时间:2022-02-25 20:46:07
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇煤化工工艺论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
关键词 情境认知 教学模式 初探
中图分类号:G424 文献标识码:A
On Coal Chemical Technology and Equipment
Teaching Mode Based on Situational Cognition
CHEN Xiaojuan, WANG Chang, TAN Xin
(Mechanical Engineering School, Inner Mongolia University
of Science & Technology, Baotou, Inner Mongolia 014010)
Abstract During the process of teaching of "The coal chemical technology and equipment", the situated cognitive theory was applied, the teaching model was reformed and innovated correspondingly, and the teaching practice and examination were planed. These have proved that the teaching effect had been improved significantly.
Key words situational cognition; teaching model; initial exploration
高等教育承担培养创新人才的历史使命,要着力培养学生的创新意识,提高工程创新能力,从而要求教师能够打破传统的教育观念与模式,引导学生形成自主探究和体验知识的过程。情境认知理论在教学过程的应用,不仅更新了学生对学习的理解,而且逐渐成为了学习理论领域研究的主流。
1 情境认知理论应用概述
情境认知理论应用到教学之中,能够达到学生掌握知识和知识实践的目的,基于情境认知的教学就是由教师创造有利于创新思维的教学、学习情境。针对不同的教学内容,教师可以进行问题情境、案例情境及工程背景情境等情境的创设,通过问题情境的解答过程、案例分析讨论的探索过程,具体工程及背景的研究过程等多种方式的拓展性教学,引导学生创造性地运用自身知识去自主发现问题、讨论问题、解决问题,培养学生的创新思维和学习能力。
2 基于情境认知的煤化工技术及装备课程教学模式的探索
2.1 课堂教学环节
本环节中,针对不同教学内容,建立不同情境认知的教学模式,使知识点形象化、实际化,知识结构条理化,学生能够在具体的情境中掌握教学内容,实现理论与实践的统一认知。
2.1.1 采用“三位一体” 案例式情境认知教学方法,提高课堂效率
所谓案例式“三位一体”教学是指将设备、仪表以及工艺三者有机结合,并加强相关课程引入的综合教学。现代煤化工具有自动化程度高、工艺先进以及设备大型化的特点,将控制理论加到教学中并加以化工工艺知识的学习,可以让学生更快地适应现代化工的发展和要求。将多学科知识应用到该课程教学当中,用工程实例来启发学生,在循序渐进的案例情境教学中,通过对大量案例的讲授、分析,学生更易于体验和掌握知识,也能从中学会理论联系实际的方法。
2.1.2 充分利用多媒体手段,构建工程情境认知背景下的教学方式
此情境的创设需要教师收集充足的教学素材,并加以整理完善,应用好此种教学方式可以加大信息的传递量,同时对设备内部结构等复杂专业知识给学生以感性认识。比如在专业设备的讲解过程中要结合工程实际构建合理的工程情境,利用影像图片资料讲解设备的关键部件及运行原理,以及相关知识点在工程和现实生活中的应用,让学生切实感受到知识的用途,而不是单纯的理论。让学生学会从工程实际考虑问题,带着问题听课,真正做到理论和实践的结合。
2.1.3 创设互相交流的合作情境,激发学生探究问题的热情
在合作和交流的过程中,学生可以感受不同的思维方式和思维过程,合理地调整、丰富自己的认识,获得知识。教学中,教师要根据学习的需要,适时组织学生的合作与交流,提出具体的目标和要求,使学生在相互启发、互相补充的学习活动中,获得知识,发展能力,逐步形成合作与创新意识。在合作情境的创设和认知应用中,学生的主观能动性和自主学习的热情都有了极大的提高。
2.2 实践教学环节
实践教学是夯实课堂教学成果的关键步骤,合理创设实践教学的情境,对有效缩短学生在校期间的学习内容与实际工作应用之间的差距,有着极为显著的作用。
2.2.1 合理的情境创设和高度仿真实训结合的拓展性教学
拓展教学旨在让学生变成学习的主体。主要进行工艺仿真实训,辅以设备的拆装和仪表的认识。使学生在掌握了书本上的基本原理、工艺流程和设备的基础上,结合完整的模拟工艺流程和实际背景材料,通过先进的网络多媒体设施,科学地了解煤化工工业体系及其知识需求。运用所学理论知识,系统化地认识实际工艺流程。通过改革传统的验证性实验,创造仿真工程实训环境,对于巩固教学成果,提高学生的分析能力和在复杂情况下的决策能力起到明显效果。
2.2.2 情境教学和研究性教学结合的随机进入式教学模式
将情境教学和研究性教学结合,旨在提高当理论基础知识学习扎实,对工艺指标理解深刻后,完成指定题目的课程设计或学术论文的质量。在所创设的情境中,把煤化工技术及装备教学问题作为研究课题,统揽煤化工方面多家学派的学术观点,随机并及时地总结,深入地研究探讨所涉及的学术问题,并将这些信息应用于自己的学习和研究,达到检验知识成果的目的,最终提升学生综合运用基础理论知识的能力。
2.3 考核环节:改革考核方式,重视学习过程
情境认知理论认为,评价的本质是一种价值判断。为了真实地体现学生学习的价值。本课程的考核以考核动手能力、分析解决问题的能力为主要目标,辅以传统的教学考核,实现多元化考核。具体而言,主要有以下几种方式:(1)用多任务标准取代单一评价,如在对学生考核时综合考试、论文、仿真实训、课堂讨论、提问等多种成绩,全面考查学生的知识掌握程度和实际运用能力等方面。(2)以真实任务为标准的评价,以实地考核学生实验操作,过程评定课程设计,答辩式论文综述等方式为主,让学生逐渐学会运用所学知识去分析和解决工程实际问题。
3 结语
实践证明,在煤化工技术及装备教学中理论讲解与情境教学相结合,取得了良好的教学效果。教师只有不断学习,并结合学生就业的需要,更新知识结构,积极开展教学研究与探讨,吸收最新的学科成果,注重教学方法,采用合理的教学模式,才能使教学质量不断提高。
本文系内蒙古科技大学校内重点教改《以培养工程应用型人才为导向的煤化工技术及装备课程改革》资助项目(项目编号:JY2011005)
参考文献
[1] 宋伟强.基于情境认知的聚合物结构分析研究性教学探讨[J].中国校外教育,2010(1):59.
中文题名
(二号宋体)
(中文题名一般不超过20个汉字;题名不得使用非公知公用、同行不熟悉的外来语、缩写词、符号、代号和商品名称。为便于数据库收录,尽可能不出现数学式和化学式。)
作者姓名
(小四号仿宋体)
作者单位(包括英文摘要中)
(小五号宋体)
(如果作者为两位以上,之间用","隔开;如果多个作者为不同单位时,应在作者姓名上打上角标以区别,作者通讯地址应为详细的工作单位、所在城市及邮编和e-mail地址,必须用全称标注,不得简称。在英文摘要中的作者姓名用汉语拼音,姓前名后,姓全大写,名首字母大写;作者单位,城市,邮政编码。如作者为两位以上,应指定联系人。)
中图分类号
(图书分类法是按照一定的思想观点,以科学分类为基础,结合图书资料的内容和特点,分门别类组成的分类表。采用《中国图书馆分类法》对论文进行中图分类的。)
中、英文摘要
(五号楷体)
(摘要的目的是向读者介绍论文的主要内容,传达重要的可检索信息,其主要内容包括被报导的研究项目的目的,研究方法、结果和结论。篇幅以300字左右为宜。英文摘要要用英语清楚、简明地写作,内容限制在150~180个英文单词以内。)
关键词(5号楷体)
(关键词是便于读者从浩如烟海的书刊、论文中寻找文献,特别适应计算机自动检索的需要。论文应提供关键词3~8个,关键词之间用分号隔开。在审读文献题名、前言、结论、图表,特别是在审读文摘的基础上,选定能反映文献特征内容,通用性比较强的关键词。首先要选项取列入《汉语主题词表》、《mesh》等词表中的规范性词(称叙词或主题词)。对于那些反映新技术、新学科而尚未被主题词表录入的新名词术语,可用非规范的自由词标出,但不能把关键词写成是一句内容"全面"的短语。)
正文(5号宋体)
文稿正文(含图、表)中的物理量和计量单位应符合国家标准或国际标准(gb3100-3102)。对外文字母、单位、符号的大小写、正斜体、上下角标及易混淆的字母应书写清楚。
文稿章节编号采用三级标题.一级标题(小4号黑体)形如1,2,3......;二级标题(5号黑体)形如:1,1.2,1.3......;2.1,2.2,2.3,......;三级标题(5号宋体)形如:1.1.1,1.1.2,1.1.3,......2.1.1,2.1.2,2.1.3,......引言或前言不排序。若论文为基金项目,请在文章首页下角注明基金项目名称和编号。
1.2.7图表要求
文中的图题、表题应有中英文对照(小5号黑体),并随文出现,图要精选,一般不超过6幅,请看具体要求。若图中有坐标,要求用符号注明坐标所表示的量(斜体),单位(正体)。若有图注,靠近放在图下部。照片应选用反差较大、层次分明、无折痕、无污迹的黑白照片,或提供*.tif格式的电子文档(分辨率不低于600线)。作者应自留底图。文中表格一律使用三线表(祥见示例)(不划竖线)。表中参数应标明量和单位(用符号),若单位相同可统一写在表头或表顶线上右侧。若有表注,写在表底线下左侧。表中重复出现的文字,不可用"同前"、"同左"等表示,必须全部重复写出。
参考文献(小5号宋体)
为了反映文稿的科学依据,尊重他人研究成果以及向读者提供有关信息的出处,正文之后一般应列出参考文献。列出的应确实是作者阅读过的、最主要的且发表在正式出版物上的文献;未公开发表的资料或协作成果,应征得有关方面同意,以脚注方式顺序表明.参考文献选用顺序编码制,按在文章中出现的先后顺序编号。每条文献著录项目应齐全.文献的作者、编者、译者不超过3人时全部写出,超过者只写前3人,后加“等”或“etal”,作者之间用“,”隔开.外文作者或编者书写时,一律姓前名后,名用缩写,且省略“.”。由于ei信息部进行收录论文中的参考文献(仅指英文)的录入工作,所以在稿件中参考文献中文期刊论文按中、英两种文字给出(英文参考文献不必给出中文)。
煤化工论文范例欣赏:
煤化工及甲醇生产技术探索
摘要:甲醇是一种有机化工原料,它的用途非常广泛,普遍运用于燃烧材料、合成金属、工程涂料、医学消毒、日常生火等多个方面,在甲醇的制造方面,一般都遵循着煤气化碳――变换气体物质――精细蒸馏三大工序,在化工厂生产活动中一般将生产甲醇的工序称为“工段”。难点在于如何去调控操作所需的参数,本文通过对煤化工作的特性解析来引申出甲醇生产的要点,同时对生产技术进行一个流程上的模拟,更全面地去了解甲醇生产中需要多加注意的关键。
关键词:煤化工;甲醇;温度;化学反应;化学式
中图分类号:Q946文献标识码:A
1煤气化原理
在甲醇生产的流程中,煤气化是第一步,它是一种化学反应,将气化剂和煤炭资源中的可燃物质放置在一个高位环境下,然后使其发生中和反应,产生一氧化碳、氢气等可燃气体。在煤气化工段里使用的气化剂包括水蒸气、氧气等,在加入这些气化剂后,煤炭就会发生一系列化学反应,从而生成所需的气体。煤炭在加入气化剂后,经历了干燥、热裂解等热力反应,该反应中生成的气体包括一氧化碳、二氧化碳、氢气、甲烷等,这些化学反应的速度取决于煤气化工段中的温度、热压、气化炉质量以及煤炭的种类,以下是煤气化过程中会出现的化学式:
吸收热量:C-H2OCO+H2C+CO22CO
发散热量:C+O2CO2C+12O2CO
变换反应:CO+H2OCO2+H2
从大体上来说,煤气化反应是化学中的强吸热效应,如果以动力和热力的角度来解析这类中和现象,重点在于对温度的把握,温度过高会造成气体流失,温度过低则无法产生完整的化学反应,导致生成的气体数量少、质量差。同时在增压方面应该适当地增加对煤炭的压力值,这样可以使化学反应的速度提高,对甲醇的生产效率起积极作用。
2变换工段
甲醇产品在合成时,一般调整碳元素与氢元素的比例的方法是通过一氧化碳的变换反应来实现的,在甲醇生产的流程中,碳元素与氢元素的分离都在催化剂的影响下进行,在此需要注意的是,碳氧分离工序对水蒸气的需求量相当大,水蒸气的生产成本在这道工段中会激增不少,所以,如何最大限度地利用水蒸气,节约生产成本,这将直接考验生产部门的气体生产技术和操作人员的工作效率。在变换工段中,煤气化之后的煤气物质含有大量的一氧化碳和水蒸气,在催化剂的效果影响到位之后,就可以生成氢与二氧化碳,在此时还会有小部分的一氧化硫转化为氰化硫,此时化学式表现如下:
CO+H2OCO2+H2
这是一个主要反应式,但是在主反应进行的同时,还有一部分副反应也会产生,生成甲醇的副产品,这些化学反应包括:
2CO+2H2CO2+CH
2COC+CO2
CO+3H2CH4+H2O
CO+H2C+H2O
CO2+4H2CH4+2H2O
CO2+2H2C+2H2O
化学反应在化工产业中要求平衡,在主要变换的化学反应中是一种发散热量反应的类型,这里的化学反应会使煤气化后的温度降低,温度适当降低有利于化学反应的平衡作用,但是如果温度太低,就会导致化学反应时间过长,效率越低,当煤气化工段的生成气体慢慢消耗殆尽时,就会浪费前一道工段的时间和成本,造成浪费。同时,温度还与催化剂的适应性挂钩,如果温度没有调整到位,催化剂的效力就无法发挥到最大值,这就会造成碳氧分离程度不足,必须加大催化剂的剂量,这也会增加生产成本。
3甲醇生产中的注意事项
1.)气化压力的大小在其他的生产条件没有变化的情况下,如果改变气化压力,就会产生非常细微但是关键的变化。通常气压定格在2MPa以上的范围时,在煤气化工段里基本上不会产生影响,但是如果气压低于2MPa就会使气化炉的气化效果变低。所以,在煤气化工段中,一定要保证气化压力控制在2MPa以上,而且可以视实际情况适当提高,这样可以增加气体数量,提高生产效率。
2.)氧气与煤量的比例氧煤比例的提高,指的是在煤炭中氧气流量的增多,直观反映为在煤炭高温加热时,煤炭的燃烧反应量明显提升。同时因为氧气流量的增加,使气化炉的温度也得以升高,煤炭的气化反应会更加强烈,一氧化碳和氢气的数量会增加不少,但是生成的气化产物中,二氧化碳和水分的含量占了很大比例,而一氧化碳和氢气的含量会变少,所以,如果不仔细控制氧煤比例,就会使气化炉中的气化反应过强而导致生产甲醇所需的气体成分变少。
4甲醇生产工艺模拟
传统的烧煤方式已经不能满足人们对甲醇的需求量,而且单纯的燃烧煤炭既是对资源的浪费,也会造成环境污染。所以,当务之急是要尽快找到新的甲醇提取方法和更快捷有效的甲醇生产技术,在这方面,煤气化生产流程已经被初步运用于各大化工厂中,作为目前提取甲醇的有效方式,煤气化工段还需要更多的模拟和分析来增强其效率,简化其工序。
在模拟中我们假设煤浆和高压后的氧气依照固定比例放置在气化炉中,然后在高温作用下因气温及气压生成各种气体,其中包括一氧化碳、氢气、二氧化碳等,其中高压后的氧气进入气化炉可以通过设置烧嘴的中心管道和外环管道,而煤浆可以通过烧嘴的中环管道进入气化炉。在模拟环境下,我们还设置了激冷室,位于气化炉下段,激冷室主要是处理煤炭中的灰份。在煤气化工段进行到末尾后,会残留一些灰份物质,这些物质会在气化炉的高温中熔融,熔渣和热量汇聚,合成了气体,然后结合离开气化炉的燃烧室部分,经由反应室,进入气化炉下段的激冷室。这些气体在激冷室中将被极寒温度降低到200摄氏度左右,熔渣会立即固体化,然后生成大量的水蒸气,经水蒸气饱和后带走了灰份,从激冷室的排出口派排
出。
需要进行变换的水煤气在预热器中加入一部分进行换气和换热步骤,然后进入模拟的变换炉,这部分水煤气在经过煤气化工段后,自身携带了不少的水蒸气,变换炉中的催化剂进行催化作用进行变换反应,在第一部分结束后,另一部分的水煤气也进入变换炉,变换炉这时就会需要新的高温气体,模拟的变换工段里加入了预热装置,提前储存并加热生成高温气体,然后连入变换炉中与另一部分的水煤气进行变换反应,然后进入气液分离器进行分离,分离成功后的气体将进入低压蒸汽室内降温,再次进入气液分离器进行分离,再喷入冷水来清洗掉气体中的三氢化氮,最后气体进入净化系统,生产气态甲醇。
精馏工段的流程为四塔工作方式,首先甲醇气态材料在预热器中进行高温加热,再传输进预塔中部,在这里去除粗甲醇里的残留溶解气体与二甲醚等,这些属于低沸点物质。在加热后,气体进入冷却器进行气体降温,形成甲醇蒸气后进入预塔的回流管道。甲醇蒸气在经过回流后进入换热器,加热后进入加压塔,甲醇在加压塔中进行冷凝化处理,其中小部分送回加压塔顶部作为回流液。剩余的甲醇气体进入精度甲醇管道,最后由加压塔提供压力与热量,将冷凝的高精度甲醇视需求定制成液态或固态储存,然后将杂质或者甲醇残留物通过排污口排入废水处理器进行净化提取处理。
参考文献:
[1]韩雅楠.煤制甲醇的研究进展与发展前景分析[J].中国科技投资.2013(17):229.
[2]刘喜宏.浅谈煤制甲醇的前景与工艺流程[J].中国石油和化工标准与质量.2013(10):22.
[3]陈倩,李士雨,李金来.甲醇合成及精馏单元的能效优化[J].化学工程.2012(10):1-5.
[关键词]煤化工 污染 防治
中图分类号:T696 文献标识码:A 文章编号:1009-914X(2015)40-0389-01
“绿色生产”“低碳经济”“可持续发展”等是近几年来人们关注的词汇。煤化工的污染及防治一直是我国需要不断研讨解决的问题。近几年来我国已经意识到生态环境治理的重要性,国家政府越来越重视煤化工的生产过程中的污染及其防治措施。国务院积极推出煤化工健康发展的相关政策,从而控制煤化工的污染程度和提升污染的防治效率,推动煤化工在可持续发展的道路上走的更远。
一、煤化工的污染现状概述
1.“三废”污染源的生成
根据我国发展的现状,煤炭易燃作为我国的主要能源,由于科学技术的制约煤化工的开发造成的“三废”污染远远超过其它能源的开采过程,从而造成严重的环境污染,是制约其发展的主要因素之一。其污染的治理相对于其它工业污染防治需要更先进的技术与设备和更多资金投入。煤化工的生产过程采用的气化方案的不同,则产生的污染气体的种类和含量都有所变动,因此可以选择不同的气化方案,减少污染气体、液体或固体的生产,以及选择治理污染物难度低的气化方案,从而不断优化煤化工的生产过程。
2.水体污染
煤化工生产所产生的污染中水污染一直是指污染防治的难点和重点。焦化污水包括氢、烃、酚、氨和硫化氢等污染物质;煤化工生产中的气化过程会产生氨、醇、烃等污染物质。污染水中含有丰富的醇、酸、醛、酯等有机物。这些物质溶于水体后进行溶解,有些物质甚至很难用生化降解的进行分解,部分污染物仍没有得到有效的处理方案。
3.大气污染
大气污染主要是由露天矿开采的生产过程造成,主要是指在表层剥离、爆破、铲装等生产环节造成的大量粉尘;还有储煤场也会产生一定的粉尘;除此之外还有煤炭等矿物质的燃烧也会产生一氧化碳、一氧化氮、二氧化硫等污染气体,煤矿开采所产生的粉尘以及污染气体严重超标,绝大多数原因在于露天煤矿开采过程中没有及时做好防范措施,例如绿化、洒水等降尘等措施,造成大面积地面上进行开采,从而造成严重的大气污染。
4.污染物质的危害
煤化工所产生的污染物质对人们的生活和健康造成很多不利影响,甚至危害到人们的生命。例如一些有毒气体和粉尘释放到空气中,增加空气中的致癌物质,,降低人们生存的空气质量,增加肺癌的患病率,在一些严重区域人们甚至会产生头晕、恶心和呼吸困难等症状,人体吸收后严重影响到人们的生命健康;煤化工造成的焦化废水排放的有机物质会造成水体生物身体抵抗能力下降,有机物消耗水体中的氧气,造成水体生物的大量死亡;其中酚类化合物接触到人体皮肤,会造成过敏、头晕、贫血等症状,危害到人们的身体健康;有些煤化工为了降低成本对焦化废水没有进行系统的处理就直接排放到农田中,很可能造成农作物的严重污染和大量死亡,并且破坏土壤平衡,造成可耕土地锐减的现象等。
二、污染防治具体措施
1.建立污染防治的思想基础
我国前几年的经济发展模式导致煤化工的发展以相应生态环境的破坏为代价,这种发展模式是一种病态的发展模式,必须建立一种有利于可持续发展的经济模式。即从原先的粗放式经济模式转变为集约式的发展模式,提高煤化工的生产效率,降低其污染物的产生和加大防止污染的先进技术的研发力度,从而推动我国煤化工企业的综合实力,优化我国的经济模式。
2.扩展绿化面积
绿化是降低煤化工生产过程中污染物的主要防治措施之一。首先绿化的树种选取主要有利于降低煤化工所生产污染物的功效和生存能力强度来进行选取,并且煤化工企业也要重视绿化环境的维护。部分绿色植物可以有效吸收有毒气体,如法国梧桐可以降低二氧化硫的浓度,刺槐可以降低氟化氢的浓度等因此绿化树种的选取可以有效过滤有毒气体,从而提高空气中的质量;阔叶树种和密植树木还可以降低噪声污染,对噪音进行一定的吸收和反射;树冠茂密的树种还可以降低粉尘的扩散,对粉尘进行吸收、阻挡和过滤。一些植物树叶表层生成毛绒或黏液或油脂都可以对空气中的粉尘进行大量的吸附等。成功的绿化方案,可以改善周围的空气质量,创建一个美观、整洁和卫生的生存环境。因此创建良好的林带或草地是污染治理的有效措施之一。
3.加大煤化工企业的监管力度
我国政府应该对相应的煤化工企业根据相应的监管制度和政策进行严格的监管,首先要完善煤化工行业涉及的相关标准进行优化;其次地方政府根据该标准对该地的煤化工企业进行严格的控制和监管,对于严格按照相关规定执行的企业给予相应奖励。对于触犯相关规定的企业给予严格的考核,对于造成严重影响的企业需追求其相应的法律责任;最后是对于不符合规定的煤化工企业要下达改革或停厂的指令,遵循优胜劣汰的生存法则,逐渐优化我国煤化工企业的生产环境和经济发展模式。
4.提高煤化工企业的生产技术
政府在煤化工企业生产过程中大力推广“绿色”生产和“清洁”生产的理念,促进企业从生态环保的方面对生产技术进行更新。煤化工企业的生产工艺十分复杂,期间造成的污染物十分繁多,其技术研发的空间十分宽广,为了降低污染处理为企业增加的经济负担,企业应该从根本上解决问题,研发相应的技术,而非只顾眼前利益,不顾法律法规的约束,触犯相应规定,对企业造成不可估量的损失。例如废水经过处理后可再次循环利用,如将其用作在降低粉尘、补水等环节。
结束语
综上所述,煤化工的生产过程存在很多的生态问题,其生成的污染物质以各种形态对人们的生存环境造成不利影响,从而危害到人们的生命健康。我国煤化工企业需建立健康的经营模式,通过扩展绿化面积,加大煤化工企业的监管力度和提高煤化工企业的生产技术水平等方面降低煤化工企业对环境的破坏程度,从而实现绿色生产的目标。
参考文献
[1] 潘连生.关注煤化工的污染及防治[J].煤化工.2010(1).
[2] 王锐.浅煤化工行业主要环境污染物来源及防治[J].广东化工.2011(4).
目前,环境工程专业教学所用的教材和实验讲义很少或者根本没有涉及煤炭行业环境工程的内容,很难应对日后煤炭行业环境保护的问题。因此,现阶段可以考虑在传统环境工程教学内容中引入煤炭行业环境保护的内容。通过课程改革,修订实验内容,在满足实验教学大纲的基础上,突出矿业环境保护的行业特色;特别是加强有关矿山环境保护的实验内容。根据基础实验、专业基础实验、综合实验和研究创新实验不同教学目的,精心设计每一个实验教学方案。最可行的方法是煤炭特色高校环境工程专业在教学实验中将煤炭行业环境保护科研课题或某一课题的若干阶段设计为实验教学内容,可以高效培养学生的创新能力、并实现科研资源的教学共享。把学校本科教学投入、“211”工程投入、“985”工程投入和环境工程系教师科研项目投入形成的实验室资源,实行分层次管理和开放,逐步实现实验室资源的优化配置,向本科教学全面开放,为大学生实践教学和科技创新活动提供实验平台。为此,我校环境工程专业充分利用教师承担的煤炭行业环境保护的课题,积极探索将科研课题内容转化为实验教学内容。具体表现在以下几个方面:
(1)在给水工程实验教学中,我们依托承担的国家自然科学基金课题《高浊高铁锰矿井水处理研究》,将环境工程专业传统的混凝沉淀、地表水过滤及反冲洗实验教学内容改为高浊度矿井水混凝沉淀、高铁锰矿井水过滤及反冲洗实验。在实验教学过程中,不仅讲授传统的混凝沉淀、过滤教学原理和内容,还补充煤矿矿井水的产生、排放和水质污染特征等知识。通过教学,使学生在掌握实验基础知识和基本技能的同时,对工业过程、工业污染特征以及工业污染防治有了初步的认识,不仅为学生将来的工作打下了基础,也增加了学生学习专业知识的兴趣。
(2)在排水工程实验教学中,我们结合国家高技术研究发展计划(863计划)《电化学氧化-生物强化A/O工艺处理焦化废水研究》,将原来SBR工艺处理生活污水实验教学内容改成SBR工艺处理焦化废水实验。这个实验内容的改变,让学生深刻地认识到工业废水和生活污水在处理技术方面有较大的区别,防止了课堂教学和实际工程出现较大的偏差,特别是水力停留时间、活性污泥比增长速率、挥发性悬浮固体浓度(MLVSS)等参数选择,为学生以后从事工业污水处理工作奠定了良好的基础。
(3)在环境监测实验教学中,我们结合国家自然科学基金课题《纳米RuO2/ZrO2-CeO2催化臭氧氧化深度处理焦化废水及废水中的POPs》,将原来的COD分析教学内容中的生活污水换成煤化工废水。这一实验内容的改变,使得研究对象由生活污水变成了受氯离子干扰严重的煤化工废水,让学生系统深刻地体会到了消解过程中沉淀产生的原因及其对分光光度法的干扰,以及滴定法和分光光度法各自的优缺点,并引导学生从一个简单的COD测试实验思考到各种环境工程原理。此类教学内容的改变还有很多,比如,将矿井除尘装置、煤化工厂VOCs催化氧化分解装置和燃煤电厂脱硫脱硝装置引入到大气污染控制工程实验教学的演示实验中;将煤矸石简单制砖的内容引入到固废处理与处置实验教学中;将头发中汞含量的测定引入到环境化学实验教学中;将煤化工厂受污染土壤的气提修复装置引入到环境土壤学实验教学的演示实验中。通过这些来自于科研课题的实验,提高了学生的动手能力,培养了学生的创新思维,为他们将来开展实际的科研打下了良好的基础。
2开展与煤矿区污染控制相关创新性实验
我校环境工程中心积极开展与煤矿区污染控制研究项目相关的创新性实验室,并以此为基础,确立本科生创新项目和毕业论文设计课题,全面培养学生的创新能力,成为学生完成综合设计性和研究型实验的重要基地。学生从大一开始进行查文献、写调研报告等基础训练,大二和大三开展具体实验,大四开展成果总结训练,学习撰写结题报告并。我们的创新实验基本来源于科研项目,但是为了不给学生造成难度,又对科研项目进行了大量的改变,基本都是教师自己精心设计的面向本科生的创新性实验。图1是典型的创新实验设计过程。先根据传统的混凝和沉淀实验,添加矿井水污染治理的内容,设计创新实验的第一个研究内容,即混凝沉淀处理矿井水。然后根据课堂讲授的混凝沉淀水力梯度(G值)的理论知识,将混凝部分扩充为多级搅拌混凝实验;根据浅池理论,将沉淀内容扩充为斜板沉淀池设计。最后将所有的内容合并起来,形成实验名称为多级搅拌+混凝+斜板沉淀处理矿井水的创新性实验。在实验教学过程中,学生根据下达的科研任务要求,充分发挥个人智慧,设计系统的实验方案,并在充足的科研经费支持下,开发了用于实验过程的多套连续装置;独立分析整个实验过程所涉及的实验参数,完成了一个复杂的工艺实验研究,并提交系统的研究报告。这些改革既为教师和研究生完成科研任务提供了一定的参考依据和技术基础,并充分调动了本科生学习和参加科研的积极性,培养了他们的创新素质,既促进了科研任务的顺利完成,又提高了本科实验教学的含金量。
3大力建设企业实践基地
关键词:煤焦油 加氢转化 柴燃料油
一、引言
随着国际油价在近些年里,价格在不断的在增长,一直保持在高位进行持续的运行。由此而造成人们对新能源的开发研究。对煤焦油进行加氢从而转化为轻质的燃料已经成为研究的热点。实现轻质化以及清洁化的煤焦油必须对其进行氢的加入。那么在什么条件下完成这一动作,这就要求必须保证在临氢的情况下进行脱除操作,完成对煤焦油的脱氮、脱氧、脱硫以及脱金属等,保证作为燃料使用的清洁性。这种轻质化的燃料最明显的一个组成成分就是芳烃加氢饱和并裂解开环,而这样的最小分子构成烃类又是对胶质进行加氢后完成相应的分解行为而得到的。
从世界上对于焦炭的使用情况来看,中国毫无疑问的被冠以第一的身份。而从世界范围内对焦炭进行生产的量上考虑中国也不甘落后成为了第一。在这么多的焦炭生产以及使用的过程中,煤焦油的产量也是不可小觑的,几乎每一年的产量都是介乎在600万吨到800万吨之间。 如何对这样大量的资源进行利用,使之转化成我们生活中的轻质能源燃料。本论文即通过对相关技术的论证来进行煤焦油的转化操作。
二、原料来源及性质
通过对煤进行焦化等过程使之在完成干馏以及气化等具体过程后进而得到一种液体,气味属性为刺激性的臭味,状态上为粘稠状,颜色表现为黑褐色或者黑色。煤焦油的组成成分十分的复杂,种类繁多。主要包含各种类型的苯,不饱和烃类比如:多环芳烃以及烯烃,氮化合物以及硫化合物等。
在国内的技术领域上,对煤焦油所采取的处理方法大多是分两种。一种是将煤焦油通过酸碱等技术的综合完成精制操作,使之成为质量低劣能够达到进行燃烧的油类。但是在燃烧的过程中会对大气造成严重的污染,这是因为煤焦油的组成成分中含有氮以及硫等元素组成的杂质一经燃烧后就会变成氮氧化合物以及硫氧化合物,除此之外还会会水质造成污染。另一种方法虽然能够完成转化后实现一定的效益,这是因为在对煤焦油进行处理后可以将其中的一些化学物质比如萘和酚等转化为一种能够用于防腐或者防水用的材料,但是在技术上存在很多的不完善,使得在转化的过程中会对环境造成严重的污染。
三、加工工艺
对煤焦油进行技术上的加氢,主要的目的就是为了使之变成一种燃料油关键的要求就是这种燃料油的性质上必须达到优质以及清洁。具体的是采用加氢的方法,在操作的过程中利用精制的或者是改质的催化剂完成煤焦油的精制。
本研究的技术点是基于现有的加氢工艺并在具体的实施的过程中,选择更适合完成加氢目的的精制以及改质催化剂。
1.工艺流程
将煤焦油注入到预分馏塔中,通过对煤焦油进行分馏,使得分离出粗沥青、粗柴油以及粗汽油,这其中的粗沥青可用于生产一些在管道上应用的防水以及防腐等材料。同时还会分离出小于碳五类的轻烃物质,这种烃类可用于烷类等的生产,变成相对附加值高的产品。分离出的粗柴油、汽油又会重新的被注入到固定床加氢反应器中,完成相应的氮、硫等物质的脱离。这些经过脱离后的产物再通过产品分馏塔就会变成一些清洁的燃料油。
2.加氢的原理
煤焦油中所含有的烃类物质以及各种杂原子(N、S、O),完成一定的温度的加热后,就会发生一些相应的化学反应,比如脱氢缩合以及裂解等。经过这样的处理后会产生在处理上困难的焦炭,由于这样的物质的出现会造成结垢现象的发生,主要附着在进行热交换的设备上或者是反应炉的管道上。而这种结垢会造成催化剂的活性的降低。鉴于此,必须对焦油进行加氢精制上的处理,从而对其中的烃类物质以及各种杂原子(N、S、O)进行脱离,很显然经过这样的处理后会使得催化剂的寿命变得更长。
加氢的反应条件为,13.5MPa的压强,在体积上煤焦油与氢的比例为1:2400,温度的要求为385摄氏度,相应的体积空缩:主要的精制剂为0.2h-1、金属脱离剂为0.8h-1、保护剂为0.8h-1。在满足这样的条件后,与氢气发生相应的反应,从性能上对煤焦油进行改变,完成高品质的产品的生产。其中一些反应的方程式为:
通过加氢完成硫的脱离: C12H8S+2H2C12H10+H2S
通过加氢完成氮的脱离: C5H5N+5H2C5H12+NH3
通过加氢完成烯烃的脱离: R-CH=CH2+H2RCH2CH3
通过加氢完成氢键的裂化: C10H22+H2C4H10+C6H14
四、结束语
当今我国的经济处在高速发展的状态,对于能源的需求现在也是特别的大。通过对煤焦油进行加氢工艺的处理后使之转化成轻质燃料油。不仅会对经济产生一定的效益,同时对于整个社会来说也是具有非常的贡献的。
参考文献
[1] 杨怀旺、姚润生,煤焦油加工技术进展和发展对策[J].煤化工,2006,34(1):11~14.
[2] 沈和平,煤焦油加氢裂化方法[P].CN1876767A,2006,12,13.
[3] 单江峰、刘继华、李扬等,一种煤焦油加氢生产柴油的方法[P].CN1351130A,2002,5,29.
[4] 屈明达、鄂忠明,煤焦油的加氢处理[J].化工技术经济,2005,23(6):49~51.
[5] 张明会、王守峰、吕子胜等,煤焦油加氢工艺及催化剂[P].CN1464031A,2003,12,31.
[6] 方向晨,加氢精制[M].中国石化出版社,2006,53~56.
[7] Butnark S,Badger M W,Schobert H H,et al.Coal- Based Jet Fuel:Comp-osition,Thermal Stability and Properties [J].Fuel Chemistry Division Preprints,2003,48(1):158-161.
[关键词]循环烃 MTP 作用
中图分类号:F451 文献标识码:A 文章编号:1009-914X(2015)40-0377-01
循环烃是MTP工艺流程中的活跃分子,循环烃的反应是一个复杂的过程,循环烃可以促提高丙烯选择性的精确度和纯度。参与反应的循环烃的种类也十分复杂,包括C2、C4、C5/C6等。随着C2循环烃乙烯含量的增加可以提升丙烯的生成率;C4循环烃还可以抑制C4生成物的产生,烯烃的歧化反应和高分子的裂解等方面来实现人们对MTP工艺的要求。
一、MTP工艺流程概述
MPT工艺主要包括反映部分、再生部分、气体冷却和分离部分、碳氢压缩部分和精制部分五个部分组成。甲醇制丙烯的MPT工艺的主要产物是丙烯,其副产品好包括乙烯、LGP和汽油。这些产物在我国化工企业中发挥着重作用。
1.反应部分
新鲜甲醇回收塔返回的甲醇通过一系列的换热设备,使其温度达到275℃,将其混合物引入反应器中,在1.6MPa下和氧化铝的催化剂下生成二甲醚产物,然后与各类循环烃等混合物共同进入MTP反应器,在480℃,0.13MPa的条件下,在沸石基催化剂的作用下生成以丙烯为主的混合物。
2.再生部分
循环烃主要参与MTP工艺中反应器的再生成部分,其反应部分发生二甲醚与循环烃C2、C4、C5、C6等混合进入三台反应器中,一般开两台,另一台作为备用机。反应器长时间的反应很容易在催化剂的表面生成一层结焦物质,对催化剂的活性造成不利影响,从而影响某些产物的转化率,例如丙烯。针对这一现象需要对催化剂再生成,使其反应继续进行。
3.冷却和分离部分
从反应器出来的产物首先通过降温,使其温度达到190℃,在进入三个预激冷凝塔,利用激冷水的冷却功能将其降温至55℃,然后将其送入激冷塔,再次用激冷水将其冷却至40℃,最后送入碳氢压缩单元。从激冷塔出来的产物大部分回到激冷塔进行循环处理,小部分产物运输到甲醇回收塔,使其与新鲜的甲醇进行混合,从新进入反应器。
4.碳氢压缩部分
经过激冷塔送入压缩单元的气体,温度在40℃,压力在0.105MPa,将其通过碳氢压缩机,使其压力达到2.29MPa,每层的压缩都设有水冷器和分离器,分离出水分和液态烃,分出的水分进入激冷塔用作激冷水,而液态烃送入四级压缩分离器,将液态烃与气态烃进行分离,并将其分别送入气烃干燥器和液烃干燥器进行干燥处理。
5.精制部分
干燥后的液烃和气烃分别进入脱丙烷塔和脱丁烷塔。脱丁烷塔中主要将C4、C5+进行分离,然后将C4烃进入脱丙烷塔。C5+烃进入脱己烷塔,进行C5烃和C6+烃的分离,C5以下的烃基本上进入反应器中继续循环,C6以上的烃经过冷却处理,制成汽油。
C3烃进入脱丙烷塔进行分离,冷却后进入脱乙烷塔,然后将其产物送入C3分离塔,将其塔顶蒸汽冷却处理后只得丙烯。
脱乙烷塔的塔顶蒸汽通过脱乙烷塔压缩机处理,使其达到3.7MPa,然后送入脱甲烷塔进行分离,脱甲烷塔顶物作为燃料气,而其底物送入C2分离塔进行分离制成乙烯。
二、循环烃的作用
MTP工艺流程中所涉及的反应十分复杂,烯烃的含量的也十分复杂,烯烃之间还可能发生氢转反应,从而生成烷烃和芳烃。循环烃在MTP工艺中主要发挥提高丙烯生成率、控制反应器温度、抑制副反应、提高丙烯选择性或加大反应等作用。
1.丙烯收率提升的作用
MTP工艺中丙烯的制作流程的反映部分为甲醇在沸石基催化剂的作用下转化为烃类混合物,甲醇的转化率基本上达到99%,其中有85%转化为烃类混合物,其中主要产物为丙烯。在MTP反应器出口处设计循环烃,气态烃中的丙烯转化率为32.9%,则丙烯收率为28%。但是在实际操作过程中由于催化剂的性能、循环烃的选择等数值并不能完全达到设计标准,因此丙烯的收率并不理想。
丙烯的挥发率效的特性决定其分馏精制十分困难,C2循环烃在MTP工艺中循环反应和丙烯聚合的环节中发挥重要作用,其一是C2循环烃进入MTP的反应器中可以降低甲醇的的分压,其二是在精制部分中C2循环烃C4烯烃发生歧化反应可以生成丙烯,从而增加丙烯的收率。
2.控制反应温度的作用
循环烃的引入看似与反应器温度没有直接关系,但是通过补入蒸汽、中间气相以及循环烃进入物料的调节,可以有效控制反应器每床层的出口温度,从而保证相应产物的收率、转换率和安全性。
循环烃在催化剂的作用下可以吸收部分催化剂床层的温度,首先C5/C6循环烃的裂解反应也会吸收部分温度,其次在MTP工艺中引入循环烃可以提升低碳烯烃的选择性;其三是烯烃特有的歧化反应,即不同的烯烃分子,可以转化为两个相同的烯烃分子,例如C2循环烃中的乙烯和C4循环烃中的丁烯两者反应可以生成丙烯,这一反应过程是一个吸热的过程;其四是大量的循环烃与等分的甲醇同时进入MTP工艺的反应器等,这四方面都有利于催化剂床层的温度控制。
3.提高丙烯选择性和转化率的作用
循环烃反应过程中会生成除丙烯以外的C2、C4、C5、C6等副产物,在MTP工艺中将这些副产物加入反应器中可以抑制副反应的发生,从而增加C3H6的生产,从而提升丙烯的选择性;在一定温度(475℃―478℃)下,通过循环烃反应间接控制反应器温度,使催化剂活性达到最佳状态,从而促进丙烯的选择性达到最佳状态,因此循环烃的恰当运用可以提高循环烃的选择性。
MTP工艺流程中的主要反映是一个增加压力的反应,循环烃的加入可以有效降低C2、C4、C5、C6等产物的分压,又可抑制副反应的发生,从而提升丙烯的转化率。
结束语
综上所述,循环烃在MTP工艺流程中发挥重要作用,直接或间接对其产物的收率、转换率、反应器温度和丙烯的选择性等方面产生影响。循环烃在不同环节中发挥不同的作用,主要体现在反应部分中降低甲醇的分压和发生歧化反应,从而增加丙烯的收率;在反应器温度控制方面高烃分子通过裂解、烯烃的歧化反应等吸收热量,从而实现温度控制的目的;在循环烃选择性和转化率方面方面可以根据需要将循环烃反应所生成的产物加入反应器内抑制其它副产品的生成,从而提升产物的纯度等。但是在MTP工艺实际操作中仍然存在很多的问题需要我们不断改进和完善,从而提升MTP工艺水平和推动我国化工企业的进一步发展。
参考文献:
[1] 王鹏成,董艳丽.循环烃在MTP工艺中的作用[J].科技风.2013(23).
[2] 刘素丽,雍晓静,罗春桃.Lurgi MTP工艺循环烃组分分布研究[J].煤化工.2014(5).
论文关键词:案例分析与比较,电石法PVC树脂,工业共生,共生网络模型
1介绍
PVC树脂是世界第二大通用树脂,中国是全球PVC树脂的第一大生产国,也是消费量最大的国家。2008年,中国PVC树脂总产量为881.7万吨[1],其中电石法产量约占75%。电石法消耗大量的原盐、电石、鲜水、汞触媒和电力,并产生大量盐泥、电石渣、含汞废水等具有较大危害的废弃物。盐泥的任意堆放和投弃,会污染土壤和水体,对环境造成严重污染;电石渣是电石水解反应的副产品,含有大量的Ca(OH)2,具有很强的碱性,并含有较高的硫化物,对土壤、水质的破坏很大;含汞废水的排放对人类和环境都会造成很大的危害。如何解决电石法PVC树脂工业带来的资源、环境和生态问题管理学论文,成为各国学术界和企业界需要解决的重大问题。
面对电石法PVC工业带来的资源、环境和生态问题,中国企业采用各种各样的方式实施循环经济,很多电石法PVC企业寻求与其它企业进行副产物和废弃物的交换利用,形成工业共生网络,试图降低能源的消耗,提高资源的利用效率,提高固体废弃物、废水和废气的循环使用。
工业共生网络是工业企业模仿生态学,在企业之间直接进行副产品和废弃物的交换与利用而形成的互利关系,目的是为了提高经济效益、环境效益和社会效益。目前工业共生网络模型主要有主导型、平等型、混合型和虚拟型四种。
2中国电石法PVC工业共生网络模型案例分析
2.1主导型工业共生网络案例分析
主导型工业共生网络是最基本和最为广泛存在的一种模型。这种工业共生网络以一家大型企业为核心,许多中小型企业分别围绕这个核心企业进行运作,从而形成工业共生网络。在电石法PVC工业中,这种模型主要表现以电石法PVC企业为核心企业,带动相关企业的发展。
例如河北某电石法PVC化工园区以每年30万吨烧碱和30万吨电石法PVC树脂的工厂为核心,配备小型火力发电厂、次氯酸厂、污水处理厂、有机氯厂和水泥厂。在图1中的电石法PVC工业共生网络中:(1)火电厂的蒸汽用于电石法PVC企业的烧碱干燥和VCM聚合工艺;(2)副产物液氯用于有机氯产品的生产;(3)废弃物电石渣和盐泥用于制水泥;(4)氯水用于制备次氯酸。
图1 河北某电石法PVC化工园区工业共生网络(主导型)
中国大多数中小型电石法PVC企业受资金、资源等的约束,在实施循环经济过程中,逐步形成了主导型工业共生网络模型。这种模型主要是以电石法PVC企业为核心,附属企业综合利用盐泥、电石渣、液氯等副产物和废弃物而形成的工业共生网络。并且在这种模型里,电石法PVC企业没有以其它企业的副产品或废弃物为原料,但是附属企业对电石法PVC企业依赖性非常强,易受电石法PVC企业的影响。
2.2平等型工业共生网络案例分析
平等型工业共生网络是指网络上各个结点企业处于对等的地位,通过各结点之间(物质、信息、资金和人才)的相互交流,而形成工业共生网络,整个网络通过自我调节以维持各组织的运行[2]。在这种模型里,电石法PVC树脂企业与各种资源开采企业处于平等的地位。
例如,中国安徽省资源丰富管理学论文,其中煤炭储藏量居中国第7位;石灰岩保有储量居中国第2位;安徽省东兴盐矿是华东地区最大的盐矿之一,拥有储量17.58亿吨。这为安徽省发展盐化工、电石法PVC产业提供了必要的资源条件[3]。安徽省淮北矿业公司规划建设100万吨PVC项目,利用安徽省丰富价廉的煤、石灰石和岩盐资源,发展盐化工联产PVC(图2),并用电石渣制取高标号的水泥,使煤资源和石灰石资源得到充分的利用。
在电石法PVC平等型工业共生网络模型中,(1)电石法PVC厂使用热电厂的副产物蒸汽;(2)废弃物电石渣用于水泥的生产。由于淮北地区拥有丰富的自然资源,电石法PVC企业可以选择与不同的资源开采类企业进行合作,而资源开采类企业也可以把资源出售给其它企业。因此在网络上的五个主要的企业,它们处于平等的地位,互相依赖。
在中国电石法PVC树脂工业中,这么模式并不常见,一般是资源类企业发展电石PVC工业的过渡阶段。
图2淮北矿业电石法PVC工业共生网络(平等型)
2.3混合型工业共生网络案例分析
电石法PVC工业主导型和平等型工业共生网络是两种极端形式,前者过于依赖于某一企业,而后者过于松散,它们无法成为主要的工业共生网络。混合型工业共生网络介于主导型和平等型之间。电石法PVC工业混合型共生网络拥有主导型和平等型两种模型的特点,网络上既有主导的核心企业,也存在多个企业之间的平等合作。
例如,中平能化集团是中国国有特大型集团,拥有平煤股份和神马实业两家上市公司。中平能化集团依托河南省平顶山地区的区位优势和丰富的煤、岩盐、水等资源优势[4],发展煤、盐、化工产业,实现煤炭采选、尼龙化工、煤焦化工、煤盐化工、煤电5大支柱产业群和现代物流、高新技术、建工建材、机电装备4个辅助产业群协同发展[5]。其中与电石法PVC工业相关的共生网络见图3,电石法PVC厂主要生产PVC树脂,副产品烧碱、氢气、氯气,并产生电石渣、电石炉尾气;煤炭开采厂、盐卤开采厂和石灰石开采厂分别为该电石法PVC工业提供煤炭、卤水和石灰石等原材料。
图3中的工业共生关系有:(1)电石法PVC厂电石炉产生的尾气用作热电厂的锅炉燃料;(2)电石法PVC厂使用热电厂提供的蒸汽管理学论文,节约了能源;(3)有机氯厂利用副产物液氯料生产高附加值的有机氯产品;(4)尼龙厂把副产物氢气作为主要原材料,大力发展尼龙产业;(5)保险粉厂利用煤化工产生的副产物硫磺,并利用电石法PVC厂的副产物烧碱,生产保险粉。(6)电石渣和粉煤灰被水泥厂有效利用。
图3中平能化电石法PVC工业共生网络(混合型)
在图3模型中,电石法PVC厂与煤化工厂、资源开采厂处于核心地位,并且各自都延伸出附属企业,因此该模型为混合型工业共生网络。
在中国,这种模式比较常见。这种类型的企业集中在河南、内蒙古、新疆等煤炭、石灰石和盐矿丰富的地区。
2.4虚拟型工业共生网络案例分析
虚拟型工业共生网络突破了传统的固定地理界限和具体的实物交流,借助于现代信息技术手段,用信息流建立工业共生网络上企业的开放式动态联盟,组建和运营的动力来自多样化、柔性化的市场需求,以市场价值的实现作为目标。电石法PVC工业虚拟型工业共生网络主要表现在电石法PVC企业与跨区域的企业进行副产物和废弃物的交换使用。
例如甘肃白银市处于中国西北地区,于2008年被列入中国首批典型资源枯竭转型城市。由于矿产资源逐渐减少,城市转型是白银市面临的重大问题。白银市规划以建设10万吨TDI和10万吨电石法PVC为核心,发展精细化工,推动银光公司和聚银公司实现转型[6]。
图4甘肃白银地区电石法PVC工业共生网络(虚拟型)
在工业共生网络(图4)中,北方三泰化工规划建设20万t/a烧碱、24万t/a的PVC项目,主要产品为PVC树脂,副产物氢气、氯气和烧碱;银光聚银公司主要产品为TDI(甲苯二异氰酸酯),副产物氯化氢和含氯化氢尾气;甘肃稀土集团主要提取稀土,产生氯化铵残液;以上企业均位于中科院白银高技术产业园。兰州石化为银光聚银公司提高甲苯,公司位于兰州市;靖远煤业位于平川市;靖远电厂为电石法PVC工业提供电力和蒸汽,位于靖远市[7]。
工业共生关系有:(1)银光聚银公司利用北方三泰化工副产物H2与兰州石化的副产物甲苯进行氢化反应,生成甲苯二胺;(2)银光聚银公司利用北方三泰化工副产物Cl2与来自焦化厂的副产物CO生成光气,然后利用光气与甲苯二胺生产甲苯二异氰酸酯(TDI);(3)北方三泰化工利用银光聚银公司的副产物氯化氢与VCM单体生成PVC树脂;(4)甘肃稀土集团利用北方三泰化工的副产物烧碱和银光聚银公司的副产物氯化氢进行稀土工业的生产;(5)北方三泰化工利用银光聚银公司的尾气和自身的副产物烧碱生成NaCl管理学论文,生成NaCl可以在北方三泰化工电解单元反复使用,节约了原盐的使用;(6)水泥厂利用电石渣和盐泥生成水泥。
虚拟型工业共生网络模型实现了兰州市、中科院白银高技术产业园、靖远市和平川区四个区域的甲苯、一氧化碳、氢气、氯化氢、蒸汽等副产物和氯化氢尾气、电石渣、氯化铵等废弃物的交换使用,形成一个跨四个区域的虚拟共生网络。
3中国电石法PVC工业共生网络模型案例比较
对上述主导型、平等型、混合型和虚拟型工业共生网络模型的主要特点、优缺点、适用性、资源节约、副产物利用、废弃物处理等方面进行比较见表1。
表1 工业共生网络模型案例比较
主导型
平等型
混合型
虚拟型
主要特点
以电石法PVC企业为核心企业
电石法PVC企业与其它企业处于平等地位,电石法PVC企业无附属企业
电石法PVC企业与其它企业处于平等地位,并且电石法PVC企业拥有附属企业
实现跨地区的副产物和废弃物的交换利用
优点
既保证了电石法PVC企业的发展,同时带动其配套企业的发展
由于企业拥有大量的煤炭、石灰石和原盐等资源,形成多产业的聚集,有利于资源的综合利用,副产物和废弃物的交换利用
副产物和废弃物的交换使用突破了地域的限制
缺点
附属企业对电石法PVC企业依赖性大,受电石法PVC企业的波动而波动
对煤炭、石灰石和原盐等资源依赖性非常大,一旦资源枯竭,对企业的生存产生重大挑战
副产物和废弃物的运输消耗大量能源
适用性
中小型企业
资源型企业
资源匮乏地区
资源节约
利用电厂的蒸汽
原盐循环利用、利用电厂的蒸汽
副产品利用
小规模有机氯产品
无
大规模发展氢气和氯气深加工产业
循环使用氢气和氯气