时间:2023-03-16 16:00:54
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇数学思想论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
在数学教学中,怎样寓知识、技能、方法、思想于一个学过程中,是数学教学的重要课题。由于数学的高度抽象性、严谨的逻辑性、结论的确定性以及应用的广泛性这些特征,决定了数学教学的难度。如果教师只是注重单纯地传授知识,而不注重学习方法的指导和能力的培养,学生就会跟在老师的后面跑,整天忙忙碌碌,全是死记硬背。听老师讲时还会,自己做时就错,临到考时就蒙,这样下去是越来越糊涂。所以,要使学生变书本知识为自己知识,就必须学会学习知识的方法。下面就其怎样使学生在原有知识基础上学习新知识的方法谈些教学体会。
新知识的获得,离不开原有认知基矗很多新知识都是学生在已有知识基础上发展起来的。因此,对于学生来讲,学会怎样在已有知识的基础上掌握新知识的方法是非常必要的。这就需要教师在教学中精心设计、抓住知识的生长点、促进正迁移的实现。
例如,在研究多边形内角和定理时,可向学生提出:我们已经知道三角形的内角和等于180°,那么,你能根据三角形的内角和求出四边形的内角和吗?这样简单、明了的一句话就勾通了新旧知识间的内在联系。问题的提出,激发了学生学习的兴趣,促使了学生思维的展开,提供了回答问题的机会,创造了活跃的教学气氛,学生会准确地回答出四边形的内角和等于360°。又问:你是根据什么说四边形的内角和等于360°呢?是猜想的?还是推理得到的?学生的回答是作四边形的对角线,将四边形分为两个三角形,而每个三角形的内角和等于180°,两个三角形的内角和等于360°。教师马上对学生的回答给以肯定和鼓励,再问:五边形、六边形的内角和等于多少度?学生很快就会回答出五边形的内角和等于540°,六边形的内角和等于720°。接着又问:你知道十边形、一百边形、一千边形的内角和是多少度吗?这是老师故意设置“知识障碍”,激发学生的求知欲望。及时引导、启发、迁移、总结规律。让学生观察、发现求四边形、五边形、六边形的内角和,都是从它们的一个顶点作对角线将它们转化为三角形来求得的,并且内角和是由从它们的一个顶点作对角线所分得三角形的个数确定的,而三角形的个数又是由这个多边形的边数确定的。从而可知从n边形的一个顶点作对角线可将n边形分成(n-2)个三角形,所以n边形的内角的和等于(n-2)·180°,即得多边形的内角和定理。这个定理的出现,是教者通过设疑、引导、启发学生思维,寻求解题方法,由个性问题追朔到共性问题,总结出了一般规律。这样做,不但使学生学会了在原有知识基础上学习新知识的方法,又培养了学生分析问题和解决问题的能力,还渗透了把多边形转化为三角形来研究的数学转化思想。
当学生在原有知识的基础上掌握了学习新知识的方法和数学的转化思想,对于诸如此类的问题就迎刃而解了。如,研究梯形中位线定理,学生很自然就会将它转化为三角形中位线来解决。对于平行四边形、梯形的问题学生也很容易就想到转化为已有知识来研究。又如,对于解二元二次方程组,学生根据已学过的解一元二次方程等知识,自然就会想到通过消元将原方程组转为一元二次方程来解之,或将二元二次方程组通过降次转化为一次方程或有一个一次方程和一个二次方程组来解决。对于分式方程要通过去分母或换元转化为整式方程来解。对于无理方程需把方程两边乘方或换元化为有理方程来解。
在数学教学中,教师只要做到精心设计教学环节,科学的提出问题,采取得体的教学方法、适时疏导,帮助学生学会用自己的语言对所学知识进行概括和总结,以知识讲方法,以方法取知识,就能够调动学生学习数学的积极性,达到开发学生智力、提高学生能力的目的。
在中学数学的教学中,对“数形结合”、“由形到数”,解题时可以观察图形的特征以及数量关系。“数”“形”“数形结合”思想不仅对于学生掌握知识变得统一,更是一种思维的训练与提高的过程。函数的单调性解决不等式、函数与数列、函数的思想对于解决方程根的分布问题。函数与解析几何等等都会应用到。但是传统的教学中,重视表层知识的学习的现象弊端太多,数学学科是一种抽象思维的学习学科,不同于语言思维,过于感性化,不够严谨与理性,而数学思维是抽象性、理性严谨的知识体系学科,如果不注重思维学习的方法,是不能达成教学效果和目标的实现的,不利于对于数学学科的学习,难以提高。
2.“数形结合思想”在实际生活中的应用
将实际问题转化,运用数形结合的思想去解决。“数形结合”思想可以帮助理解抽象的问题,会在实际生活中有很大的应用。“数形结合”的思想不仅在教学中有用,利用数形结合的思想来解决现实生活中的问题有很大的帮助。例如:对于在实际生活的中,需要地域500元购入60元的单片软件3片,需要购入70元的磁带2个,额选购方式有几种?其实这样的题目就是对于数形结合思想、排列以及数学中不等式的解法的考查,那么只要设需要软件x片,需要磁带y盒,然后列出不等式,相反,如果用列举法一一列出,是可以解决的,但是过程就会变得麻烦。因此,掌握数形结合思想对实际问题的解决作用是很大的。
3.“数形结合思想”在几何当中的应用
中学数学中对于“数形结合”思想对于直线、四方形、圆以及圆锥曲线在直角坐标系中的特点,都可以在图形中寻找解题思路。不论是找对应的图像,以及求四边形面积等的几何问题都有很大的应用。例如:已知正方形ABCD的面积是30平方厘米,E,F是边AB,BC上的两点,AF,CE并且相交与G点,并且三角形ABC的面积是5平方厘米,三角形BCE的面积是14平方厘米,要求的是四边形BEGF的面积。在求解过程中,结合图形,连接AC\BG并设立方程可巧妙求解。可见,在具体实际的几何中的分析与思考,运用到数形结合思想就会将问题变得简单。
4.结语
“亲其师,信其道,乐其学”.和谐的师生关系,是教学中师生交流合作活动的基础、动力和保证.首先,教师在进行教学的过程中要不断重视自身的情绪表达,培养起良好积极的情绪范围和情绪能量.其次,和谐的师生关系,也是学生产生积极情感体验的手段.和谐的师生关系需要教师与同学的共同经营,其中一个重要方面就是教师对每个学生自有品性及人格的认可.例如,在接任七(4)班的数学教学工作时,我认识了小霞.由于先天智力不行,加上后天不认真和单亲家庭,她很自卑,导致学习落后.同学们讥笑她,家长也责备她.开学后,我首先制止同学们对她的讥笑和瞧不起,动员大家给她更多的关心和爱护.学习与生活中的每一丝进步都及时进行肯定,不仅在同学面前正式鼓励,还及时向她的家长肯定她的成长,这种肯定不仅表现在语言上,也体现在每次的善意眼神及行为中.由于老师的表率作用,带动了全班同学对她的尊重.她逐渐走出了自卑的阴影,有学习的兴趣,成绩也提高了,人也开朗了.教师对学生的关爱和尊重,教师的每一个眼神、每一句话中,都可以使学生受到激励,感到振奋,从而形成一种积极向上的情感.这种学习情绪的调动更是单纯的学习沟通无法带来的,只有良好情绪的共同感染才能引起.于是,教师的情绪便对学生的情绪起着尤其关键的影响与作用,只有让学生真切地感受到自己对教学及学生的热忱、积极向上的教学情绪、真诚自然的教学态度,才能让学生感受到积极轻松的氛围,继而在这种课堂氛围下接纳授课内容.我会真诚对全体学生说:“老师的教学需要全体同学的支持和配合,老师愿意和同学们一起学好数学.我不期盼学生背负着从前一纸成绩的压力,更期待的是学生拥有良好的心理,和建立在良好心理基础上的奋斗意识.一切从现在开始,只要肯努力,我相信每个同学都会进步!”在执教过程中,对于学习成绩与动力暂时不突出的同学,课上在尊重为主的前提下关注这些学生的行为,更是及时肯定他们踊跃参与课堂活动的表现;平时对他们学习上的困难进行耐心辅导,关注他们的点滴进步,不断给他们加油鼓劲,使他们总是生活在希望之中.我真切地意识到,在老师孜孜不倦的鼓励与肯定下,学生往往会形成更多的学习主动性与积极性,进而取得更多的进步.
二、以情引趣,创设新鲜的学习情境,让学生学习劲头足
数学教学不仅是一种活动,而且是一种充满情感交流的过程.师生的交流沟通,不仅应饱含情感与尊重,更应在这样的基础上及时鼓励学生的积极性,这样才能将精神源头转化为实际行为.在教学过程中,对教材的深度钻研是合理规划课堂内容的基础,在这一层面上将数学教材总结的生动有趣,才能使学生有更大兴趣.兴趣是通往一门新知识的钥匙,学生的兴趣能够深层影响其学习动力.在讲授数学知识时,可以更多设立中等难度引导学生思考的范围,让其进行积极深入的思索,引起学生对新领域新知识的兴致.班里几个同学在抛硬币,教师可以提问:一个硬币正面向上的可能性有几种?两个呢?这样的引发学生思考的提问,能够逐步地引发学生的疑惑与求知的欲望,进而让学生在新课程的讲授中更加集中注意力并积极参与,在接下来的课程中,接二连三的抛出让学生思考的问题,将课程的讲授自然地深入进行,而学生也就在稍有间断的思考中不断获取新的书本知识.然后又问:三个硬币呢?学生带着疑问看多媒体计算机演示.精心安排与引导的课程环节,能够让学生一直处在被求知欲与好奇心包围的氛围之中,教师不仅将课本知识得以传授,更可以通过轻松有趣的沟通方式与学生建立情感深入交流,让全体学生都在轻松的学习过程中体会到独立思考的乐趣,通过多次这样的教学慢慢培养学生主动思考与积极参与的有益习惯.
三、以情促知,恰当地将知识潜移默化,能使学生兴奋,对正确理解和巩固知识有好处
赞可夫认为,少儿的情绪反应和其好奇、疑惑、思考、探索等行为是紧密相关的,并且会互相影响.也就是说愉悦、轻松、有成就感的学习过程能够潜移默化地引导学生的学习行为,进而达到促进学习劲头的良性循环.然而,这样的良性循环并不是一次或几次就能达到的结果,授课的过程是漫长且需要耐心的,根据不同学生的基本情况进行分层次教学模式,不对优秀学生偏袒也不对暂时落后的学生另眼相看,在让每一位学生都能感受到相比从前自己的进步,让学生从内心深处认可自己的进步与潜力,在不断提升的自我认可度基础上,逐步用行动证明自身的努力成果.在教学过程中,我力求做到如下两点:一是反馈练习的设计注重层次性,突出针对性:足量的基本练习给基础较差的学生创设了成功的机会;设置不同层次的练习题目,分为必做和选做等多种题型,这样就能让学习成绩较好的学生有更多的发挥空间与求学动力,不会感觉到知识的信手拈来,让这部分学生迎难而上.二是练习形式的多样性,增强趣味性.巩固反馈阶段,有书面练习,口答练习,也有动手操作练习,有小组合作,也有竞赛,调动学生学习的积极性,激发他们的学习兴趣,动静结合,充分开发学生的潜能,增强学生以学为主的情感.
四、以言唤情,用情促行
教学语言既是一门科学,也是一门艺术.它是提高课堂教学效果行之有效的重要手段.有人说“教师应该是语言大师”.这句话说得非常恰当,因为教师就是通过语言来授之以理、授之以法的.有的教师总是能把一节课讲得有声有色,很好地完成教学任务.而有的教师则词不达意,言不传情,因此效果极差.可见,课堂教学语言的艺术是多么重要.在数学教学过程中,教师的专业术语精确练达固然重要,更让学生产生情感共鸣的还应是教师的言语方式及个人风度涵养,优秀的师风师德配合表达风趣、结构严谨的语言,必然能吸引更多学生的注意力与求知欲.例如,有的教师在初次接触几何课的学生面前,用一支笔能测量高楼的悬殊对比这一生动例子,很好地抓住了学生的疑惑心理,学生听后目瞪口呆,随后议论起来如何测量.教师提问:想知道如何测量吗?学生回答非常想知道.那我们必须学好八年级的几何!本节课学生情绪高涨,听得、学得、做得都非常认真、入神、到位.在上课的同时,教师要经常用“你太棒了!”“还有别的做法吗?”用这样的提问式语句与互动方式,提供给学生自主发挥想象空间的平台,通过几何就在生活中随处可见的例子,拉近新课程与学生的心理距离.
五、结语
一、对中学数学思想的基本认识
“数学思想”作为数学课程论的一个重要概念,我们完全有必要对它的内涵与外延形成较为明确的认识。关于这个概念的内涵,我们认为:数学思想是人们对数学科学研究的本质及规律的理性认识。这种认识的主体是人类历史上过去、现在以及将来有名与无名的数学家;而认识的客体,则包括数学科学的对象及其特性,研究途径与方法的特点,研究成就的精神文化价值及对物质世界的实际作用,内部各种成果或结论之间的互相关联和相互支持的关系等。可见,这些思想是历代与当代数学家研究成果的结晶,它们蕴涵于数学材料之中,有着丰富的内容。
通常认为数学思想包括方程思想、函数思想、数形结合思想、转化思想、分类讨论思想和公理化思想等。这些都是对数学活动经验通过概括而获得的认识成果。既然是认识就会有不同的见解,不同的看法。实际上也确实如此,例如,有人认为中学数学教材可以用集合思想作主线来编写,有人认为以函数思想贯穿中学数学内容更有利于提高数学教学效果,还有人认为中学数学内容应运用数学结构思想来处理等等。尽管看法各异,但笔者认为,只要是在充分分析、归纳概括数学材料的基础上来论述数学思想,那么所得的结论总是可能做到并行不悖、互为补充的,总是能在中学数学教材中起到积极的促进作用的。
关于这个概念的外延,从量的方面讲有宏观、中观和微观之分。
属于宏观的,有数学观(数学的起源与发展、数学的本能和特征、数学与现实世界的关系),数学在科学中的文化地位,数学方法的认识论、方法论价值等;属于中观的,有关于数学内部各个部门之间的分流的原因与结果,各个分支发展过程中积淀下来的内容上的对立与统一的相克相生的关系等;属于微观结构的,则包含着对各个分支及各种体系结构定内容和方法的认识,包括对所创立的新概念、新模型、新方法和新理论的认识。
从质的方面说,还可分成表层认识与深层认识、片面认识与完全认识、局部认识与全面认识、孤立认识与整体认识、静态认识与动态认识、唯心认识与唯物认识、谬误认识和正确认识等。
二、数学思想的特性和作用
数学思想是在数学的发展史上形成和发展的,它是人类对数学及其研究对象,对数学知识(主要指概念、定理、法则和范例)以及数学方法的本质性的认识。它表现在对数学对象的开拓之中,表现在对数学概念、命题和数学模型的分析与概括之中,还表现在新的数学方法的产生过程中。它具有如下的突出特性和作用。
(一)数学思想凝聚成数学概念和命题,原则和方法
我们知道,不同层次的思想,凝聚成不同层次的数学模型和数学结构,从而构成数学的知识系统与结构。在这个系统与结构中,数学思想起着统帅的作用。
(二)数学思想深刻而概括,富有哲理性
各种各样的具体的数学思想,是从众多的具体的个性中抽取出来且对个性具有普遍指导意义的共性。它比某个具体的数学问题(定理法则等)更具有一般性,其概括程度相对较高。现实生活中普遍存在的运动和变化、相辅相成、对立统一等“事实”,都可作为数学思想进行哲学概括的材料,这样的概括能促使人们形成科学的世界观和方法论。
(三)数学思想富有创造性
借助于分析与归纳、类比与联想、猜想与验证等手段,可以使本来较抽象的结构获得相对直观的形象的解释,能使一些看似无处着手的问题转化成极具规律的数学模型。从而将一种关系结构变成或映射成另一种关系结构,又可反演回来,于是复杂问题被简单化了,不能解的问题的解找到了。如将著名的哥尼斯堡七桥问题转化成一笔画问题,便是典型的一例。当时,数学家们在作这些探讨时是很难的,是零零碎碎的,有时为了一个模型的建立,一种思想的概括,要付出毕生精力才能得到,这使后人能从中得到真知灼见,体会到创造的艰辛,发展顽强奋战的个性,培养创造的精神。
三、数学思想的教学功能
我国《九年义务教育全日制初级中学数学教学大纲(试用修订版)》明确指出:“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容所反映出来的数学思想和方法”。根据这一要求,在中学数学教学中必须大力加强对数学思想和方法的教学与研究。
(一)数学思想是教材体系的灵魂
从教材的构成体系来看,整个初中数学教材所涉及的数学知识点汇成了数学结构系统的两条“河流”。一条是由具体的知识点构成的易于被发现的“明河流”,它是构成数学教材的“骨架”;另一条是由数学思想方法构成的具有潜在价值的“暗河流”,它是构成数学教材的“血脉”灵魂。有了这样的数学思想作灵魂,各种具体的数学知识点才不再成为孤立的、零散的东西。因为数学思想能将“游离”状态的知识点(块)凝结成优化的知识结构,有了它,数学概念和命题才能活起来,做到相互紧扣,相互支持,以组成一个有机的整体。可见,数学思想是数学的内在形式,是学生获得数学知识、发展思维能力的动力和工具。教师在教学中如能抓住数学思想这一主线,便能高屋建瓴,提挈教材进行再创造,才能使教学见效快,收益大。
(二)数学思想是我们进行教学设计的指导思想
笔者认为,数学课堂教学设计应分三个层次进行,这便是宏观设计、微观设计和情境设计。无论哪个层次上的设计,其目的都在于为了让学生“参与”到获得和发展真理性认识的数学活动过程中去。这种设计不能只是数学认识过程中的“还原”,一定要有数学思想的飞跃和创造。这就是说,一个好的教学设计,应当是历史上数学思想发生、发展过程的模拟和简缩。例如初中阶段的函数概念,便是概括了变量之间关系的简缩,也应当是渗透现代数学思想、使用现代手段实现的新的认识过程。又如高中阶段的函数概念,便渗透了集合关系的思想,还可以是在现实数学基础上的概括和延伸,这就需要搞清楚应概括怎样的共性,如何准确地提出新问题,需要怎样的新工具和新方法等等。对于这些问题,都需要进行预测和创造,而要顺利地完成这一任务,必须依靠数学思想作为指导。有了深刻的数学思想作指导,才能做出智慧熠烁的创新设计来,才能引发起学生的创造性的思维活动来。这样的教学设计,才能适应瞬息万变的技术革命的要求。靠一贯如此设计的课堂教学培养出来的人才,方能在21世纪的激烈竞争中立于不败之地。
(三)数学思想是课堂教学质量的重要保证
数学思想性高的教学设计,是高质量进行教学的基本保证。在数学课堂教学中,教师面对的是几十个学生,这几十个智慧的头脑会提出各种各样的问题。随着新技术手段的现代化,学生知识面的拓宽,他们提出的许多问题是教师难以解答的。面对这些活泼肯钻研的学生所提的问题,教师只有达到一定的思想深度,才能保证准确辨别各种各样问题的症结,给出中肯的分析;才能恰当适时地运用类比联想,给出生动的陈述,把抽象的问题形象化,复杂的问题简单化;才能敏锐地发现学生的思想火花,找到闪光点并及时加以提炼升华,鼓励学生大胆地进行创造,把众多学生牢牢地吸引住,并能积极主动地参与到教学活动中来,真正成为教学过程的主体;也才能使有一定思想的教学设计,真正变成高质量的数学教学活动过程。
有人把数学课堂教学质量理解为学生思维活动的质和量,就是学生知识结构,思维方法形成的清晰程度和他们参与思维活动的深度和广度。我们可以从“新、高、深”三个方面来衡量一堂数学课的教学效果。“新”指学生的思维活动要有新意,“高”指学生通过学习能形成一定高度的数学思想,“深”则指学生参与到教学活动的程度。
无论是任何一个学科的教学中,教材都会起到不可忽视的重要作用。然而,当下的实用经济数学教材却在很大程度上存在着多个方面的缺陷和不足。具体体现在教材的编撰思想上,过度的重视实用经济数学的理论、公式,不能很好的体现出经济性以及实用性。所以,在教材方面,笔者建议可以从以下几个方面进行弥补:首先,教材要充分的体现出经济性与实用性,所以要在教材中以及课堂中增添相关的案例。其次,对数学的理论、公式的具体推理过程要淡化,重视对实例的研究和思考。
2.丰富教学方法
由于实用经济数学教学的目的和特点,就决定了运用传统的,比较单一的授课模式,即讲授式,是不可能达到理想的教学目标的。所以,在教学的过程中,要多种教学方法并用,尤其是能够促进学生思考,激起学生兴趣的教学方式,如讨论式教学法、启发式教学法等等,对于实用经济数学教学中融入建模思想都是非常有益的。
3.改革学生成绩评价机制,为社会输送应用型专门人才
由于当下的教育中,对于考试成绩的重视程度极高。然而,在实用经济数学的考试中,却在很大程度上侧重于推理以及推理过程中的计算。这就使得教师以及学生在教学以及学习的过程中都过度的重视推理与计算。所以要想提高数学建模思想的在课堂中的渗透,必须要改变学生的成绩评价机制,从而为我国培养更多的具有高强度思维能力的人才。
4.加强师资队伍建设,培养应用型专门数学教师
由于现在的经济数学教师在大学时接受的都是传统的数学教育,依据他们现有的教育观念和知识结构,很难真正实现上述三条措施,因此应大力加强经济数学师资队伍的建设。要加强教师的数学教育哲学、现代教育理论的学习,从根本上转变教师的数学教学观,要专门培养一批精通数学建模方法和数学软件的使用、掌握经济学基本知识、了解经济问题。要想将数学建模思想很好的应用在实用经济数学中,需要从教学的多个方面进行考虑。然而,以上也仅仅是实用经济数学建模思想的几个方面的探索,且这些研究都还比较浅显。而仅仅凭借这些研究来提高实用经济数学的教学质量,并且将数学建模思想很好的应用在实用经济数学中,显然是远远不够的。所以,对于实用经济数学中融入数学建模思想的研究还需要数学教育领域的研究人士进行进一步的研究和思考。
5、结语
论文关键词:一元一次方程中的整体思想
在解一元一次方程时,若把着眼点放在问题的整体上,将一个代数式看作一个“整体”来处理,可使解题过程简捷明快,常能达到事半功倍的效果.请看几例.
一 整体合并
例1解方程 ﹙2x-1﹚+﹙x-1﹚+﹙1-2x﹚=0
分析:将2x-1视为整体,进行合并,即可迅速获解.
解:原方程化为 ﹙2x-1﹚-﹙2x-1﹚+﹙x-1﹚=0
合并同类项得 x-1=0
∴x=1.
二 整体移项
例2 解方程x-〔x-﹙2113-x〕〕=﹙2113-x〕+1
分析::将2113-x视为一个整体,先去中括号,再移项合并,即可迅速获解.
解:原方程化为x-x+ ﹙2113-x〕=﹙2113-x〕+1
移项得 x-x+ ﹙2113-x〕-﹙2113-x〕=1
合并同类项得 x=1
化系数为1得 x=.
三 整体去括号
例3 解方程 〔﹙x-1〕-2〕-x=2.
分析:将小括号内的代数式看成一个“整体”,先去中括号,再去小括号小学数学论文,可减少运
算中因多次变号可能出现的各种错误,从而简化解题过程.
解:去中括号得﹙x -1〕-3-x=2.
移项,合并同类项得 -3x=24
化系数为1得 x=-8.
四 整体添括号
例4 解方程3{2x-l-〔3(2x-1)+3〕}=5.
分析:将2x—1视为一个整体.
解:原方程为 3{( 2x-l)-〔3(2x-1)+3〕}= 5.
去大、中括号得 3(2x-l)一9(2x-l)-9=5.
合并同类项得 -6 ( 2x-1 ) =14.
∴ x = -.
五 整体加1
例5 解方程++=-3 (其中x是未知数,a、b、c是已知数).
分析:注意到三个分数中分子与分母的和都相同,因此可用“整体加l”的方法来解.
解:原方程可化为﹙+1﹚+﹙+1﹚+﹙+1﹚=0.
++=0.
整体合并同类项得 ﹙++﹚﹙x+a+b+c﹚=0.
当++≠0时,x=-a-b-c.
当++=0时,方程有无数个解.
点评:对于某些含有分母的一元一次方程,当用分子加上分母时,所有分数的分子都相同,此时可用“整体加1”的方法巧解方程.
六 整体减1
例6 解方程 ﹙x+2009﹚+﹙x+2011﹚ = 3 -﹙x+2010﹚
分析:原方程即+=3-中,注意到三个分数的分子与分母的差都相同,因此可用“整体减1”的方法来解.
解:原方程可化为﹙-1﹚+﹙-1﹚+﹙-1﹚=0
即 ++=0
整体合并同类项得﹙++﹚﹙x-1﹚=0
即x-1=0
∴x=1.
点评:对于某些含有分母的一元一次方程,当用分子减去分母时,所有分数的分子都相同,此时可用“整体减l”的方珐巧解方程.
小学阶段是学生学习知识的启蒙时期,在这一阶段注意给学生渗透研究数学的基本思想和方法便显得尤为重要。然而在小学阶段,学生的逻辑思维和抽象思维能力较弱,而研究数学的许多思想和方法都是逻辑性强、抽象度高,小学生不易理解。那么在小学数学教学中,如何对学生进行数学的一些基本思想和方法的渗透呢?
一、在讲能被2、5、3整除的数时,第一节课先讲了能被2整除的数的特征是:“个位上是0、2、4、6、8的数,都能被2整除。”能被5整除的数的特征是:“个位上是0或5的数,都能被5整除。”
接下的第二节课要讲能被3整除的数的特征是:“一个数的各位上的数的和能被3整除,这个数就能被3整除。”
这两节课要讲的结论对于学生来说,在思维上存在着一段跳跃。因为第一节课学生们注意和观察的是一个数个位上的数学有什么特征,而第二节课则变成了观察一个数的各位上数的和有什么特征。如果教师按照教材上的顺序开始就例举能被3整除的数的特征,那么,在学生的头脑中就会产生一个疑虑:“一个数的个位上是0、3、6、9的数是否也能被3整除呢?”因此这节课的开始时,教师就应首先提出这个问题,并举出例子,得出结论,打消学生们头脑中的这个疑虑。
如:看下面个位是0、3、6、9的两组数。
(附图{图})
由上面的例子可以得出结论:一个数个位上是0、3、6、9的数不一定能被3整除。
上述的结论,学生们会很自然接受的,然而,他们并不知道这个结论的获得是用了一个数学中很常用的重要证明方法——举反例的证明方法。这时,教师应该及时地把这种方法点拨给学生,指出:“要证明一个结论是不是成立时,只要找出一个实例来说明这个结论不正确即可。”这种方法叫做举反例的证明方法。这样,举反例的证明方法就会在学生们的头脑中深深地留下了印象。
二、计算:1/2+1/4+1/8+1/16这道题从形式上看是一道分数连加法的计算题,计算过程如下:
1/2+1/4+1/8+1/16=8/16+4/16+2/16+1/16=(8+4+2+1)/16=15/16
然而,这道题的本意并不在此,其目的是要寻求一种简便的算法。如(图一),用一正方形表示单位“1”,这样,学生们通过观察图形再经过老师的讲解会得出:
1/2+1/4+1/8+1/16=1-1/16=15/16
至此,本题的目的已经达到,但学生们还没有得到此题的精髓,也就是题中所包含着什么样的规律,体现了怎样的数学思想,教师还应该给学生们渗透和点拨出来。
实质上,此题是求数列:
1/2,1/4,1/8……1/2[n]……的前几项和问题,其前几项的和是S[,n]=1-1/2[n]=(2[n]-1)/2[n]
由于学生没有极限的思想,不理解无穷的概念,因此,字母“n”的意义无法给他们讲解清楚。但教师可以借助图形的直观性,把上述极限思想渗透给学生。如在上题的基础上,让学生计算下列几题:
1.计算1/2+1/4+1/8+1/16+1/32
2.计算1/2+1/4+1/8+1/16+1/32+1/64
3.计算1/2+1/4+1/8+1/16+1/32+1/64+1/128
观察图形,使用前面例题的简便算法,学生们会很快算出结果。
1/2+1/4+1/8+1/16+1/32=1-1/32=31/32
1/2+1/4+1/8+1/16+1/32+1/64=1-1/64=63/64
1/2+1/4+1/8+1/16+1/32+1/64+1/128=1-1/128=127/128
这时,教师再继续让学生计算1/2+1/4+1/8+1/16+……+1/512
如果学生能很快得出结果是:1-1/512=511/512这就说明了在学生的头脑中已经初步形成了数列的概念。此时教师将前面的几道题进行比较归纳,得出结论:如果以分子是1,分母是前一个加数的分母的2倍的规律,再继续加下去,不论再加什么数,结果总是得:1-最后一个加数。并且其结果总是不超过1。