时间:2023-03-17 18:04:33
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇数字信号论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
1.1电路的组成该多路数字信号发生器主要由四个部分组成:(1)电源电路。(2)输入选择电路。(3)输出驱动电路。(4)主机电路。
1.2电源电路其中电源电路主要是给整机电路提供稳定的电压和电流的,能够让电路工作在抗干扰能力强的电源电路环境下;该工作电路的电压通常给单片机能够提供正常工作的+5V电压(TTL电路电平),并且能够提供18V(CMOS电路电平)电压,考虑到整机的用电电压、电流以及单片机的抗干扰要求,采用一般的三端稳压器组成电源电路,再外加滤波措施,这种电路更能保证电路稳定、长时间工作。
1.3输入选择电路输入电路选择和控制信号来自于工作参数设置开关和工作状态控制开关。输入信号为直流电平,幅度为5V。根据所需的选择控制方式和数量,拟采用独立式非编码的键盘电路实现输入信号的选择;具体选择和控制开关设计如下:(1)工作状态控制开关K0;(2)信号序列选择开关K1、K2;其中K1—代表穷举测试序列的选择开关。其中K2—代表走步测试序列的选择开关。(3)输出频率选择开关KF(在主机电路中)分别为100KHZ、10KHZ、1KHZ三个档位。(4)输出信号幅度选择开关Ku(在输出驱动电路中)分别为5V、18V两档。
1.4输出驱动电路输出驱动电路首先要把单片机给出的两个8位的信号组合成16位电路信号输出,再根据输出信号幅度选择开关的设置输出相应的信号电平。其中,根据输出信号的电平变化和驱动能力要求,输出的两个8位信号通过锁存器实现8到16的组合,用高压输出驱动器完成电平变化和驱动要求。
1.5主机部分主机电路根据信号序列和频率变化的要求,拟采用单片机AT89C51实现所需的控制处理功能,通过软件编程的方法实现电路所要达到的功能。
2电路的主要实现原理
多路数字信号发生器是一个能够输出16位的数字信号源,它能够产生满足数字电路检测用的多路数字序列信号。通过AT89C51单片机为核心部分,通过单片机控制电路输出的序列,本电路可以产生两种序列,一种是‘穷举’测试信号序列,这种序列即为216个16路信号;一种是‘走步’测试信号序列,即为每路逐个输出“0”,与每路逐个输出“1”组合。这些序列通过单片机I/O口输出,在经过地址锁存器将所输出的信号进行锁存输出,就得到想要的16位数字信号。如果我们需要模拟信号,可经过将正弦波,三角波波形数据做成波形表,用查表法来输出波形数据。经D/A(DAC0832)转换输出波形。AT89C51有4KB的程序内存可以用来存储运行程序,而128B的RAM则可用来保存波形参数及用户自定的外部波形的数据。由于是数字合成技术,因此该信号源可以产生多种波形。在频率的选择上多路数字信号发生器通过AT89C51单片机和电路,通过软件编程的方法控制频率的输出,输出的频率分别为1KHz、10KHz、100KHz三个档位。
3总结
1.1基准相位信号用30Hz(F)的低频信号对9960Hz(fs)进行调频。
1.2可变相位信号30Hz信号(F)和载波f0经边带测角器产生30Hz的调幅边带波信号。可变相分量以30Hz的速度进行旋转,由此可见,当点位不同时,基准信号与可变信号的相位差也不同,相位差与VOR台的具置有关系。通过比较接收机中的基准相位信号和可变相位信号,确定用户的方位。
二、接收信号数字处理
在甚高频全向信标系统的定向原理中,30Hz信号比相是其核心。根据9960副载波可以得出基准相位信号,通过相位比较器可以对相移θ进行检测,并确定方位。然后将基准相位30Hz信号和可变相位30Hz信号进行过0点检测,通过计数器得出相位差,将计算结果处理成数字方位的格式,并将其送到无线电磁指示器(RMI),通过RMI进行全方位显示。
相位差θ和计时器计时时间t的关系式。以基准信号为基准,若发现其正向过零点,则利用计数器开始计数,直到可变信号正向过0点时,结束计数,将检测到的相差点数计算出来,并将计数器清零准备下次计数,若系统采样率为fs,则VOR方位角度分辨率。因为甚高频通信系统会被邻频或同频干扰,在信号处理的过程中会出现系统误差的情况,导致比相信号的不稳定和抖动,所以,在解算相位差时,不能只进行一次求解就得出,而要经过多次的换算取所有结果的平均值,但这样又会引发其他问题,即当两个相位基本一致的时候,相位差会一致在0度左右摆动,这样角度就可能会在360度和0度之间转换,那么,经过多次计算得出的角度将会出现误差,解决这一问题的主要方法有。式中,Z:最终输出的相位差。经过上述公式处理方式,可以有效避免信号在0度附近摆动形成的计算误差是。
三、结束语
论文摘要:文章介绍了数字通信系统的技术特点,并与传统的模拟信号对比阐述了数字信号的优势,然后对数字通信系统的应用方法进行浅析。
一、数字通信系统
数字通信是指用数字信号作为载体来传输信息,或者用数字信号对载波进行数字调制后在传输的通信方式。它的主要技术设备包括发射器、接收器以及传输介质。数字通信系统的通信模式主要包括数字频带传输通信系统、数字基带传输通信系统以及模拟信号数字化传输通信系统三种。
数字信号与传统的模拟信号不同,它是一种无论在时间上还是幅度上都属于离散的负载数据信息的信号。与传统的模拟通信相比其具以下优势:首先是数字信号有极强的抗干扰能力,由于在信号传输的过程中不可避免的会受到系统外部以及系统内部的噪声干扰,而且噪声会跟随信号的传输而进行放大,这无疑会干扰到通信质量。但是数字通信系统传输的是离散性的数字信号,虽然在整个过程中也会受到的噪声干扰,但只要噪声绝对值在一定的范围内就可以消除噪声干扰。其次是在进行远距离的信号传输时,通信质量依然能够得到有效保证。因为在数字通信系统当中利用再生中继方式,能够消除长距离传输噪音对数字信号的影响,而且再生的数字信号和原来的数字信号一样,可以继续进行传输,这样一来数字通信的质量就不是因为距离的增加而产生强烈的影响,所以它也比传统的模拟信号更适合进行高质量的远距离通信。此外数字信号要比模拟信号具有更强的保密性,而且与现代技术相结合的形式非常简便,目前的终端接口都采用数字信号,同时数字通信系统还能够适应各种类型的业务要求,例如电话、电报、图像以及数据传输等等,它的普及应用也方便实现统一的综合业务数字网,便于采用大规模集成电路,便于实现信息传输的保密处理,便于实现计算机通信网的管理等优点。
要进行数字通信就必须进行模数变换,也就是把由信号发射器发出的模拟信号转换为数字信号。基本的方法包括:首先把连续形的模拟信号用相等的时间间隔抽取出模拟信号的样值。然后将这些抽取出来的模拟信号样值转变成最接近的数字值。因为这些抽取出的样值虽然在时间进行了离散化处理,但是在幅度上仍然保持着连续性,而量化过程就是将这些样值在幅度上也进行离散化处理。最后是把量化过后的模拟信号样值转化为一组二进制数字代码,并最终实现模拟信号数字化地转变,然后将数字信号送入通信网进行传输。而在接收端则是一个还原过程,也就是把收到的数字信号变为模拟信号,通过数据模变换再现声音以及图像。如果信号发射器发出的信号本来就是数字信号,则不用在进行数据模变换的过程,可以直接进入数字网进行传输。
二、数字通信系统的应用
数字通信系统的关键性技术包括编码、调制、解调、解码以及过滤等。其中数字信号的调制以及解调是整个系统的核心也是最基本、最重要的技术。
数字调制是通过对信号源的编码进行调制,将其转换成为能够进行信道传输的频带信号,即把基带信号(调制信号)转变为一个高频率的带通信号(已调信号),而且由于在传输过程中为了避免信息失真、传输损耗以及确保带内特性等因素,在进行信号进行长途传输以及大规模通信活动时必须对数字信号进行载波调制。现阶段的数字信号调制主要分为调幅、调相以及调频三种。调幅是根据信号的不同,通过调节正弦波的幅度进行信号调制,目前最常见的数字信号是幅度取值为0和1为代表的波形,即二进制信号;调相是由于载波的相位受到数字基带信号(调制信号)的控制,通常情况下载波相位和基带信号是保持一致的,例如二进制基带信号为0时,载波相位相应也为0;调频是利用数字信号进行载波频率的调制。解调就是讲载波信号提取出来并经过还原得到信息的过程,它是调制的逆过程也被称为反调制。目前解调的类型分为相干解调和非相干解调两大类。数字通信的质量通常用信息传输速率、符号传输速率以及消息传输速率这三个指标来衡量。对于数字通信系统的性能指标通常用信息传输速率、符号传输速率以及消息传输速率这三个指标来衡量。
通信系统向数字化时代的转变就是要从有线通信想无线通信,从公用移动网络到专用网络,从而实现全球化的数字通信理念。而且通过现有的综合业务数字网络为基础,通过一个多用途的用户网络接口就可以轻松实现信号发出端到接收端全程数字传输与交换的新型通信网。利用这种新型技术可以扩充通信业务的范围,而且还具有更加经济以及灵活的特点,能够与现有的计算机互联网、多媒体信息网、公共电话网以及分组交换数字网等进行任意转换。随着数字通信设备的发展和不断完善,利用微处理技术对数字通信系统的信号进行转变,还能够使设备更加灵活的应用到各种长途以及市话当中。由于长途通信线路的投资远大于终端设备,为了提高长距离传输的经济性,未来高度、大容量的数字通信系统也将成为主流趋势,而且随着数字集成电路技术的发展,数字通信系统的设备制造也越来越容易,成本更低、可靠性也更高。
三、结束语
数字通信系统是一种全新的利用数字信号进行消息传输的通信模式,伴随着社会的不断发展,数字通信的应用也已经越来越广泛,在我们日常生活中的电脑、手机上网、视频电话、网络会议以及数字电视等都是通过数字通信系统来进行信号传输的,而且由于社会的发展人们对各种通信业务的需求量也在逐渐增加,在光纤传输媒介还没有完全普及以前,数字通信系统主要是利用电缆、微波等有限的媒介进行传输,但目前光纤技术的发展无疑将会推动数字通信的发展。随着数字通信系统也正在向智能化化、高速度以及大容量的方向迅速发展,相信在未来数字通信系统将会取代传统的模拟通信系统而成为主导。
参考文献
[1]张英.微处理机实现的数字通信[J].电子技术应用,2005.
[2]张晓林.电视数字通信[J].图书馆杂志,2005.
[3]王金保.通信基本知识[J].华北电力技术,2005.
关键词:数字信号;信号处理;DSP
1.数字信号处理的概念
数字信号处理是用数字计算机对离散信号或将模拟信号离散化后进行处理的现代信号处理技术,自身有其独特的计算方法和理论。数字信号处理是当前发展相当迅速的一种技术,无线通讯,多媒体技术,网络等都是基于数字信号处理算法的。
数字信号处理器(DSP)是为进行数字信号处理而设计的微处理器。数字信号处理器是同数字信号处理技术一同发展起来的。它针对数字信号处理的应用采用了专用的硬件设计结构。
微处理器的发展经历了单板计算机、单片计算机的历程,DSP则是一种高性能的片上微计算机系统。它除了利用大量的新技术、新结构来大幅度改善芯片性能外,还把内存、接口、外设、事件管理器等集成在一个芯片上,成为一个功能强大的片上系统(SOC)。DSP的产生和发展,得益于数字信号处理理论及计算机、电子技术的飞速进步。
2.数字信号处理器模拟的实现
计算机系统本身是一个非常复杂的系统,要使用软件来模拟每个晶体管或每个门电路各个方面的行为特征几乎是不可能的。人们简化系统复杂程度的常用办法是对系统按层次进行抽象,体系结构就是对计算机系统在结构层次上的简化。然而,体系结构层次上的计算机系统依然很复杂,开发其软件模拟器也因此而十分困难。通常的做法是,在已存在的模拟器基础上进行二次开发或改进,使其适应自己的要求。
在任何数字信号处理中,当涉及硬件实现时,都会遇到一个很普遍的问题:一般要处理的原始信号序列长度是非常长的,但受物理设备条件所限,每次(比如一个时钟周期内)输入给数字信号处理相关硬件(如DSP)的必定是有限长度的采样后的数字序列,也就是说要对原有长序列进行一次截断。显然,截断后的短序列相比于原有未截断的长序列的信号属性必然要发生变化。比如截取高斯白噪声的一段,其截断后的序列的均值和方差等统计特性相对于原有白噪声序列肯定会有变化。这种由于截断而引起的序列性能下降显然会导致后续的DSP等硬件设备中数字信号处理性能的下降。
3.DSP硬件结构分析
在当前信息化、数字化进程中,信号作为信息的传输和处理对象,逐渐由模拟信号变成数字信号。信息化的基础是数字化,而数字化的核心技术之一就是数字信号处理。数字信号处理技术已成为人们日益关注的并得到迅速发展的前沿技术。DSP作为一种特别适合于进行数字信号处理运算的微处理器,凭借其独特的硬件结构和出色的数字信号处理能力,广泛应用于通讯、语言识别、图像处理、自动控制等领域。
3.1 DSP的主要特点及其硬件要求
数字信号处理是指将模拟信号通过采样进行数字化后的信号进行分析、处理、它侧重于理论、算法及软件实现。数字信号处理算法具有如下一些主要的特点:信号处理算法运算量大,要求速度快;信号处理算法通常需要执行大量的乘累加运算;信号处理算法常具有某些特定模式;信号处理算法大部分处理时间花在执行相对小循环的操作上;信号处理要求专门的接口。
从一开始,DSP的结构就是针对DSP算法模型进行构造的,几乎所有的DSP都包含有DSP算法的特征。因此,数字信号处理的上述特点要求DSP必须是专门设计的。
3.2多总线,多处理单元结构
DSP芯片采用了哈佛结构,它分别设置程序存储和数据存储空间,使用专用的程序总线和地址总线。CPU可以同时访问程序和数据,大大提高了处理速度。所谓的改进哈佛结构,体现在如下几点:
1)允许数据存放在程序存储器中,并可以被算术指令直接使用。但程序和数据不能同时读取,多数访问存储器的指令需要两个执行周期。
2)将指令存储在高速缓存中,无须从数据/程序存储器读取,可以节约一个指令周期。
3)改进存储器块结构,允许在一个周期内同时读取一条指令和两个操作数。
使用两类(程序总线、数据总线)六组总线。包括程序地址总线、程序读总线、数据写地址总线、数据读地址总线、数据写总线、数据读总线。配合哈佛机构,大大提高了系统速度。
DSP内部一般都包括多个处理单元,如ALU、乘法器、辅助算术单元等。它们都可在单独的一个指令周期内执行完计算和操作任务,而且往往同时完成。这种结构特别适合于滤波器的设计,如FIR和IIR。这种多处理单元结构还表现为在将一些特殊的算法作成硬件,如典型的FFT的位翻转寻址和流水FIR滤波算法的循环寻址等。而且大部分DSP具有零消耗循环控制的专门硬件,使得处理器不用花时间测试循环计数器的值就能执行一组指令的循环,硬件完成循环跳转和循环计数器的衰减。
3.4 DSP结构改进
过去的DSP结构设计主要是面向计算密集型的应用,而对控制密集型支持得不够。而现实应用中很多场合需要信号处理和精确控制的有效结合,如数字蜂窝电话,它要有监控和语言音处理的工作。现代的DSP将采用DSP/MCU的混合结构,在保证计算能力优先的前提下,通过快速的现场切换、多执行部件并行执行等方式,加强控制类操作的处理能力。将MCU核集成到DSP核中,或者从整体上对DSP进行重新设计,使之兼有DSP和MCU的功能。
另外,为解决速度、功耗、可编程之间的矛盾,我们提出了一种新型的计算方式,它结合了现有微处理器和DSP的时间计算方式以及ASIC、FPGA解决方案的空间计算方式。这种可重构DSP处理器的关键是它能同时进行时间和空间计算。它由一个计算元件互相连接的二维阵列构成,每个阵列都有各自的逻辑单元和本地寄存器。连接这些计算元件的可编程连线借以对阵列的数据流架构动态重构,从而可根据运行的具体任务而对其进行优化。
参考文献:
【关键词】混沌加密;光学通信;应用
二十世纪六十年代,人们发现了混沌理论。混沌理论即一个给出混乱、随机的分周期性结果的模型,却是由确定的非线性微分方程构成。混沌是一种形式非常复杂的运动,看似杂乱无章的随机运动轨迹,却是由一个确定方程模型得出。混沌对初始条件的敏感度非常高。密码技术是一种研究使用密码进行加密的技术,而随着信息技术的发展,窃取加密密码的方法越来越多,并且随着传统密码技术的不断使用和技术公开,传统密码技术的保密性已经降低,所以一些新的密码技术开始出现,其中包括混沌加密、量子密码以及零知识证明等。本文首先介绍混沌加密密码技术,然后介绍光学通信,最后重点探讨混沌加密在光学通信中的应用。
1.混沌加密
我们首先对混沌加密的相关内容做一下简单介绍,主要包括:混沌的特征、混沌加密的定义以及混沌加密的常用方法。混沌的特征主要有:混沌运动轨迹符合分数维理论,混沌轨迹是有序与无序的结合、并且是有界的伪随机轨迹,混沌运动具有遍历性,所有的混沌系统都具有几个相同的常数、并且符合利亚普诺夫指数特性,混沌运动的功率谱为连续谱线以及混沌系统具有正K熵等。混沌加密是一种新的密码技术,是将混沌技术与加密方法相结合的一种密码加密技术。混沌加密的方法有很多种,根据不同的通信模式,可以选择不同的加密方式与混沌技术结合,以实现信息的加密传输。混沌加密的常用方法主要包括:数字流混沌加密、数字信号混沌加密以及连续流混沌加密等。
2.光学通信
之所以将混沌加密应用在光学通信中,是因为光学中存在混沌现象,这种混沌现象既包括时间混沌现象也包括空间混沌现象。光学通信是一种利用光波载波进行通信的方式,其优点是信息容量大、适应性好、施工方便灵活、、保密性好、中继距离长以及原材料来源广等,光纤通信是光学通信中最重要的一种通信方式,已成为现代通信的重要支柱和发展趋势。光纤通信系统的组成主要包括:数据信号源、光数据传输端、光学通道以及光数据接收端等。数据信号源包括所有的数据信号,具体体现为图像、文字、语音以及其他数据等经过编码后所形成的的信号。光数据传输端主要包括调制解调器以及计算机等数据发送设备。光学通道主要包括光纤和中继放大器等。光数据接收端主要包括计算机等数据接收设备以及信号转换器等。
3.探讨混沌加密在光学通信中的应用
在光学通信中,应用混沌加密技术对明文进行加密处理,以保证明文传递过程中的安全性和保密性。本文重点对混沌加密在光学通信中的应用进行了探讨。其内容主要包括:混沌加密常用方法、光学通信中混沌加密通信常用方案以及光学通信中两级加密的混沌加密通信方案。其中混沌加密常用方法主要包括:数字流混沌加密、数字信号混沌加密以及连续流混沌加密等。光学通信中混沌加密通信常用方案主要包括:混沌掩盖加密方案、混沌键控加密方案、混沌参数加密方案以及混沌扩频加密方案等。
3.1混沌加密常用方法
连续流混沌加密方法:连续流混沌加密利用的加密处理方式是利用混沌信号来掩盖明文,即使用混沌信号对明文进行加密处理。连续流混沌加密方法常应用在混沌掩盖加密方案以及混沌参数加密方案中。其加密后的通信模式是模到模的形式。
数字流混沌加密方法:其加密后的通信模式是模到数再到模的形式。
数字信号混沌加密方法:其加密后的通信方式是数到数的形式。主要包括混沌时间序列调频加密技术以及混沌时间编码加密技术。主要是利用混沌数据信号对明文进行加密。
3.2光学通信中混沌加密通信常用方案
在光学通信中,利用混沌加密技术进行通信方案的步骤主要包括:先利用混沌加密方法对明文进行加密(可以使用加密系统进行这一过程),然后通过光钎进行传输,接收端接收后,按照一定解密步骤进行解密,恢复明文内容。
混沌掩盖加密方案:其掩盖的方式主要有三种:一种是明文乘以密钥,一种是明文加密钥,一种是明文与密钥进行加法与乘法的结合。
混沌键控加密方案:其利用的加密方法主要为FM-DCSK数字信号加密方法。该方案具有良好的抗噪音能力,并且能够不受系统参数不匹配的影响。
混沌参数加密方案:就是将明文与混沌系统参数进行混合传送的一种方案。这种方案增加了通信对参数的敏感程度。
混沌扩频加密方案:该方案中,扩频序列号一般是使用混沌时间序列,其加密方法是利用数字信号,该方案的抗噪音能力特别好。
3.3光学通信中两级加密的混沌加密通信方案
为了进一步保证传输信息的安全保密性,需要对明文进行二次加密。其步骤是:首先先对明文进行第一次加密(主要利用双反馈混沌驱动系统产生密钥1,然后将明文与密钥1组合起来形成密文1),第二步是通过加密超混沌系统产生的密钥2对密文1进行二次加密,形成密文2,第三步将密文2通过光纤进行传递,同时将加密超混沌系统一起传递到接收端。第四步,接收端接收到密文2以及加密超混沌系统后,对密文2进行解密,形成密文1,然后将密文1传送到双反馈混沌驱动系统产生密钥1,然后将密文1进行解密,通过滤波器破译出明文。此外,还可以对二级加密通信进行优化,即使用EDFA(双环掺饵光纤激光器)产生密钥进行加密。
4.结论
本文首先对混沌加密的相关内容做一下简单介绍,主要包括:混沌的特征、混沌加密的定义以及混沌加密的常用方法。然后我们简单介绍了一下光学通信以及光纤通信,并且介绍了光纤通信的组成结构。并且由于光学中存在混沌现象,所以我们在光学通信中应用混沌加密技术进行保密工作。最后本文重点探讨了混沌加密在光学通信中的应用,其内容主要包括:混沌加密常用方法、光学通信中混沌加密通信常用方案以及光学通信中两级加密的混沌加密通信方案。其中混沌加密常用方法主要包括:数字流混沌加密、数字信号混沌加密以及连续流混沌加密等。光学通信中混沌加密通信常用方案主要包括:混沌掩盖加密方案、混沌键控加密方案、混沌参数加密方案以及混沌扩频加密方案等。
【参考文献】
[1]马瑞敏,陈继红,朱燕琼.一种基于混沌加密的关系数据库水印算法[J].南通大学学报(自然科学版),2012,11(1):13-27.
[2]徐宁,陈雪莲,杨庚.基于改进后多维数据加密系统的多图像光学加密算法的研究[J].物理学报,2013,62(8):842021-842025.
[关键字]提升系统 可移动无线双频监测监控技术
[中图分类号] X924.3 [文献码] B [文章编号] 1000-405X(2013)-2-278-1
1提升系统
提升系统是矿山生产的关键环节,对安全生产起着决定性的作用,根据集团要求,井筒设施由原来的月检提升到每周例检一次。以往每次检测、检修都是检修人员站在罐笼上作业,由于井筒狭小,且存在淋水、上部落物、高空作业、井上下难以联系等安全隐患,作业过程安全系数低、劳动强度大、检测效率低,致使安全隐患排查不细,影响正常生产。
为解决检修过程中存在的安全隐患、降低检修劳动强度,提高工作效率,沂南金矿组织开发应用了可移动无线双频监测监控系统。该系统把现场情况用数字信号传输到地面电脑,实现对现场多方位检测,可疑检测点可局部放大,给检修人员提供准确信息,从而对可疑检测点有针对性的进行检修。该系统可提高检测速度,节省检修时间,确保检修人员安全,提高生产效率。
2可移动无线双频监测监控技术:
可移动无线双频监测监控系统是由音视频采集系统、信号转换系统、音视频接收系统三部分组成。
(1)音视频采集系统。声音由采集器输入音频放大器,经信号压缩放大输入发射模块;视频采集器由4台6毫米摄像头组成,形成多方位视频采集信号,输入发射模块;
(2)信号转换系统。信号转换系统采用2.4GHZ国际通用频率,使用RF CMOS集成IC,整合功率放大器( PA )和压控振荡器( VCO )集双声道音频视频于一体调制,后经功率放大器(采用德国西门子公司GaAs芯片)作功率放大,形成图像清晰、音频稳定的信号。在长距离传输中,通过中继器放大来保证数字信号的完整;
(3)音视频接收系统。音视频接收系统由信号接收模块和显示终端组成,信号接收模块接收到数字信号后输入电脑显示终端形成视频图像及声音。
全系统采用DC12V电源;保证使用安全。
3技术应用
方案确定后,经调试组装,在铜井分矿进行了试应用。经验证,该系统运行状态良好,安全性能可靠,较好地解决了生产难题,目前该系统在本矿进行了推广使用。
设备组成:音视频采集传输系统是由摄像头、拾音器、发射模块、音频放大器、平板放大器、防水机箱、DC12V电源组成。信号转换系统由RF CMOS集成IC,整合功率放大器( PA )和压控振荡器( VCO )、功率放大器(采用德国西门子公司GaAs芯片)组成。音视频接收系统是由DC12V电源、信号接收模块、电脑组成。
调制方式:FM /FSK 频率范围:CH 1= 2414MHZ;CH 2= 2432MHZ;CH 3= 2450MHZ;CH 4= 2468MHZ(可选一拖七套设备即七个发射配七个接收)。
技术参数视频输入( 1 路 )双声道伴音输入 ( 2 路 )( 6.0MHZ NTSC;6.5MHZ PAL )
发射功率 :34dBM最大消耗电流:700mA;输入电压:12V接收机频率:CH 1=2414MHZ;CH 2=2432MHZ;CH 3=2450MHZ;CH 4=2468MHZ
接收灵敏度:-90dBm;接收机最大消耗电流:160mA;输入电压:12V,视频输出 ( 1 路 );双声道伴音输出( 2 路 )(6.0MHZ NTSC;6.5MHZ PAL )发射接收模块工作温度:-10-120度,根据矿井的深度采用平板接受放大模块,增加接收数字信号数据的强度。
使用方法:把音视频采集传输系统固定在罐笼上面,根据井筒设施调整安装摄像头采集信号,卷扬机以每秒0.5米的速度运行,检修人员在井口接收终端检测竖井井筒内各种设施安全隐患。
可移动无线双频监测监控系统方案示意图(图1):
可移动无线双频监测监控系统音视频采集器外观图(图2):
通过使用可移动无线双频监测监控系统彻底改变了以往检测井筒需要多人站在罐笼上作业的弊端,实现了全程音频和视频的监控,降低了安全事故的发生,有力的保证了提升系统的安全运行。
参考文献
[1]刘鹏.基于无线网络的视频监控系统设计与实现[D].浙江大学硕士论文,2006年.
【关键词】数字信号处理 教学改革 学习兴趣 探索性实验
【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2015)06-0023-02
“数字信号处理”课程是电子类学科和专业的一门重要专业基础课,涉及知识面广泛,如信号与系统、信号处理、通信等,课程内容抽象,理论性强,概念多,学习难度较大,加上先修课程的学习的好坏也影响到本课程的学习。这些因素导致学生难以在有限的教学时间内掌握好本门课程的内容,学习的畏难情绪增加,学习效果随之下降,导致逐渐丧失学习信心和学习热情[2]。如何培养并保持学生的学习兴趣,充分发挥学生的学习主动性是数字信号处理课程教学中需要面对的一个重要问题。因此对传统的教学方法进行改进,采用多种教学方式激发学生的学习兴趣,取得了较好的教学效果。
一、多种教学手段结合激发学习兴趣
传统的课堂教学方式采用黑板板书方式,其优点是师生互动直接,可以自由控制时间,学生在老师板书的过程中有足够的时间理解和思考,跟进老师思路的压力较小,适合公式推导、例题讲解等内容的教学。但是板书方式形式单调,不适合对抽象的概念和复杂的过程的讲解,而且,数字信号处理课程本来每堂课内容多,全采用板书讲授方式将很难完成教学任务,加快速度则有些重要难以讲到,久之影响教学效果。同时,本课程涉及信号流图(如FFT流程图等)、滤波器设计内容中的频谱图及设计的结果,如果板书出来将占用珍贵的课堂时间。因此仅用黑板板书的方式显然并不合适。投影教学方式的优点是形象生动,尤其是有的复杂过程可采用动画形式展现,学生容易理解,且传递的信息量丰富。但长久的盯着亮的屏幕容易造成视觉疲劳,快速的翻页也会造成部分学生跟不上进度,一堂课下来感觉很累。因此,在课堂教学中,宜采用板书、多媒体教学相结合的授课方式,充分发挥各自教学方式的优点。公式推导、例题讲解等可采用板书方式,抽象的概念和理论、复杂的处理过程等则采用MATLAB仿真进行演示或采用动画形式展现。多媒体课件宜做得精炼,防止出现大幅的内容叙述。由于抽象概念的形象解释有助于学生的理解,学习兴趣也随之提高。比如在讲解长信号的线性卷积时,牵涉到重叠相加法、重叠保留法两种方法,可采用板书和投影教学相结合的方式进行讲解。先提出问题:两个长度相当的信号的线性卷积可以利用FFT进行快速卷积,但若一个信号很长甚至是无限长时如何实现快速卷积?让学生进行讨论。再使用板书方式推导出长信号的分段卷积式,对分段卷积结果如何处理则采用MATLAB仿真来演示和验证这一过程。通过MATLAB仿真,长信号的快速卷积就形象的展现出来,学生易于理解了,枯燥的定义和概念也变得生动起来,原本复杂的过程变得简单而容易接受,有利于知识的理解和掌握,也激发了学生的学习兴趣。
二、改进教学方法,激发学生学习兴趣
“数字信号处理”理论知识多,学习起来枯燥。但是,如果学生认识到所学的知识有用会激发他们的学习兴趣。因此,应加大应用性内容的教学,让学生参与到相关的实践活动中有助于提高学生的学习热情。
1.课程设计提升学习兴趣
课程设计是综合性实践教学环节,完成课程设计需要综合应用所学知识,包括查阅资料、方案设计、方案实施、结果分析、方案改进等。实施计划过程中遇到的困难和障碍构成了学生渴望以挑战的问题,正是这些问题激励学生积极思考并寻找解决问题的办法,在此过程中学习的积极性得以充分发挥。一般而言,学生在接到课程设计的任务后,需要对设计课题进行分析,确定完成此设计需要用到的知识,这些知识可能是已经学习过的,也有未学习过的。学生通过查阅相关资料后,综合所学的知识、技能,明确需解决的问题和达到的目标,并形成解决问题的技术方法。
比如在FFT的教学中,给定课程设计要求“语音信号的频谱分析”,要求综合运用数字信号处理的理论知识对语音信号进行频谱分析并对语音信号进行处理。在此课程设计中,要求学生掌握Windows 环境下语音信号采集方法,掌握用 MATLAB对信号进行分析和处理的编程方法,设计算法和应用程序,对结果进行分析,撰写总结和报告等。学生通过理论推导得出相应结论,利用MATLAB作为编程工具实现语音信号的谱分析和滤波。在设计的完成过程中互相交流学习心得,共同探讨出现的新问题,培养获取知识与解决问题的能力。与此同时,学习过程中获得的成就感激发了他们的学习热情,并培养了勇于探索开拓进取的学习精神。
在教学中,课程设计的题目可以由教师指定,由学生选择,如语音信号卷积的实现、图像信号的滤波等;也可以在教师指导下学生自己选择。学生通过参与数字信号处理的课程设计,加深了对“数字信号处理”理论的理解,提高了学习的热情,巩固了学生数字信号处理的基础知识,增强了学习兴趣。
2.探索性实验激发学习兴趣
探索性实验是指人们从事开创性的研究工作时,为探寻未知事物或现象的性质以及规律所进行的实践活动。它对培养学生的观察能力、思维能力、探索精神以及良好的学习方法具有重要意义。
目前数字信号处理课程配备的实验大多是验证性实验,旨在对所学知识进行验证,如快速傅里叶变换(FFT)、RIR滤波器设计、IIR滤波器设计等,学生只是使用MATLAB 对教材或实验指导书上的实验进行验证,对实验结论也是验证与所学的知识是否一致,遇到不一致的往往知其然不知其所以然,难以结合教材内容进行深入分析。实验过程中遇到的问题也很难独立思考和解决。因此,实验设计仅让学生懂得实验的基本过程及仅仅验证教材上的内容是不够的,更重要的是培养学生的分析和思考问题能力。探索性实验将使得学生在实验过程中通过自己的观察、思考得出结论,不仅能启迪思维,培养科学精神和创新能力,更能激发学习兴趣。探索性实验内容可由教师提出,学生依据实验课题内容查阅资料,设计实验方案,最终完成实验并撰写实验报告。如卷积在信号去噪处理中的应用,就可以采用高斯模板对被污染的图像进行卷积以去除噪声(二维卷积),或对一段被噪声污染的歌曲进行卷积运算去除噪声(一维卷积)。通过探索性实验的开展,改变了传统实验的单调性,调动了学生的主动性,提高学生的学习热情。将验证性实验与探索性相结合,不仅有助于知识的掌握和能力的培养,还培养了学生科学素养,对激发学生的学习兴趣具有积极意义。
3.建立有利于激发学习热情的考核方法
作为一门重要的专业基础课,学生很在乎自己学习成绩,设计一套好的评价考核方法能最大限度的激发学生的学习热情,变被动学习为主动学习。为全面考查学生课堂学习、课外学习、课程设计及探索性实验效果,需设计闭卷考试、实验考核、课程设计考核及平时综合考核的全面考核方式。闭卷考试主要考核基本概念、基本原理等理论知识,实验考核主要考查学生的实验技能及分析和解决问题的能力;课程设计考核主要考察获取知识与解决问题的能力,同时鼓励学生依据学习内容撰写小论文,并建立相应的加分制度。
三、结语
“数字信号处理”的特点是理论性强,公式多,比较枯燥难学,学生容易提不起兴趣。兴趣是最好的老师,是构成学习心理的最活跃的因素。为了达到较好的教学效果,教学实践中,我们改进传统的教学方法,在课堂教学中采用多种教学手段结合激发学习兴趣,并从课程设计、探索性实验及建立有利于激发学生学习热情的考核方法几个方面着手, 激发学习热情,促进学生以研究的态度进行学习,在学习中获得的成就感激发了学生求知欲和学习兴趣,这些措施的实施取得了良好的教学效果。
参考文献:
[1]程佩青.数字信号处理教程(第三版)[M].北京:清华大学出版社,2012.
[2]任淑萍,王欣峰.“数字信号处理”的优化教学研究[J].电力学报,2008,23(3):255-257.
[3]刘永红,王娜,刘琚.“数字信号处理”课程学习兴趣的培养[J].电气电子教学学报,2014,36(2):9-11.
[4]马永奎,高玉龙,张佳岩,张中兆.“数字信号处理”课程设计导向型教学初探[J].电气电子教学学报,2012,34(4):96-97.
[5]郭建涛.“数字信号处理”课程的Matlab教学研究[J].电气电子教学学报,2010,32(3):117-119.
[6]胡居荣,曹宁.基于MATLAB的数字信号处理研究型教学的探索[J].中国电力教育,2008(121):67-69.