剂之间的相容性。

1.3 选用材料--高效减水剂

根据硫酸钠含量不同,有高浓与低浓之别,所以茶磺酸盐甲醛缩合物,其减水效果与磺酸基在茶环上的位置及缩合核体有关,但由于高强混凝土掺高效减水剂剂量较大,所以我们选用以高浓产品为宜。

1.4 选用材料-- 矿物掺合料

1)硅粉,对于强度不很高的高强混凝土硅粉的掺量较低的原因主要在于:a.硅粉混凝土具有早强的热点,但后期强度增长幅度小;b.硅粉的价格昂贵,掺量大时不仅增加材料费用,而且也使粘聚性增加,增加搅拌和浇注的困难。

2)由于磨细矿渣能水化并生成凝胶,能改善混凝土的微观结构,并使之密化,对强度和耐久性起着有利的作用,超细矿渣不仅有很高活性,而且能明显改善全部胶凝材料的颗粒级配,能使其更为密实;所以高炉矿渣要磨细。

2 施工工艺

2.1 施工工艺-- 浇筑

1)为了避免混凝土堆积或倾斜,就必须对下料斗的出料严格控制,不能急速推动料斗,从而形成带状浇筑,就得尽可能使混凝土一次浇筑到位。

2)避免大块或料层浇筑而实施整层浇筑,大块或料层浇筑往往容易造成混凝土离析,特别是当新制混凝土不具粘合性的时候,每层浇筑厚度应予以限制,采用薄层浇筑方法,一般每层厚度浇筑不超过30cm,这样就可以避免顶层混凝土的重量使底层的空气无法逸出,如果滞留在内的空气导致混凝土捣实不全会使表面出现缺陷;

3)一般混凝土浇筑速度在,15m3/h 左右,灌注与震捣的速度应协调、均衡;所以就要尽可能快地灌注混凝土,但这一速度不能超过震捣施工方法和设备允许的限度;

4)施工控制的重点之一就是如何降低混凝土入模温度,降低混凝土入模温度的常用方法是采取水泥罐加遮阳棚,并洒冷水降温,砂石料洒冷水降温,并用篷布覆盖,拌合用水采用井水,必要时加冰块或增加制冷机组,充分利用温低的时间浇筑混凝土等措施,保证混凝土入模温度不高于32℃,并且保证混凝土浇筑后混凝土的内外温差不超过25℃(注:冬季施工混凝土入模温度不低于5℃)。

2.2 施工工艺-- 震捣

钢筋混凝土剪力墙采用的工艺为附着式震捣器以插入式振捣棒进行。一般剪力墙截面虽窄但深度较深,加上细密的配筋,插入式振捣棒很难插到底,所以也只有靠附着式振动器振动。

附着式振捣器的数量和间距应该符合下列几个要求:a. 无论朝什么方向,它们之间的间距控制在.3mm 左右;b.在接合处和拐弯的地方,它们的有效距离将缩短,所以可安置在距角落和交会处2m 的地方,常设置双排振捣器及梅花状布置。C.在混凝土施工开始前,打开振捣器并用手在模板上移动,以感受振动,并且看看是否有明显的强、弱区,特别是确定没有死角,否则要调整振捣器的位置,在全区域内获得一致的振捣效果。

2.3 施工工艺-- 养护

注意养护高强混凝土:

1)做好加强混凝土外部保温内部降温措施,为了保证混凝土内外温差不大于25℃,减少混凝土外表层与其环境温差,若混凝土环境温差与混凝土外表温差较大,宜在模板外、缠花塑料布内设置保温层或通少量蒸气提高环境高温度,浇筑混凝土前可在模板外缠花塑料布后再包囊篷布。混凝土顶面要及时覆盖洒水保温、保温养生、达到一定强度后要及时凿毛,露出石子。

2)混凝土的自然养护时间为两到四个小时,如需蒸汽养护升温时应控制在15℃/h,应控制好升降温速度---- 防止升温过快混凝土表面体积膨胀太快而产生裂缝。接下来的恒温时段是混凝土强度增长的主要阶段,恒温温度和时间是恒温期决定混凝土强度及物理力学性能的工艺参数,混凝土在恒温时的硬化温度取决于水泥的品种以及水灰的比例。有活性掺合料的高强混凝土恒温要比普通混凝

土高,一般要达到70℃,左右,相对温度保证在70~100%。降温时,应控制在10℃/h,而且养护罩要密闭,当混凝土温度与外界温度不超过20℃时方向撤出护罩(冬季施工时尤其注意,否则会出现结构沿预留管道方向产生裂纹和其它收缩裂纹)。拆模时,如果外界温度高于10℃应对梁体洒水养护。切勿猛浇大量冷水,以免混凝土突然降温而产生裂纹,拆模后要加以覆盖养护防止降温过快产生裂纹。

3)高强混凝土的养护控制。

由于高强混凝土水灰比低,部分水泥得不到水化,因而易引起后期强度降低或结构开裂,所以养护显得尤其重要,一般尽量避开炎热天气下施工,如混凝土量不多可安排在早、晚施工,否则必须采取降温措施。高强度混凝土在浇注完毕后应在8 小时内加覆盖并浇水或喷洒养护剂养护,浇水养护日期不得少于14 天。

2.4 施工工艺-- 温控

由于剪力墙高强混凝土具有体积大、热量不易散失的特点,我们就应该在浇筑后及时布置测温点来进行温度的测量和控制,并根据检测结果及时采取应对措施。

那么我们应该如何布置测温点呢应该在混凝土表面、中间级变截面处应力集中的部位设计测温点,采用温度计观测记录各测温点温度及环境温度,进行温度跟踪,测温频率为1 次/2h,通过对记录的数据分析。采取应对措施,比如调整冷却水流速计流量以协调节混凝土内部温度,延长拆模时间等方法,待混凝土内部最高温度降到一定的温度(50℃左右)时再来拆模,拆模后及时洒温水,这时的水温根据混凝土表面温度定,使其覆盖保湿、保温养生不少于14d。

3 某高层建筑工程施工实例分析

某高层建筑工程项目具体如下:地上五层,地下一层,框架一剪力墙结构,剪力墙采用C50 混凝土,双向配筋,配筋较密,剪力墙施工正值7 月份,天气炎热,白天室内外温度45℃左右。施工方本着质量第一的方针,在剪力墙施工时,采用了如下措施:

3.1 优选掺合料和添加剂严格骨料配置

从实列来看,因为工程项目临江,所以采用硅酸盐水泥并掺粉煤灰,高效减水剂以及15mm 以下的卵石,。

3.2 优化施工工艺,提高浇筑质量

从施工的时间来看,由于施工时值夏天,白天天气炎热,根据工艺不宜浇筑,所以剪力墙高强混凝土浇筑的时间选择在深夜;骨料在拌和前先洒水来降温,为避免混凝土离析,浇筑时严格控制出料口和浇筑面的高差,为能达到一面墙一次性浇筑完毕的目的,采用两台混凝土泵同时浇筑。采用附着式振捣器以插入式高频振捣棒相结合的方式进行震捣,确保混凝土密实,在剪力墙底部、中部和中上部采用附着式振捣器,墙体双面模板同时安装四台振捣器,墙体上部采用多台高频震捣棒同时震捣,并严格按照(快插慢拔、直上直下)的原则,采用梅花型布置震捣点,并控制点间距不大于40,震动器的影响半径控制在70mm 左右以避免震捣棒和钢筋碰撞。

3.3 严格养护措施

由于浇筑的时值盛夏,混凝土浇筑时温度高,浇筑后应及时养护,比如像派专人负责洒水、盖草袋之类的工作;还采取了在墙体下部、中部和底部布置测温点来严格监控混凝土内部温度和内外温差的措施,及时做好记录,并根据检测结果及时采取应对措施。正式有了如上措施的保证,经过观察和测量,该工程项目的剪力墙高强混凝土的施工质量很好,达到设计要求,受到了业主和监理的一致好评。

篇(5)

关键词:结构形式,受力特点,抗震性能

 

异形柱结构(包括异形柱框架和异形柱框架剪力墙),常用于多层及小高层住宅;其框架柱采用L型、T型、十字型。这种结构比普通框架柱有明显的优点,一般住宅的框架柱多为矩形柱或方柱,柱子的短边尺寸不小于300mm,而一般的填充墙采用墙厚为200mm,或240mm;这样在建成后难免在室内露柱,既影响家具的摆放,又不美观,给住户的使用带来不便。而异形柱的肢宽同填充墙墙厚,在房间内无明柱、明梁,布局规整,有效地增大了室内的使用面积,受到用户的追求

近年来,由于土地的紧缩,多层住宅难以满足时代要求。为提高容积率,小高层、高层住宅蜂拥而起。但是,影响建筑结构安全的因素主要有三方面:结构方案、内力效应分析和截面设计。结构方案虽然属于概念设计的范畴,但由此决定的整体稳定性对结构安全的影响和对整座建筑物的工程造价的影响起主要作用。特别是现代设计多依赖于计算机辅助计算,所以,结构选型,概念设计与结构分析决定了作品的成败;对于小高层,常用的结构形式为:剪力墙(薄壁剪力墙)结构,短肢剪力墙结构,框架简力墙结构,异形柱框架剪力墙结构,配筋砌体结构等。小高层的层数一般为8~12层;纯砖混结构的砖墙采用240mm厚或370mm厚,已不能满足抗压、抗剪、抗弯的要求。而配筋砌块砌体结构,从受力上看,可以满足小高层的要求,但其施工复杂,施工速度漫,难以推广。论文参考。钢筋混凝土剪力墙结构,完全能满足小高层的受力要求,但其含墙量多,自重大,含钢量在55Kg/m2左右。比如同样建造一座12层的住宅和建造一座20层的高层住宅,其主体每平方米含钢量相近;且自重大,给基础的附加压力增大,所以不够经济。薄壁剪力墙的墙厚可采用160mm厚,墙体太薄,梁与墙的连接,板在墙上的锚固,墙、梁、暗柱节点钢筋密集,不宜施工;且其隔音、保温效果差。短肢剪力墙结构,其墙体的配筋率比较高,《高规》规定:“短肢剪力墙截面的全部纵向钢筋的配筋率,底部加强部位不宜小于1.2%,其他部位不宜小于1.0%,”而一般剪力墙的配筋率为不小于0.25%。框架剪力墙结构,前面提到,普通的框架柱会在房间内出现棱角,影响使用。

现在来分析异形柱框架剪力墙结构,异形柱框架剪力墙结构为框架剪力墙结构的特殊形式,其柱肢截面的肢高肢厚比小于4.0,且肢长不小于500mm,一般肢厚取200mm、240mm。论文参考。填充墙采用轻质高效的墙体材料,不仅改善了建筑的保温、隔热性能,节约能源消耗,还能减轻结构自重,有利于节约基础建设投资,有利于减少结构的地震作用,采用工业废料制作的墙体,有利于利用废料,有利于环境保护,充分响应国家号召,努力搞好节能减排。钢筋混凝土剪力墙一般布置在楼梯间、电梯间位置,对电梯设备运行、结构抗震、抗风均有利。剪力墙应对称、均匀布置,防止扭转。

异型柱的受力特点:异型柱是多肢的,其剪切中心一般在平面范围之外,受力时要靠各柱肢交点核心混凝土协调变形,这种变形协调使各柱肢内存在相当大的翘曲应力和剪应力,由于剪应力的存在,使柱肢易先出现裂缝,也使得各肢的核心混凝土处于三向剪力状态,使得异型柱比普通柱变形能力低,脆性破坏明显。况且,异型柱存在着纯翼缘柱肢受压的情况,其延性较差。异型柱的破坏形态为:弯曲破坏、小偏压破坏、剪切破坏等;影响其破坏的因素有多种:如荷载角、轴压比、剪跨比,配箍率、箍筋间距及纵筋直径,混凝土强度等。由于其受力性能的复杂,设计时,除了满足计算外,还应满足相应的构造措施,来保证其强度和延性。

异形柱剪力墙结构中,异形柱为双向偏心受压构件;设计时,按双偏压柱计算,严格控制柱子的轴压比,则柱子的配筋基本为构造要求;剪力墙为主要抗侧力构件。混凝土宜采用高强混凝土,钢筋宜采用高强热轧钢筋;目前推广使用三级钢。相对普通框架剪力墙结构,其结构的总高度,柱子的轴压比,第一扭转周期与第一平动周期的比值,结构弹性层间位移角限值等均较严格。

异形柱剪力墙结构的抗震性能:以上分析得,异型柱的受力性能比较复杂,异型柱为抗震的薄弱构件;但作为框架剪力墙结构,本身具有两道抗震防线,剪力墙受力明确,变形能力较好,且剪力墙的纵向刚度大,按等刚度分配的原则,则剪力墙承担较大的地震荷载;高层中,纵横向均匀、对称的布置一定数量的剪力墙,能有效地吸收地震剪力。对于异型柱,其轴压比是影响混凝土柱延性的关键指标,柱的侧移延性比随轴压比的增大而降低;所以在高轴压比的情况下,增加箍筋用量对提高柱的延性作用已很小,故设计时一般控制柱子的轴压比,比一般框架柱的轴压比限值小0.05。施工中注意梁柱结点钢筋比较密,保证结点处混凝土的密实,作到抗震要求的强结点,弱构件,强减弱弯。论文参考。

异形柱结构最早由天津市在七十年代开始采用。2003年,天津市建设管理委员会推出了《钢筋混凝土异形柱结构技术规程》,2006年,建设部发行《混凝土异形柱结构技术规程》JGJ149-2006,向全国推广。同时,中国建筑科学研究院PKPM工程部编制的PKPM软件,为设计这种结构体系的住宅提供了方便、快捷的技术手段。值得在城市推广使用。

篇(6)

关键词:型钢混凝土结构;抗震性能水平;容许变形值;量化指标

abstract

combining with performance grades of reinforced concrete structures at home and abroad, the seismic

performance of steel reinforced concrete (src) structures can be induced into four levels: normal service, temporary service, life safety and collapse prevention. the failure modes and characteristics of src columns are introduced, and limit states of the four seismic performance levels and their dominating parameters are put forward. on the basis of the experiments and results of src frames and columns, the story drifts angle limitation and range of crack width on the column end are obtained for four different seismic performance levels. finally considering ideas of performance based seismic design, problems needed much further study about src structures are proposed.

keywords: steel reinforced concrete (src) structures, seismic performance levels, tolerantdeformation values, quantitative index

1. 引 言

型钢混凝土结构(src 结构)又叫劲性钢筋混凝土结构或钢骨混凝土结构,是钢-混凝 土组合结构的一种形式。src 结构通过把钢和混凝土巧妙地组合在一起,充分发挥了这两 种材料的特性,其具有比传统结构承载力高、强度刚度大、稳定性和抗震性能好等优点。随 着超高层建筑的发展和理论研究的深入,src 结构在我国将具有非常广阔的应用前景。目 前国内外对 src 结构的研究工作和成果主要集中在构件的承载能力,即针对强度计算开展 研究[1]。随着基于性能抗震设计理论的提出和发展,人们意识到这种传统基于力的设计方 法还存在缺陷,开展基于性能的 src 结构抗震设计理论则更加科学合理,既符合当代抗震 设计理念的发展趋势,又为工程实践应用和推广型钢混凝土结构提供基础。

确定 src 结构在不同性能水平下的容许变形值是实现其基于性能抗震设计理论的前提 和关键。由于结构的性能与破坏状态有关,而结构的破坏状态又可由结构的反应参数或者某 些定义的破坏指标来确定,所以,结构性能水平可以用这些主要的参数来划分。容许变形值 被认为是比较重要的反应参数,但对此方面的研究还比较欠缺,本文即在此背景下研究 src 结构功能失效的判别参数和容许变形值的大小。

2. src 结构的性能水平和抗震设防目标

2.1 性能水平划分

结构的抗震性能水平是指建筑物在某一特定设防地震水准下预期达到的最大破坏程度, 或容许的损坏极限状态。目前对钢筋混凝土结构性能水平的划分比较明确,比如我国现行抗 震规范[2]将其分为三档,美国 vision2000、fema273 和 atc-40 分为四档,当然还有学者 提出其他不同的划分标准。

性能水平为基于性能的抗震设计和震后修复加固提供依据,对于 src 结构,结合已有 的划分方法和试验理论研究成果[2],将其性能水平分为四档,见表 1 所示。

表 1 src 结构四个性能水平及其宏观描述

tab.1 target performance levels and damage control of src structures

 

2.2 抗震性能目标确定

结构的性能目标是指一定超越概率的地震发生时,结构期望达到的某种功能水平。我国 现行抗震规范采用小震不坏、中震可修、大震不倒的三水准设防目标,但在表 1 提出的 src 结构性能水平背景下,已有的三水准抗震设防目标需要更加细化。按照小中大三个地震作用 水平和“四档”性能水平,可对 src 结构建立表 2 所示的抗震性能目标。

表 2 src 结构抗震性能目标

tab.2 seismic performance objectives

 

(其中:①为基本目标,指一般使用要求的建筑应具备的最基本性能目标;②为重要目标,指重要性很高

或地震后危险性较大的性能目标;③为非常重要目标,指对安全有十分危险影响的性能目标)

可以看出,排除掉不符合实际工程的情况,这里对 src 结构建立了 10 个抗震性能目标,

其比钢筋混凝土结构的三水准设防目标有所提高,且“中震可修”的性能目标变得更加具体 化。以上三个地震作用水平、四档结构性能水平和 10 个抗震设防目标的提出为实现 src 结 构基于性能的抗震设计理论奠定了基础。

3. src 框架柱的破坏模式及描述

src 构件是在混凝土中主要配置型钢,同时配有受力和构造钢筋。型钢分为实腹式和 空腹式,实腹式型钢主要有 i 字钢、h 形钢和 l 形钢等。理论和实践均证明,实腹式 src 构件具有较好的抗震性能,而空腹式 src 构件的抗震性能与普通 rc 构件的抗震性能基本 相同。因此,这里主要研究含钢率为 4%~8%的实腹式 src 构件。

3.1 破坏模式和特点

src 柱在水平荷载作用下主要产生三种破坏模式,破坏形态按剪跨比的不同大致分为 三种。当剪跨比小于 1.5 时,src 柱发生剪切斜压破坏,首先剪跨段产生许多大致平行的斜 裂缝,将混凝土分成斜向受压短柱,钢骨腹板此时基本处于纯剪应力状态,最后钢骨腹板在

近似纯剪应力状态下达到屈服强度,剪压区混凝土压碎而破坏;当剪跨比为 1.5~2.5 时,src

柱在反复荷载作用下发生剪切粘结破坏,首先在最大弯矩处出现剪切斜裂缝或竖向粘结裂 缝,随着荷载的增加与往复循环,粘结裂缝扩展成两条沿型钢翼缘的竖向粘结主裂缝,最后 裂缝处混凝土保护层剥落,剪切承载力下降,构件破坏;当剪跨比大于 2.5 时,src 柱的承 载力往往由弯曲应力起作用,一般发生弯曲破坏,其首先在最大弯矩截面处形成水平裂缝, 随着荷载增加,柱底纵筋屈服,紧接着型钢翼缘屈服,随之腹板屈服,外围混凝土不断剥落, 纵筋和型钢翼缘压屈,最后 src 柱达到最大承载力而破坏。

3.2 与 rc 柱破坏的主要区别

试验研究表明,src 柱比 rc 柱具有更优越的抗震性能,其优越性主要在于型钢的影响。 型钢的存在使构件的变形能力增强,破坏时吸收的能量增大,延性也相应得到提高。rc 柱 的最终破坏是由于压区混凝土的压酥,src 柱由于设置较强劲的钢骨,压区混凝土逐渐压 酥后,rc 部分的承载力将向钢骨转移,其后期仍有相当大的变形能力来延缓破坏。可见, 无论在承载能力和刚度方面,还是在延性和耗能能力方面,src 构件均体现了良好的抗震 性能,其在不同性能水平下的变形容许值也将大于传统 rc 结构,这方面的研究工作值得深 入开展。

4. src 结构功能失效的判别标准和容许变形值大小

4.1 四个性能水平及其极限状态

目前关于结构性能水平的划分方法很多,美国 vision2000、fema273 和 atc-40 均将 其划分为四种性能水平,日本和墨西哥则采取三重性能水准,参照已有的划分标准和我国新 的“建筑工程抗震性态设计通则(试用本)”,本文按照我国抗震设计的需要和建筑损伤加重 的程度,对 src 结构采用正常使用、暂时使用、生命安全和接近倒塌四个性能水平。

传统基于力的抗震设计理论将 rc 结构的极限状态分为承载能力极限状态和正常使用 极限状态,基于性能的抗震设计考虑到“投资-效益”因素,从结构受力和业主损失两方面出 发,对应于所提的四个性能水平,将 src 结构的破坏极限状态分为正常使用极限状态、暂 时使用极限状态、生命安全极限状态和接近倒塌极限状态。

4.2 不同性能水平的失效判别标准和参数

为了确定 src 框架柱在四个性能水平下的容许变形值,首先应该能够对各种性能水平 的损坏极限状态进行描述,相应的就必须建立 src 柱不同性能水平的失效判别标准和参数。 传统的 rc 结构采用层间位移角这种单一指标作为量化参数,对于 src 结构,可以利用层 间位移角、裂缝宽度、塑形耗能、塑形转角和延性系数等加以描述和量化。

src 压弯构件经历了混凝土开裂、裂缝延伸扩展,直到压区混凝土剥落,受压纵筋和 型钢受压翼缘屈服,承载力达到峰值的一系列过程,构件最终以受压区混凝土破碎作为丧失 承载力的标志。为了与上述四档性能水平相对应,可将其整个受力过程划分为弹性阶段、带 裂缝工作阶段、弹塑性工作阶段和破坏阶段。

在前述 src 柱破坏形态与剪跨比的定量关系基础上,可以建立 src 柱三种破坏模式各 自的失效判别标准。经过分析,发现得出的三种失效判别标准之间有很多共同点,因此可将 其归纳为统一的判别标准以便应用。对于 src 柱,从开始加载到沿柱身出现剪切斜裂缝或 弯曲裂缝为正常使用性能阶段,此为弹性工作阶段,以开始出现斜裂缝或弯曲裂缝为正常使

用性能极限状态;从混凝土开始出现裂缝到受拉钢筋或型钢受拉翼缘屈服为暂时使用性能阶

段,此阶段是带裂缝工作阶段,以受拉纵筋或型钢翼缘屈服为暂时使用性能极限状态;从型 钢开始出现屈服到外围混凝土剥落,纵筋压屈且水平荷载达到最大值为生命安全性能阶段, 此为弹塑性工作阶段,以水平荷载达最大值为生命安全性能极限状态;从 src 柱承载力达 最大值到混凝土保护层严重剥落,直至核芯混凝土发生局部破碎且承载力严重下降为接近倒 塌性能阶段,此阶段为塑形阶段,以核芯混凝土发生局部破碎为接近倒塌性能极限状态。

4.3 不同性能水平的容许变形值

结合上述判别标准,可分别以层间位移角、裂缝宽度、塑形耗能和延性系数等作为 src 结构四个性能水平极限状态的判别参数。考虑到其中一些指标计算的难度,并为了与我国抗 震规范的性能指标相一致,这里以层间位移角和框架柱的裂缝宽度作为各种性能水平极限状 态的判别指标。

为了得到各种性能水平的层间位移角范围,本文对国内外 src 试验柱、src 平面框架 试验共约 90 个数据进行了统计分析,试验框架柱大部分为实腹式 src 构件,轴压比范围为

0.3~0.8,体积配箍率为 0.8%~2.2%。通过分析文献[4]-[20]中试验柱和平面框架的变形性能, 以及对各个性能水平极限状态的层间位移角统计结果来看,所有试件在未开裂弹性阶段的层 间位移角分布范围为 1/400~1/185,其中 1/400 对应的 src 柱仅有不到 4%的配钢率且轴压 比较高,大部分试件的弹性位移角集中在 1/350~1/200 范围内;仅有少数试件测到 src 柱 受拉钢筋或型钢屈服时的层间位移角,分布范围为 1/120~1/100,有的学者统计为 1/133~

1/100,但大部分集中在 1/120 左右;所有试件均得到了 src 构件在接近倒塌极限状态的层 间位移角,其分布范围为 1/53~1/11。

表 3 src 结构各性能水平的层间位移角分布范围及分布比

tab. 3 distribution range and proportion of inter-storey drift

正常使用阶段

 

从上表各性能阶段的层间位移角分布情况来看,src律性较好。按照各个性能水平层间位移角的分布比例,在达到一定安全保证率的情况下,将

src 框架结构正常使用、暂时使用和接近倒塌三个性能水平极限状态的层间位移角限值定

为 1/350、1/120 和 1/35;同时,将生命安全状态的层间位移角限值设在 1/120 和 1/30 之间, 取为 1/75。

另外,框架柱的裂缝宽度也易于作为各种性能水平极限状态的判别指标。文献[4]-[20]

所做的 src 框架柱抗震性能试验中,在对层间和柱端位移角测量的同时,考察到的柱端裂

缝宽度 在正 常使用 、暂 时使用 、生 命安全 和接 近倒塌 四个 性能水 平的 分布范 围为

0.05~0.1mm、0.5~1mm、1~2mm 和大于 2mm。

综上所述,本文提出的 src 框架结构在不同性能水平时的层间位移角限值和柱端裂缝 宽度可总结为表 4。

表 4 src 框架结构性能水平量化指标限值

tab. 4 limit value of quantitative index for src structures

 

5. 结论及建议

1) 提出基于性能的 src 结构抗震设计理论这一新课题,结合国内外对钢筋混凝土结构 性能水平的划分标准,将 src 结构的性能水平划分为正常使用、暂时使用、生命安全和接 近倒塌四个等级,在此基础上建立了 src 结构的 10 个抗震设防目标;

2) 总结了 src 柱在不同剪跨比时的破坏形态,提出了四个性能水平的失效判别标准和 参数,建议各自的层间位移角限值分别取 1/350、1/120、1/75 和 1/35,并将对应的柱端裂缝 宽度范围定为 0.05~0.1mm、0.5~1mm、1~2mm 和>2mm;

3) 本文所提四个性能水平的容许变形值仅建立在少量试验基础上,还需要将试验量测 结果和大量数值模拟结合起来,从理论上建立容许变形值的计算公式;同时,已有的 src 结构试验研究主要针对框架结构,目前迫切需要开展型钢混凝土组合件和型钢混凝土剪力墙 的试验研究,以便为全面实现 src 结构性态抗震设计提供依据。

参考文献

[0]

[1] jgj138—2001/j130-2001. 型钢混凝土组合结构技术规程[s]. 北京:中国建筑工业出版社,2001.

[2] gb50011-2001.抗震结构设计规范[s]. 北京:中国建筑工业出版社,2002.

[3] 李俊华, 王新堂等. 低周反复荷载下型钢高强混凝土柱受力性能试验研究[j]. 土木工程学报.2007,

40(7):11~18.

[4] 贾金青,姜睿,厚童.钢骨超高强混凝土框架柱抗震性能的试验研究[j].土木工程学报,2006,39(8):14~18.

[5] 闻洋.钢骨高强混凝土柱受力性能的试验研究[j].混凝土,2006,(9):25~26.

[6] 薛伟辰,胡翔.钢骨混凝土框架滞回分析研究[j].地震工程与工程振动,2005,25(6): 76~80.

[7] 李斌,闻洋,李云云.钢骨高强混凝土柱受力性能的试验研究[j].包头钢铁学院学报,2006,25(2):197~199.

[8] 蒋东红 , 王连广 , 刘之 洋 . 钢 骨高强 混凝土框 架 柱开裂荷 载 的试验研 究 [j]. 四川建筑 科 学 研 究,2002,28(3):7~9.

[9] 曹万林等.异性截面钢骨混凝土柱抗震性能试验研究[j].世界地震工程,2004,20(2):64~68.

[10] 白国良,石启印.空腹式型钢混凝土框架柱的恢复力性能[j].西安建筑科技大学学报,1999,31(1):32~34.

[11]黄亮.深圳时代财富大厦超高层建筑结构若干问题研究[j].工程抗震与加固改造,2006,28(3):60~64.

[12] 薛建阳,赵鸿铁.型钢混凝土框架模型的弹塑性地震反应分析[j].建筑结构学报,2000,21(4):28~33.

[13] 徐培福等.带转换层型钢混凝土框架—核心筒结构模型拟静力试验对抗震设计的启示[j].土木工程学 报,2005,38(9):1~8.

[14] 杨勇, 郭子雄, 聂建国. 型钢混凝土竖向混合结构过渡层抗震性能研究综述[j]. 工程抗震与加固改 造,2006,28(5):78~86.

[15] 李丕宁, 秦荣.基于性能的高层钢—混凝土混合结构住宅设计 [j].工程力学, 2007, 24(sup1):87~93.

[16] 田玉基等.钢骨混凝土梁式托柱转换层结构的研究[j].工业建筑,2000,30(2):54~57.

[17] 刘阳.核心型钢混凝土柱抗震性能实验研究[硕士论文].华侨大学硕士学位论文,2006.

[18] 庄云.src 柱—rc 梁组合件抗震性能试验研究[硕士论文]. 华侨大学硕士学位论文,2006.

[19] 王妙芳 , 郭子 雄 . 型钢混凝土柱抗震性态水平及极限状态的讨论 [j]. 工程抗震与加固改造 .2006,

28(3):31~36.

[20] mizuo inukai, kazuya noguchi, masaomi teshigawara, and hiroto kato. seismic performance composite columns using core steel under varying axial load [j]. 13th

world conference on earthquake engineering, 2004:598~606.

篇(7)

【关键词】预埋件;埋设;技术;控制

1工程概况

工程实例概况:该工程为某地一栋127m高层建筑,用途为商业和商务办公楼,建筑面积8万多平方米,地下3层,地上25层。由于建筑特点决定,本工程外装饰幕墙工程主要内容有:石材幕墙、玻璃幕墙、(百叶窗、铝合金窗、隔栅)等。本工程的施工过程中需要大量的预埋件施工,因此作为本文的实例具有很强的代表性,预埋件埋设质量的好坏,肩膀各队后面进行的结构搭接和外部设备安装起到重要的影响。下面将分别就幕墙预埋件的工程特点和预埋件施工方法、技术及注意事项等分别进行阐述。

2 建筑幕墙预埋件种类

目前在建筑幕墙常见的预埋件有:锚板构造预埋件、槽型预埋件,后置埋件等三个类型。

2.1锚板构造预埋件:锚板构造预埋件由锚板和对称布置钢筋焊接(电弧焊)形成的组件。它是在土建施工时埋设的。

2.2槽型预埋件。槽型预埋件由特殊轧制槽型钢和特殊工字型钢(或钢筋)焊接形成的组件。它是土建施工时埋设的。

2.3后置埋件: 由锚板和膨胀螺栓或化学螺栓(代替钢筋)组成。它是在幕墙工程安装施工中形成的预埋件组件。

3预埋件的加工及埋设施工方法

3.1预埋件的加工应符合下列要求

焊缝高度必须达到设计要求;焊角没有咬边现象;防锈漆涂刷是否均匀;所用材料是否符合设计要求;加工尺寸与图是否一致;填写预埋件进场验收表;填写《进场物资报验表》以及上述资料经过自检和监理人员检查、验收通过后才可进行埋设。

3.2预埋件的埋设

3.2.1 预埋件埋设之前,首先根据施工设计深化图进行放线定位,特别是注意转角位置埋件的埋设,并填写《技术交底》表备案。

3.2.2 当每一层楼土建梁柱钢筋绑扎完毕后,按照预埋件点位布置图及标高尺寸,根据土建梁柱尺寸控制线,在钢筋上视具体情况用红笔划出预埋件埋设控制线。

3.2.3 在埋设预埋件之前,当土建支模时,就进行分格,将预埋件分格线弹在底模外檐口处。

3.2.4 根据埋件施工图埋件分布的情况,对埋件以轴线右边起第一个埋件进行编号,从1 至若干个进行埋设并以埋件检查表填写埋件埋设的情况。上下、左右、前后将埋设的情况记录下来,埋件埋设后填写《隐蔽验收单》并附《检查表》报监理验收。

3.3 预埋件埋设的要求

3.3.1 预埋件在埋设过程中,要以多轴线进行埋设,相对来说轴线之间的精确度足以满足埋件的几何尺寸,若以单轴线定位,丈量过程中尺寸误差会积累,造成埋件的偏位,相对轴线偏差小于20mm。

3.3.2 幕墙与主体结构连接的预埋件,应在主体结构施工时按设计要求埋设;预埋件位置偏差上下不应大于 10mm,上下测量依据底模用卷尺进行测量。图 1所示。

3.3.3 当土建梁柱钢筋绑扎完毕后,将预埋件用铁丝临时固定在钢筋上,或点焊在箍筋上。

3.3.4 若预埋件埋设中碰到埋件在箍筋的空档处,则可添加辅助钢筋,或用铁丝与主筋扎牢。

33.5 预埋件在埋设过程中,一定要紧贴模板(参见图 2),上下、左右偏差到 20mm影响不大,而前后倾斜将造成角码与埋件之间接触减少,施工难度加大。采取措施,加垫铁块等均为点接触,受力将受影响。这时候只能采用楔型铁块辅助修正,这样势必造成施工周期长、成本增加。

3.3.6 埋件埋设好以后,在浇捣砼时,要注意保护埋件。混凝土施工的振动棒在埋件边应延长振捣时间,埋件周边的砼一定要浇捣密实,避免产生漏浆及空鼓现象,影响埋件的质量。

3.3.7预埋件在墙面埋设时,在浇混凝土时,应跟踪进行检查,若埋件高出混凝土应立即往下打,使埋件与混凝土面一样平。

3.3.8结构阴阳角的埋件处理

a、阴角部位埋件的埋设,依据幕墙安装的需要在角位处拉开50mm,否则影响今后施工安装。

b、阳角部位埋件的埋设,阳角处的埋设应与阴角处埋设相反,角位两个埋件应贴边靠紧。

3.3.9剪力墙处埋件施工

一般情况下,待剪力墙模板合模后埋件无法进行调整,因而在和模前将埋件固定好,采用吊线法进行,埋件与线锤退缩5mm,以免影响合模。

3.3.10圆弧处埋件施工

圆弧位埋件的施工,应明确是建筑分格还是结构分格,及时与设计沟通,以免误差扩大无法进行施工。

3.3.11 当预埋件埋设完毕后,应做好记录,并填写预埋件安装检查表。

4 预埋件安装

4.1 每位埋件安装人员清楚预埋件的施工技术、工艺,明确分工。埋件安装前,施工单位项目经理要向安装队长、技术员及埋件安装的有关人员进行施工技术交底。安装队长和技术员向埋件班长、组员,进行技术交底。同时,技术交底的内容必须知会监理人员。

4.2 每位埋件安装人员必须认真领会技术交底内容并执行,严格按设计图纸的内容和要求并依据施工组织设计进行埋件安装。

4.3 确定每个面、每个层的基准,并清楚识别基准标识。明确化学锚栓需符合设计要求及安装方法和使用的工具及方法。

4.4 详细的膨胀螺栓和穿透螺栓的施工方法。

4.5 详细的化学锚栓的施工方法。

4.6 确定从那个基础开始安装,以及安装顺序。

4.7 确定土建预埋件误差的补救方案,(必要时,须征得甲方、甲方监理、土建及设计部门同意)。

4.8 埋件安装必须按照放线的基准线、埋件位置图、节点图进行安装。

4.9 埋件安装应采取可靠方法处理,主受力埋件至少采用两方对穿螺栓加两个膨胀螺栓,对穿螺栓直径不小于12mm,其周围的缝隙应用玻璃丝布堵赛,膨胀螺栓不小于M12*110 并加环氧树脂加固,剂量符合说明书要求。

4.10 膨胀螺栓因不能置于钢板内部时,应至少保证两个膨胀螺栓打在埋件钢板内部,其余允许打在外部,且中心至埋件边缘距离不应小于30mm,并通过厚度不小于8mm 的铺助压板与埋件焊牢,焊缝长度不小于50mm。

4.11 埋件安装完毕后,必须进行防腐处理,涂刷防漆两遍(特殊情况必须依据设计要求进行)。

4.12 应进行承载力现场试验,必要时应进行极限拉拔试验,并有检验报告。

4.13 每个连接点不应少于 2 个锚栓。

4.14 化学锚栓的安装符合图纸要求,安装方法符合化学锚栓的说明书的要求。

4.15 不允许在化学锚栓接触的连接件上进行焊接操作。

4.16 预埋件清凿后应露出金属光泽,表面不允许有混凝土、鳞片、焊接的杂质存在。

4.17 卡埋件和结构预留口的预留槽口内充满聚苯乙烯(苯板)无混凝土杂物。

总之,建筑幕墙预埋件是幕墙的重要构件,它与主体结构的连接节点是幕墙的重要连接节点。它的主功能是把幕墙所承受的荷载和作用,通过预埋件有效、可靠传递到主体结构上。

幕墙工程施工中预埋件的质量,埋设质量和与转接件的连接质量都对幕墙的性能和使用寿命有着重大的影响,因此,重视幕墙工程的施工技术是非常有必要的。

参考文献

[1] 蒋秀根;剧锦三;张丽莉;;高强钢筋混凝土轴心受压构件稳定系数分析方法[A];都市农业工程科技创新与发展——2005北京都市农业工程科技创新与发展国际学术研讨会论文集(Ⅱ)[C];2005年

[2] 周文松;姚晓征;张继文;;CFRP结合预应力立柱增强人防地下室混凝土框架[A];FRP与结构补强——’05全国FRP与结构加固学术会议论文精选[C];2005年

相关文章