时间:2023-03-07 15:05:56
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇初一数学考点总结范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
从教多年,大多数数学老师都深深地认识到,初中数学是一个不可分割的整体。初二的难点最多,初三的考点最多。但相比较而言,初一数学知识点虽然很多,但知识结构都比较简单。很多同学在学校里的学习中都感受不到压力,因此,在日积月累的学习过程中,就慢慢就积累了很多小问题,在进入初二这些问题也就带到了学习中,当他们再次遇到其它的困难(如学科的增加、难度的加深)后,大问题就很明显地凸现出来。就拿我们这边的学生来说吧!
在现在初中学生中,有一部分新同学对数学结构和知识点认识不足,对初一数学不够重视,他们认为它们足够简单,不足以挂齿,在一些小的问题上从未深入研究和探计过,在进入初二后,慢慢就发现跟不上老师的进度,感觉学习数学越来越吃力,究其原因,主要是对初一数学的基础性,重视不够。当然,这些问题对一些大城市的孩子来说,它就不是一个问题,因为他们还可以通过参加辅导班来弥补自己的不足,但是对我们这些偏远山区的孩子来可就是一个难题,他们没有这样的机会,也没有这样的经济能力,为了解决这些问题,我就我从教的这么多年对我们偏远山区的孩子提出我的几点看法,以供参考。
(1)对知识点的理解停留在一知半解的层次上。
(2)解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力。
(3)解题时,小错误太多,始终不能完整的解决问题。
(4)解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏。
(5)未养成总结归纳的习惯,不能习惯性的归纳所学的知识点。
以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。那怎样才能打好初一的数学基础呢?这就是我们急待解决的一个问题。
1.认真细致地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,不能深入地进行理解和运用,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2.总结相类似的型题型
这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
我们的建议是:“总结归纳”是将题目越做越少的最好办法。
3.收集自己的典型错误和不会的题目
同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:首先将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。
我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼、总结,才会有收获。
4.不懂的问题,积极提问、讨论
发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会感到不堪重负,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐,再到最后放弃,这就是我们这些偏远山区孩子的一个通病。
讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。
我们的建议是:“勤学”是基础,“好问”是关键。
5.注重实战(考试)经验的培养
考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会,这就象我们所说的一句俗话“翻开书了然,关上书茫然”一样。一到考试,成绩就不理想,甚至是怯场。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼,每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题中解决做到“百考不怕,百考不败”。在平时做作业的过程中,同学们也可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱,做到“从易到难”不要纠结于某一道难以理解的题而浪费大浪的时间。
初中数学是一个整体。初二的难点最多,初三的考点最多。相对而言,初一数学知识点虽然很多,但都比较简单。很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后就凸现出来。一些学生由于对初一数学不够重视,在进入初二后,发现跟不上老师的进度,感觉学习数学越来越吃力。这个问题究其原因,主要是对初一数学的基础性重视不够。在初一数学学习中经常出现的问题很多,现列举如下:
1.对知识点的理解停留在一知半解的层面上。
2.解题始终不能把握其中关键的数学技巧,孤立地看待每一道题,缺乏举一反三的能力。
3.解题时小错误太多,始终不能完整地解决问题。
4.解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏。
5.未养成总结归纳的习惯,不能习惯性地归纳所学的知识点。
以上这些问题如果在初一阶段不能很好地解决,在初二的两极分化阶段,同学们可能就会出现成绩滑坡。相反,如果能够打好初一数学基础,则初二的学习只会是知识点的增多和难度的增加,在学习方法上同学们是很容易适应的。
二
怎样才能打好初一数学基础呢?
1.细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是对概念和公式一味地死记硬背,缺乏与实际题目的联系。这样就不能很好地将学到的知识点与解题联系起来。三是一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2.总结相似的类型题目
这个工作,不仅仅是老师的事,我们的学生也要学会自己做。当学生会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,学生才真正掌握了这门学科的窍门,才能真正做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,他们就会发现,有部分同学天天做题,可成绩不升反降。其原因就是,天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄得一团糟。我们的建议是:“总结归纳”是将题目越做越少的最好办法。
3.收集自己的典型错误和不会的题目
学生最难面对的就是自己的错误和困难,但这恰恰又是最需要解决的问题。学生做题目,有两个重要的目的:一是将所学的知识点和技巧,在实际的题目中演练。另一个就是找出自己的不足,然后进行弥补。这个不足包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草地应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议学生收集自己的典型错误和不会的题目,是因为一旦他们做了这件事,他们就会发现,过去他们认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
4.就不懂的问题,积极提问、讨论
发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是对该问题的重视不够,不求甚解;二是不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣,直到无法赶上步伐。讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于相互学习。我们的建议是:“勤学”是基础,“好问”是关键。
5.注重实战(考试)经验的培养
初中数学是一个整体。初二的难点最多,初三的考点最多。相对而言,初一数学知识点虽然很多,但都比较简单。很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后,就凸现出来。
那么,怎样才能打好初一的数学基础呢?
一、细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。二是,对概念和公式一味地死记硬背,缺乏与实际题目的联系。这样就不能很好地将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
二、总结相似的类型题目
当你对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正地掌握了这门学科的窍门,才能真正做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。
我们的建议是:“总结归纳”是将题目越做越少的最好办法。
三、收集自己的典型错误和不会的题目
同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。二是,找出自己的不足,然后弥补它。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。
我们的建议是:做题就像挖金矿,每一道错题都是一块金子,只有发掘、冶炼,才会有收获。
四、对不懂的问题,积极提问、讨论
发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。
讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。
学习这件事不在乎有没有人教你,最重要的是在于你自己有没有觉悟和恒心。任何科目学习方法其实都是一样的,不断的记忆与练习,使知识刻在脑海里。下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
七年级数学知识点三角形
1、三角形由不在同一直线上的三条线段首尾顺次相接所组成的图形。
2、判断三条线段能否组成三角形。
①a+b>c(ab为最短的两条线段)
②a-b
3、第三边取值范围:a-b
4、对应周长取值范围
若两边分别为a,b则周长的取值范围是2a
如两边分别为5和7则周长的取值范围是14
5、三角形中三角的关系
(1)、三角形内角和定理:三角形的三个内角的和等于1800。
n边行内角和公式(n-2)
(2)、三角形按内角的大小可分为三类:
(1)锐角三角形,即三角形的三个内角都是锐角的三角形;
(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。
注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
(3)、判定一个三角形的形状主要看三角形中角的度数。
(4)、直角三角形的面积等于两直角边乘积的一半。
6、三角形的三条重要线段
(1)、三角形的角平分线:
1、三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
2、任意三角形都有三条角平分线,并且它们相交于三角形内一点。
(内心)
(2)、三角形的中线:
1、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
2、三角形有三条中线,它们相交于三角形内一点。
(重心)
3、三角形的中线把这个三角形分成面积相等的两个三角形
(3)、三角形的高线:
1、从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。
2、任意三角形都有三条高线,它们所在的直线相交于一点。
(垂心)
3、注意等底等高知识的考试
7、相关命题:
1)三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
2)锐角三角形中的锐角的取值范围是60≤X
3)任意一个三角形两角平分线的夹角=90+第三角的一半。
初一下册数学《三角形》知识点一、目标与要求
1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。
2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系。
3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。
4.三角形的内角和定理,能用平行线的性质推出这一定理。
5.能应用三角形内角和定理解决一些简单的实际问题。
二、重点
三角形内角和定理;
对三角形有关概念的了解,能用符号语言表示三条形。
三、难点
三角形内角和定理的推理的过程;
在具体的图形中不重复,且不遗漏地识别所有三角形;
用三角形三边不等关系判定三条线段可否组成三角形。
四、知识框架
五、知识点、概念总结
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
三角形的内角和是外角和的一半。
初一数学学习方法一预习
对于理科学习,预习是必不可少的。我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。
二听讲
这一环节最为重要,因为老师把知识的精华都浓缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。
三复习
体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。
四作业
认真完成老师留的习题,适当挑选一些课外习题作为练习,但切忌一味追求偏题,怪题,更不要打“题海战术”。
五总结
下面从三个方面简单说下初中数学的学习方法:
一、初中数学学习方法指导的内容
1.预习方法的指导。
初一学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出问题和疑点。在指导学生预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,掌握本节知识的概貌。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着疑问去听课。方法上可采用随课预习或单元预习。预习前教师先布置预习提纲,使学生有的放矢。实践证明,养成良好的预习习惯,能使学生变被动学习为主动学习,同时能逐渐培养学生的自学能力。
2.听课方法的指导。
在听课方法的指导方面要处理好“听”、“思”、“记”的关系“听”是直接用感官接受知识,应指导学生在听的过程中注意:(1)听每节课的学习要求;(2)听知识引人及知识形成过程;(3)听懂重点、难点剖析(尤其是预习中的疑点);(4)听例题解法的思路和数学思想方法的体现;(5)听好课后小结。教师讲课要重点突出,层次分明,要注意防止“注入式”、“满堂灌”,一定掌握最佳讲授时间,使学生听之有效。
“思”是指学生思维。没有思维,就发挥不了学生的主体作用。在思维方法指导时,应使学生注意:(1)多思、勤思,随听随思;(2)深思,即追根溯源地思考,善于大胆提出问题;(3)善思,由听和观察去联想、猜想、归纳;(4)树立批判意识,学会反思。可以说“听”是“思”的基储关键,“思”是“听”的深化,是学习方法的核心和本质的内容,会思维才会学习。
“记”是指学生课堂笔记。因此在指导学生作笔记时应要求学生:(1)记笔记服从听讲,要掌握记录时机;(2)记要点、记疑问、记解题思路和方法;(3)记小结、记课后思考题。使学生明确“记”是为“听”和“思”服务的。
掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。
课堂学习指导是学法中最重要的。同时还要结合不同的授课内容进行相应的学法指导。
3.小结或总结方法的指导。
在进行单元小结或学期总结时,初一学生容易依赖老师,习惯教师带着复结。我认为从初一开始就应培养学生学会自己总结的方法。在具体指导时可给出复结的途径。要做到一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。最后归纳出体现所学知识的各种题型及解题方法。应该说学会总结是数学学习的最高层次。
学生总结与教师总结应该结合,教师总结更应达到精炼、提高的目的,使学生水平向更高层发展。
二、数学学习方法指导的形式
1.讲授式。它包括课程式和讲座式。课程式是在初一新生入学的前几周内安排几次向学生介绍如何学习数学,提出数学学习常规要求的课。讲座式可分专题进行,可每月搞一至二次,如介绍“怎样听课”、“如何学习概念”、“解题思维训练”等。
2.交流式。让学生相互交流,介绍各自的学习方法。可请本班、本年级或高年级的学生介绍数学学习方法、体会、经验。这种方式学生容易接受,气氛活跃,不求大而全,只求有一得,使交流真正起到相互学习促进的作用。
3.辅导式。主要是针对个别学生的指导和咨询。任何一种学习方法都不是人人都适合的,这时就应该深入了解学生学习基础,研究学生认识水平的差异,对不同学生的学习方法作不同的指导或咨询。尤其是对后进生更应特别关注。许多后进生由于没有一个良好的学习习惯和学习方法,一般指导对他们作用甚微,因此必须对他们采取个别辅导,既辅导知识也辅导学法。因材施教,帮助每一个学生真正地去学习,真正地会学习,真正地学习好,这是面向全体学生,全面提高学生素质,全面提高教学质量的关键。
数学学习方法的指导是长期艰巨的任务,初一年级是中学的起始阶段,抓好学法指导对今后的学习会起到至关重要的作用。
三、初中数学打好基础很重要,五点建议提高初中数学成绩。
(1)细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
我的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
(2)总结相似的类型题目
这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入八年级、九年级以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
我的建议是:“总结归纳”是将题目越做越少的最好办法。
(3)收集自己的典型错误和不会的题目
同学们最难面对的,就是自己的错误和困难。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。
我的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
(4)注重实战(考试)经验的培养
一、选择题(本题共10小题,每小题4分,共40分)
1.﹣3的绝对值是()
A.3B.﹣3C.D.
考点:绝对值.
分析:根据一个负数的绝对值等于它的相反数得出.
解答:解:|﹣3|=﹣(﹣3)=3.
故选:A.
点评:考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
2.有统计数据显示,2014年中国人在餐桌上浪费的粮食价值高达2000亿元,被倒掉的实物相当于2亿多人一年的口粮,所以我们要“注意节约,拒绝舌尖上的浪费”.2000亿这个数用科学记数法表示为()
A.2000×108B.2×1011C.0.2×1012D.20×1010
考点:科学记数法—表示较大的数.
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
解答:解:将2000亿用科学记数法表示为2×1011.
故选B.
点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是()
A.5B.±5C.7D.7或﹣3
考点:数轴.
分析:此题注意考虑两种情况:要求的点在已知点的左侧或右侧.
解答:解:与点A相距5个单位长度的点表示的数有2个,分别是2+5=7或2﹣5=﹣3.
故选D.
点评:要求掌握数轴上的两点间距离公式的运用.在数轴上求到已知点的距离为一个定值的点有两个.
4.下列计算结果正确的是()
A.﹣2x2y3•2xy=﹣2x3y4B.3x2y﹣5xy2=﹣2x2y
C.28x4y2÷7x3y=4xyD.(﹣3a﹣2)(3a﹣2)=9a2﹣4
考点:整式的混合运算.
专题:计算题.
分析:利用整式的乘法公式以及同底数幂的乘方法则分别计算即可判断.
解答:解:A、﹣2x2y3•2xy=﹣4x3y4,所以A选项错误;
B、两个整式不是同类项,不能合并,所以B选项错误;
C、28x4y2÷7x3y=4xy,所以C选项正确;
D、(﹣3a﹣2)(3a﹣2)=﹣(3a+2)(3a﹣2)=﹣9a2+4,所以,D选项错误;
故选C.
点评:本题考查了整式的混合运算:利用整式的乘法公式、同底数幂的乘方法则以及合并同类项进行计算,有括号先算括号内,再算乘方和乘除,最后算加减.
5.下列说法正确的是()
A.x2+1是二次单项式B.﹣m2的次数是2,系数是1
C.﹣23πab的系数是﹣23D.数字0也是单项式
考点:单项式.
分析:根据单项式系数及次数的定义对各选项进行逐一分析即可.
解答:解:A、x2+1是多项式,故A选项错误;
B、﹣m2的次数是2,系数是﹣1,故B选项错误;
C、﹣23πab的系数是﹣23π,故C选项错误;
D、0是单独的一个数,是单项式,故D选项正确.
故选:D.
点评:本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题是的关键.
6.下列说法正确的是()
A.零除以任何数都得0
B.绝对值相等的两个数相等
C.几个有理数相乘,积的符号由负因数的个数决定
D.两个数互为倒数,则它们的相同次幂仍互为倒数
考点:有理数的乘方.
分析:A、任何数包括0,0除0无意义;
B、绝对值相等的两个数的关系应有两种情况;
C、几个不为0的有理数相乘,积的符号由负因数的个数决定;
D、根据倒数及乘方的运算性质作答.
解答:解:A、零除以任何不等于0的数都得0,错误;
B、绝对值相等的两个数相等或互为相反数,错误;
C、几个不为0的有理数相乘,积的符号由负因数的个数决定,错误;
D、两个数互为倒数,则它们的相同次幂仍互为倒数,正确.
故选D.
点评:主要考查了绝对值、倒数的概念和性质及有理数的乘除法、乘方的运算法则.要特别注意数字0的特殊性.
7.若a3=a,则a这样的有理数有()个.
A.0个B.1个C.2个D.3个
考点:有理数的乘方.
分析:本题即是求立方等于它本身的数,只有0,﹣1,1三个.
解答:解:若a3=a,有a3﹣a=0.
因式分解可得a(a﹣1)(a+1)=0.
所以满足条件的a有0,﹣1,1三个.
故选D.
点评:解决此类题目的关键是熟记立方的意义.根据立方的意义,一个数的立方就是它本身,则这个数是1,﹣1或0.
8.某种商品因换季准备打折出售,如果按规定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?设定价为x元,则下列方程中正确的是()
A.x﹣20=x+25B.x+25=x﹣20
C.x﹣25=x+20D.x+20=x+25
考点:由实际问题抽象出一元一次方程.
分析:首先理解题意找出题中存在的等量关系:定价的七五折+25元=定价的九折﹣20元,根据此等式列方程即可.
解答:解:设定价为x,根据按定价的七五折出售将赔25元可表示出成本价为(+25)元,
按定价的九折出售将赚20元可表示出成本价为:(x﹣20)元.
根据成本价不变可列方程为:x+25=x﹣20.
故选B.
点评:考查了由实际问题抽象出一元一次方程的知识,解题的关键是要理解定价的七五折即定价的75%,定价的九折即定价的90%.
9.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB的度数为()
A.90°B.135°C.150°D.180°
考点:余角和补角.
分析:由图可知∠AOC=∠AOB+∠BOC,∠BOC+∠BOD=∠COD,根据角之间的和差关系,即可求解.
解答:解:∠AOC+∠DOB
=∠AOB+∠BOC+∠DOB
=∠AOB+∠COD
=90°+90°
=180°.
故选:D.
点评:本题考查了余角和补角的定义;找出∠AOC+∠DOB=∠AOB+∠BOC+∠DOB是解题的关键.
10.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()
A.20B.27C.35D.40
考点:规律型:图形的变化类.
专题:规律型.
分析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n+1=,进一步求得第(6)个图形中面积为1的正方形的个数即可.
解答:解:第(1)个图形中面积为1的正方形有2个,
第(2)个图形中面积为1的图象有2+3=5个,
第(3)个图形中面积为1的正方形有2+3+4=9个,
…,
按此规律,
第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,
则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.
故选:B.
点评:此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.
二、填空题(本大题共4有小题,每小题5分,共20分)
11.9的平方根是±3.
考点:平方根.
专题:计算题.
分析:直接利用平方根的定义计算即可.
解答:解:±3的平方是9,
9的平方根是±3.
故答案为:±3.
点评:此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.
12.30.26°=30°15′36″.
考点:度分秒的换算.
分析:根据度分秒的换算,大的单位化成小的单位乘以进率,可得答案.
解答:解:30.26°=30°15′36″,
故答案为:30°15′36″.
点评:本题考查了度分秒的换算,把不到一度的化成分,不到一分的化成秒.
13.观察下列等式:
1、42﹣12=3×5;
2、52﹣22=3×7;
3、62﹣32=3×9;
4、72﹣42=3×11;
…
则第n(n是正整数)个等式为(n+3)2﹣n2=3(2n+3).
考点:规律型:数字的变化类.
专题:压轴题;规律型.
分析:观察分析可得:1式可化为(1+3)2﹣12=3×(2×1+3);2式可化为(2+3)2﹣22=3×(2×2+3);…故则第n个等式为(n+3)2﹣n2=3(2n+3).
解答:解:第n个等式为(n+3)2﹣n2=3(2n+3).
点评:本题是一道找规律的题目,这类题型在2015届中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
14.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+2|+(b﹣1)2=0,A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.
①线段AB的长|AB|=5;
②设点P在数轴上对应的数为x,当|PA|﹣|PB|=2时,x=0.5;
③若点P在A的左侧,M、N分别是PA、PB的中点,当P在A的左侧移动时|PM|+|PN|的值不变;
④在③的条件下,|PN|﹣|PM|的值不变.
以上①②③④结论中正确的是②④(填上所有正确结论的序号)
考点:数轴;绝对值.
专题:新定义.
分析:①根据非负数的和为0,各项都为0;②应考虑到A、B、P三点之间的位置关系的多种可能解题;③④利用中点性质转化线段之间的倍分关系得出.
解答:解:①|a+2|+(b﹣1)2=0,
a+2=0,b﹣1=0,a=﹣2,b=1,
|AB|=|a﹣b|=3,
①不正确,
(2)当P在点A左侧时,
|PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣3≠2.
当P在点B右侧时,
|PA|﹣|PB|=|AB|=3≠2.
上述两种情况的点P不存在.
当P在A、B之间时,|PA|=|x﹣(﹣2)|=x+2,|PB|=|x﹣1|=1﹣x,
|PA|﹣|PB|=2,x+2﹣(1﹣x)=2.
x=,即x的值为,
点P存在
②正确;
③设点P在数轴上对应的数为x,
|PM|+|PN|=|PB|+|PA|=(|PB|+|PA|)=(1﹣x﹣x﹣2)=﹣,
③不正确,
④|PN|﹣|PM|的值不变,值为;
|PN|﹣|PM|=|PB|﹣|PA|=(|PB|﹣|PA|)=|AB|=,
|PN|﹣|PM|=,
④正确.
故答案为:②④.
点评:本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
三、(本大题共2个小题,每小题8分,满分16)
15.解不等式3(x﹣2)≤4x﹣3,并把它的解集在数轴上表示出来.
考点:解一元一次不等式;在数轴上表示不等式的解集.
分析:先去括号,再移项,合并同类项,把x的系数化为1,再在数轴上表示出来即可.
解答:解:去括号得,3x﹣6≤4x﹣3,
移项得,3x﹣4x≤﹣3+6,
合并同类项得,﹣x≤3,
把x的系数化为1得,x≥﹣3.
在数轴上表示为:
.
点评:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.
16.(﹣2)2×3÷(﹣2)﹣(﹣5)2÷5÷(﹣)
考点:有理数的混合运算.
专题:计算题.
分析:原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.
解答:解:原式=4×3×(﹣)﹣25××(﹣5)
=﹣5+25
=20.
点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
四、(本大题共2小题,每小题8分,满分16分)
17.作图:如图,平面内有A,B,C,D四点按下列语句画图:
a、画射线AB,直线BC,线段AC
b、连接AD与BC相交于点E.
考点:作图—复杂作图.
分析:利用作射线,直线和线段的方法作图.
解答:解:如图,
点评:本题主要考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.
18.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOE=2∠DOE,试求∠COE的度数.
考点:角的计算;角平分线的定义.
分析:根据角平分线的定义以及余角的性质求得∠BOD的度数,然后根据∠BOE=2∠DOE即可求解.
解答:解:OC平分∠AOB,
∠AOC=∠BOC=45°,
又∠COD=90°,
∠BOD=45°
∠BOE=2∠DOE,
∠DOE=15°,∠BOE=30°,
∠COE=45°+30°=75°.
点评:本题考查了角度的计算,正确求得∠BOD的度数是关键.
五、(本大题共2小题,每小题10分,满分20分)
19.根据某研究院公布的2010﹣2014年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:
年份年人均阅读图书数量(本)
20103.8
20114.1
20124.3
20134.6
20144.8
根据以上信息解答下列问题:
(1)直接写出扇形统计图中m的值;
(2)从2010到2014年,成年居民年人均阅读图书的数量每年增长的幅度近似相等,用这五年间平均增幅量来估算成年居民年人均阅读图书的数量约为5本;
(3)2014年某小区倾向图书阅读的成年居民有1000人,若该小区与2014年成年居民的人数基本持平,估算该小区成年国民阅读图书的总数量约为7576本.
考点:扇形统计图;用样本估计总体;统计表.
分析:(1)利用100减去其它各组百分比的100倍即可求得;
(2)求得2013到2014年的增长率,然后求得阅读的本书;
(3)利用总人数1000乘以(3)中得到的本书即可求得.
解答:解:(1)m=100﹣1﹣15.6﹣2.4﹣15=66;
(2)年增长率是:×100%≈4.3%,
则的阅读数量是:4.8×(1+4.3%)≈5(本),
故答案是:5;
(3)该小区成年国民阅读图书的总数量约为:1000÷66%×5=≈7576(本).
故答案是:7576.
点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
20.为建设节约、环保型社会,切实做好节能减排工作,合肥市政府决定对居民家庭用电实行“阶梯电价”,规定:居民家庭每月用电量在180千瓦时以下(含180千瓦时,1千瓦时俗称1度)时,执行第一档电价标准;当居民家庭月用电量超过180千瓦时且在350千瓦时以下(含350千瓦时)时,超过部分执行第二档电价标准.第三档电量为每户每月350千瓦时以上部分.
(1)小张家2014年4月份用电100千瓦时,缴纳电费57元;7月份用电200千瓦时,缴纳电费115元.求第一档电价和第二档电价标分别为多少元/千瓦时?
(2)若第三档电价在第一档的基础上每千瓦时加价0.3元,8月份小张家预计用电360千瓦时,请预算小张家8月份应缴纳的电费多少元?
考点:一元一次方程的应用.
分析:(1)电费=电量×单价计算第一档电价;根据180×第一档电价+×第二档电价=115;
(3)8月份应缴纳的电费=180×0.57+(350﹣180)×0.62+(360﹣350)×(0.57+0.3).
解答:解:(1)设第一档电价是x元/千瓦时,第二档电价为y元/千瓦时.
依题意得100x=57,
x=0.57.
即第一档电价是0.57元/千瓦时.
180×0.57+y=115,
y=0.62,
即第二档电价为0.62元/千瓦时;
(2)8月份应缴纳的电费是:180×0.57+(350﹣180)×0.62+(360﹣350)×(0.57+0.3)=216.7(元).
答:(1)第一档电价是0.57元/千瓦时,第二档电价为0.62元/千瓦时;
(2)8月份应缴纳的电费是216.7元.
点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
六、(本题满分12分)
21.一列火车往返于芜湖、杭州两个城市,中途经过宣城、广德、长兴南和德清西4个站点(共6个站点),不同的车站往返需要不同的车票.
(1)共有多少种不同的车票?
(2)一列火车往返A、B两个城市,如果共有n(n≥3)个站点,则需要多少种不同的车票?
考点:直线、射线、线段.
分析:两站之间的往返车票各一种,即两种,n个车站每两站之间有两种,则n个车站的票的种类数=n(n﹣1)种,n=6时,即6个车站,代入上式即可求得票的种数.
解答:解:(1)两站之间的往返车票各一种,即两种,则6个车站的票的种类数=6×5=30(种);
(2)n个车站的票的种类数=n(n﹣1)种.
点评:本题考查了直线、射线、线段,解决本题的关键是在线段的计数时,应注重分类讨论的方法计数,做到不遗漏,不重复.
七、(本题满分12分)
22.A、B是线段EF上两点,已知EA:AB:BF=1:2:3,M、N分别为EA、BF的中点,且MN=8cm,求EF的长.
考点:比较线段的长短.
专题:计算题.
分析:如图,由于EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,那么线段MN可以用x表示,而MN=8cm,由此即可得到关于x的方程,解方程即可求出线段EF的长度.
解答:解:EA:AB:BF=1:2:3,
可以设EA=x,AB=2x,BF=3x,
而M、N分别为EA、BF的中点,
MA=EA,NB=BF,
MN=MA+AB+BN=x+2x+x=4x,
MN=8cm,
4x=8,
x=2,
EF=EA+AB+BF=6x=12,
EF的长为12cm.
点评:利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
八、(本题满分14分)
23.某农产品基地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为100元;经粗加工后销售,每吨利润可达450元;经精加工后销售,每吨利润涨至750元.现收获这种蔬菜140吨,该基地加工能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果对蔬菜进行精加工,每天可加工6吨,但两种加式方式不能同时进行,受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案.
方案一:将蔬菜全部进行粗加工;
方案二:尽可能多的对蔬菜进行精加工,没有来得及加工的蔬菜在市场上直接销售;
方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成.
你认为选择哪种方案获利最多?为什么?
考点:一元一次方程的应用.
分析:(1)直接用算术方法计算:粗加工的利润×吨数;
(2)用算术方法:首先根据每天精加工的吨数以及天数的限制,知精加工了15×6=90吨,还有50吨直接销售;
(3)设粗加工x吨食品,则精加工(140﹣x)吨食品,求得精加工和粗加工的吨数,再进一步计算利润.
解答:解:方案一:450×140=63000(元),即将食品全部进行粗加工后销售,则可获利润63000万元;
方案二:15×6×750+(140﹣15×6)×1000=117500(元),即将食品尽可能多的进行精加工,没来得及加工的在市场上直接销售,则可获利润117500元;
方案三:设粗加工x吨食品,则精加工(140﹣x)吨食品,
由题意可得:+=15,
解得x=80,
140﹣x=60,
这时利润为:80×450+60×750=81000(元).