期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 抗震设计论文

抗震设计论文精品(七篇)

时间:2023-03-01 16:26:28

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇抗震设计论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

抗震设计论文

篇(1)

论文摘要:本文从抗震的角度探讨建筑的体型,建筑平面布置和竖向布置、规范中设计限值的控制、屋顶建筑等设计问题。

建筑设计是否考虑抗震要求,从总体上起着直接的控制主导作用。结构设计很难对建筑设计有较大的修改,建筑设计定了,结构设计原则上只能是服从于建筑设计的要求。如果建筑师能在建筑方案、初步设计阶段中较好地考虑抗震的要求,则结构工程师就可以对结构构件系统进行合理的布置,建筑结构的质量和刚度分布以及相应产生的地震作用和结构受力与变形比较均匀协调,使建筑结构的抗震性能和抗震承载力得到较大的改善和提高;如果建筑师提供的建筑设计没有很好地考虑抗震要求,那就会给结构的抗震设计带来较多困难,使结构的抗震布置和设计受到建筑布置的限制,甚至造成设计的不合理。有时为了提高结构构件的抗震承载力,不得不增大构件的截面或配筋用量,造成不必要的投资浪费。由此可见,建筑设计是否考虑抗震要求,对整个建筑起着很重要的作用。因此,我们在建筑抗震设计过程别要注重以下几个问题。

一、建筑体型设计问题

建筑体型包括建筑的平面形状和主体的空间形状的设计。震害表明,许多平面形状复杂,如平面上的外凸和凹进、侧翼的过多伸悬、不对称的侧翼布置等在地震中都遭到了不同程度的破坏。唐山地震就有不少这样的震例。平面形状简单规则的建筑在地震中未出现较重的破坏,有的甚至保持完好无损。沿高度立体空间形状上的复杂和不规则在地震时都会造成震害。特别是在建筑结构刚度发生突变的部位更易产生破坏。因此在建筑体型的设计中,应尽可能地使平面和空间的形状简洁、规则;在平面形状上,矩形、圆形、扇形、方形等对抗震来说都是较好的体型。尽可能少做外凸和内凹的体型,尽可能少做不对称的侧翼和过长的伸翼。在体型布置上尽可能使建筑结构的质量和刚度比较均匀地分布,避免产生因体型不对称导致质量与刚度不对称的扭转反应。

二、建筑平面布置设计问题

建筑物的平面布置在建筑设计中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距离、内墙的布置、空间活动面积的大小、通道和楼梯的位置、电梯井的布置、房间的数量和布置等,都要在建筑的平面布置图上明确下来。而且,由于建筑使用功能不同,每个楼层的布置有可能差异很大,建筑平面上的墙体,包括填充墙、内隔墙、有相应强度和刚度的非承重内隔墙等等布置不对称,墙体与柱子分布的不对称、不协调,使建筑物在地震时产生扭转地震作用,对抗震很不利。有的建筑物,其刚度很大的电梯井筒被布置在建筑平面的角部或是平面的一侧,结果在地震中造成靠电梯一侧建筑物的严重破坏。这是因为电梯井筒具有极大的抗侧力刚度,吸引了地震作用的主要部分[3]。有的建筑物,在平面布置上一侧的墙体很多,而另一侧的墙体稀少,这就造成平面上刚度分布的很不对称,质量分布也偏心,使结构的受力和变形不协调,导致扭转地震作用效应,带来局部墙面的破坏。有的建筑物,如底层为商场的临街建筑,临街一侧往往不设墙体,而其另一侧则有刚度很大的墙体封闭,两侧在刚度上相差很多,也将在地震时引起扭转地震作用,对抗震不利。还有的建筑平面布置上,经常出现内隔墙不对齐或中断,使刚度发生突变和地震力传递受阻,对抗震也带来不利,客易引起结构的局部破坏。建筑平面布置设计对建筑抗震关系很大,从概念上要解决的一个核心问题是:建筑平面布置设计上要尽可能做到使结构的质量和刚度分布均匀,对称协调,避免突变,防止产生扭转效应。在建筑平面布置的总体设计上要尽可能为结构抗侧力构件的合理布置创造条件,使建筑使用功能要求与建筑结构抗震要求融合成一体,充分发挥建筑设计在建筑抗震中的作用。

三、建筑竖向布置设计问题

建筑的竖向布置设计问题在建筑设计中主要反映在建筑沿高度(楼层)结构的质量和刚度分布设计上。无论是单层或多层,还是高层建筑或超高建筑,这个问题是比较突出的。存在的这个主要问题是,由于建筑使用功能的不同要求,如底层或下面几层是商场、购物中心,建筑上要求是大柱距、大空间;而上面的楼层则是开间较大的写字楼或布置多样化的公寓楼,低层设柱、墙很少,而上面则是以墙为主,柱很少。有的建筑在布置上还设有面积很大的公用天井大厅,在不同楼层上设有大会议厅、展厅、报告厅等,建筑使用功能的不同,形成了建筑物沿高度分布的质量和刚度的严重不均匀、不协调。突出的问题是沿上下相邻楼层的质量和刚度相差过大,形成突变[3]。在刚度最差的楼层形成对抗震极为不利的抗震承载力不足和变形很大的薄弱层。这是在建筑设计中必须高度重视的问题。在实际设计中,在建筑使用功能不同的情况下,很可能出现上下相邻楼层的墙体不对齐,柱子不对齐,墙体不连续,不到底;上层墙多,下层墙少;上层有柱,下层无柱等,使地震力的传递受阻或不通;抗震用的剪力墙设置不能直通到底层、剪力墙布置严重不对称或数量太少。所有这些布置都将给建筑物带来地震作用分布的不均匀、不对称和对建筑物很不利的扭转作用。多次大震害表明,建筑物竖向楼层刚度的过大变化,给建筑物造成很多破坏,甚至是整个楼层的倒塌。在1995年的日本阪神大地震中,有多栋钢筋混凝土高层建筑发生了中间楼层的整体坐落倒塌破坏。因此,尽可能使剪力墙布置比较均匀并使其能沿竖向贯通到建筑物底部,不宜中断或不到底。尽量避免其某楼层刚度过少,尽量避免产生地震时的钮转效应。

四、建筑上应满足的设计限值控制问题

根据大量震害的经验总结,现行《建筑抗震设计规范》(GBJll-89)对房屋建筑在建筑设计中应考虑的一些抗震要求的限值控制提出了规定。这些规定,建筑设计应予遵守:一是房屋的建筑总高度和层数;二是对房屋抗震横墙问题和局部墙体尺寸的限值控制。

五、屋顶建筑的抗震设计问题

在高层和超高层建筑设计中,屋顶建筑是一个重要的设计部分。从近几年对一些高层建筑抗震设计审查结果来看,屋顶建筑存在的主要问题,一是过高,二是过重。这样的屋顶建筑加大了变形,也加大了地震作用。对屋顶建筑自身和其下的建筑物的抗震都不利。屋顶建筑的重心与下部建筑的重心不在一条线上,且前者的抗侧力墙与其下楼层的抗侧力墙体上下不连续时,更会带来地震的扭转作用,对建筑物抗震更不利。为此,在屋顶建筑设计中,宜尽量降低其高度。采用高强轻质的建筑材料和刚度分布比较均匀、地震作用沿结构的传递比较通畅,使屋顶重心与其下部建筑物的重心尽可能一致;当屋顶建筑较高时,要使其具有较好的抗震定性,使屋顶建筑的地震作用及其变形较小,而且不发生扭转地震作用。超级秘书网

六、结束语

总的来说,建筑设计是建筑杭震设计的一个重要方面,建筑设计与建筑

抗震设计有着密切关系。它对建筑抗震起着重要的基础作用。一个优良的建筑抗震设计,必须是在建筑设计与结构设计相互配合协作共同考虑抗震的设计基础上完成。为此,要充分重视建筑设计在建筑抗震设计中的重要性,在建筑抗震设计中更好地发挥建筑设计应有的作用。

参考文献:

[1]《建筑抗震设计规范》(CBJll-89),中国建筑工业出版社,2005。

[2]包世华、方鄂华,《高层建筑结构设计》,清华大学出版社,2003。

篇(2)

关键词:桥梁基础抗震设计日本规范

一、引言

近十年来,世界相继发生了多次重大地震,1989年美国LomaPrieta地震(M7.0)、1994年美国Northridge地震(M6.7)、1995年日本阪神地震(M7.2)、1999年土耳其伊比米特地震(M7.4)、1999年台湾集集地震(M7.6)等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。

近几次大地震造成的大量桥梁的破坏给了全世界桥梁抗震工作者惨痛的经验教训。各国研究机构纷纷重新对本国桥梁抗震规范进行反思,并进行了一系列的修订工作。日本1995年阪神地震后,对结构抗震的基本问题重新进行了大量的研究,并十分重视减振、耗能技术在结构抗震设计中的应用。桥梁、道路方面的抗震设计规范已经重新编写,并于1996年颁布实施。美国也相继在联邦公路局(FHWA)和加州交通部(CALTRANS)等的资助下开展了一系列的与桥梁抗震设计规范修订有关的研究工作,已经完成了ATC-18,ATC-32T和ATC-40等研究报告和技术指南。与旧规范相比,新规范或指南无论在设计思想,设计手法、设计程序和构造细节上都有很大的变化和深入。

中国现行《公路工程抗震设计规范》(JTJ004-89)在80年代中期开始修订,于1989年正式发行。随着中国如年代经济起飞,交通事业迅猛发展,特别是高速公路兴建、跨越大江,大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。

本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。

二、主要国家桥梁抗震规范基础抗震设计的概况

本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的AASHTO规范、Cal-tans规范、ATC32美国应用技术协会建议规范,新西兰规范NZ,欧洲规范EC8,日本规范JAPAN)进行基础抗震设计方面的比较。

中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于阪神地震的经验,地震后桥梁上部结构的修复和重建都比下部基础经济和省时、省力,因此桥梁基础的抗震能力的要求应比桥墩高。

三、日本桥粱基础抗震设计方法细节

1.按流程,先用震度法设计。震度法基本概念是把设计水平震度

Kh乘以结构Kh的计算方法如下:

其中Cz--地区调节系数;

Kh0--设计水平震度的标准值。

其中,δ是把抗震设计所确定的地基面以上的下部结构质量的80%或100%和该下部结构所支承的上部结构质量的100%之和作为外力施加到结构上在上部结构惯性力作用点位置发生的位移。

2.用震度法设计以后,如果基础结构是桥台基础或者桥墩的扩大基础,不需要用地震时保有水平耐力法设计。这是因为设计桥台基础时,地震时动力压力的影响非常大,此外结构背面存在的主体也使结构不容易发生振劾。而对于扩大基础来说一般地基条件非常好,因此,地震时基础某些部位转动而产生非线变形可以消耗许多地震能量。

3.用地震时保有水平耐力法设计时,首先要判断基础水平耐力有没有超过桥墩的极限水平耐力。这是因为地震时保有水平耐力法的基本概念是尽量使地震时在桥墩而不是在基础出现的塑性铰。如果在基础出现塑性铰,发生损伤后,修复很困难。所以,我们要把基础的行为控制在屈服范围内。

如果基础水平耐力小于桥墩的极限水平耐力,则要判断桥墩在垂直于桥轴方向的抗震能力是不是足够大(按式(3))。因为如果桥墩在垂直于桥轴方向具有足够大的抗震能力(例如壁式桥墩),而且基础的塑性反应在容许范围以内,则基础的非线能吸收大量的振动能量并且基础仍然是安全的。

桥墩的极限水平耐力Pu≥1.5KheW(3)

Khco--设计水平震度的标准值;

Cz--地区调节系数;

μa--容许塑性率;

W-一等价质量(W=Wu十CpWp);

Wu--振动单位的上部结构质量;

Wp--振动单位的桥墩质量;

Cp--等价质量系数(剪断破坏时1.0,剪断破坏以外是0.5)。

4.桥墩的极限水平耐力满足Pu≥1.5KheW时,对基础塑性率进行对照检查。虽然基础的非线行为能吸收大量振动能量,但是对于有的基础部件来说,可能会遭受过大的损伤。所以要控制基础的反应塑性率,按如下要求:

μFR≤μFL(4)

式中μFR--基础反应塑性率;

μFL--基础反应塑性率的限度。

5.发生液化时,要降低土质系数。随后的计算(对照和检查)同上述方法基本一致。

6.在地震时保有水平耐力法的流程中,最后是对基础水平位移、转角的对照和检查。要求是基础最大水平位移为40cm左右,基础最大容许转角为0.025rad左右。

篇(3)

不确定性的地面运动的影响。地震动是地壳快速释放能量过程中产生具有不确定性的多维振动,它是通过地震波的传播实现的,它的随机性和复杂性让人难以预测。地震动的各个分量对建筑都具有危害作用,即一个竖向分量、两个水平分量和一个转动分量。地震灾害具有突发性、破坏性、难以预测性,甚至是毁灭性的。结构动力特性的影响。影响结构动力分析的因素主要有:结构质量分布不均匀;基础与上部结构的协同作用;节点的非刚性转动;偏心扭转可能使位移增加;柱的轴向变形可能会使周期变长,加速度降低;材料的影响。混凝土的弹性模量随着时间的增长或应变的增大而降低,这意味着自振周期可能增长,而加速度反应将减小。阻尼变化的影响。钢筋混凝土结构阻尼比受震松动以后会变大,且自振周期变长。基础不同沉降量的影响。按一般荷载设计的框架结构,当地震系数大于0,基础差异沉降可能造成实际弯矩与设计弯矩出现较大的误差,而这种误差在设计中一般未予考虑。建筑结构的施工质量。施工质量是影响结构抗震能力的一个重要因素。施工的任一环节都可能对建筑结构的抗震性能造成重要影响。这就是为什么“豆腐渣工程”的抗震性能总是和设计值相差甚远。

2.建筑结构抗震设计方法

2.1结构地震分析法

结构抗震设计的首要任务就是对结构最大地震反应的分析,需要确定内力组合及截面设计的地震作用值。常用的地震分析法有底部剪力法、弹性时程分析方法、振型分解反应谱法、非线弹性静力分析法以及非线弹性时程分析法。其中最为简单的属底部剪力法,其在质量、刚度沿高度分布较均匀的结构中较为适用。假设结构的地震反应以线性倒三角形的第一振型为主。并通过第一振型周期的估计来确定地震影响系数。对于较为复杂的结构体系,采用振型分解反应谱法来计算,它的思路就是根据振型叠加原理,将各种振型对应的地震作用、作用效应以一定方式叠加起来得到结构总的地震作用、作用效应。而弹性时程分析适用于特别不规则和特别重要的结构中,将建筑物看作弹性或弹塑性振动系统,直接输入地面振动加速度记录,对运动方程积分,从而得到各质点的位移、速度、加速度和剪力时程变化曲线。非线弹性时程分析法可以准确完整的反映结构在地震作用下反应的全过程。按非线弹性时程分析法进行抗震设计,能改善结构抗震能力和提高抗震水平。非线弹性静力分析法考虑了结构弹塑性特性,在结构分析模型上施加某种特定倾向力模拟地震水平侧向力,并逐级单调增大,构件一旦屈服,修改其刚度直到结构达到预定的状态。

2.2建筑结构抗震设计方法

为了确保建筑结构的抗震能力最佳,所设计的结构在强度、刚度、延性及耗能能力等方面都达到最佳,质量分布均匀,平面对称、规则抗侧向力较好的体系及刚度与承载能力变化连续的结构体系是优先考虑的设计方案,从而经济地实现“小震不坏,中震可修,大震不倒”的目的。

(1)根据我国的抗震设计规范,建筑持力层的选择非常重要,它关系着整个建筑物的安全性能,同时规范还指出,建筑的形体要适当,要求建筑的形状及抗侧力构件的平面布置宜规则,并有整体性,不宜用轴压比很大的钢筋混凝土框架柱作为第一道防线。

(2)抗震结构体系布置是建筑结构抗震设计的关键问题,如房屋建造中框架结构体系和砌体结构的选择问题。地震后会有余震,抗震结构体系应具有多道抗震防线。如框架结构设计中为了避免部分构件破坏而导致整个体系丧失抗震能力,将不承受重力荷载的构件用作传递途径。

(3)传统的结构抗震是通过增强结构本身的抗震性能(强度、刚度、延性)来抵御地震作用的,即由结构本身储存和消耗地震能量。消能减震设计指在结构中设置消能器来消耗地震输入的能量,减轻结构的地震反应,减小结构发生破坏和避免结构物直接倒塌以达到预期防震减震要求。隔震设计指在建筑物基础与上部结构之间设置隔离层,即安装隔震装置,通过隔震装置延长结构的基本周期,避免地震能量集中使结构发生屈服和破坏。这是一种以柔克刚积极主动的抗震对策,是一种新方法、新对策、新途径。

(4)尽可能多设置几道抗震防线,一个较好的抗震建筑结构由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。强烈地震之后往往伴随多次余震,如果只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。如像教学楼这种相对大开间、单跨、大窗口、悬臂走廊的纯框架结构,其纵、横方向的刚度不均匀,很容易发生扭转破坏,而整个结构只有框架一道防线,一旦柱子发生破坏,没有其他约束措施,整个框架因丧失全部承载能力而倒塌。防止脆性和失稳破坏,增加延展性。设计不良的细部结构常常发生脆性和失稳破坏,应该防止。刚度的选择有助于控制变形,在不增加结构的重量的基础上,改变结构刚度,提高结构的整体刚度和延展性是有效的抗震途径。

(5)场地条件就是导致建筑震害过于严重的关键因素,所以选择最为有利的地形最大限度的防止建筑物出现在不利于抗震功能发挥的区域。选择在抗震过于危险的区域来建造房屋,有可能对人们的生命财产安全带来危害。在汶川地震时,北川县城西的房屋建造在有滑坡隐患的山体之下,在地震的作用下,山体崩塌、滑坡,将大量的房屋掩埋,死亡1600人,损失惨重。

3结语

篇(4)

【关键词】建筑设计,抗震设计,作用分析

中图分类号:S611 文献标识码:A 文章编号:

一、前言

在目前的发展趋势中,建筑结构设计的主流趋势有低碳,环保,安全,节能,生态。其中指标之一,就是建筑的安全性,而我国目前破坏力最大的安全威胁便是地震,因此,加强对建筑结构的抗震设计,必将会被提升到建筑设计新的战略高度。

二、建筑结构设计中抗震性能衡量标准

现行抗震设计规范对于建筑结构的性能从两个角度进行描述,一是通过损坏的程度描述其性能,将建筑结构的损坏程度分为不损坏和属正常维修下的损坏、可修复的破坏和倒塌;二是描述用途的重要性,即抗震设防分类。主要是氛围甲、乙、丙、丁四类。

现行规范对于部分钢筋混凝土结构提出了相应的定量指标,即正常维修和倒塌的层间变位角。而在设防类别上,提出了不同的抗震措施。其中乙类抗震措施的相关规定比甲类高一度。在强烈地震的影响下,乙类受到的毁坏程度比甲类轻。但是对于抗震能力,仍然缺乏确定的数量变化。借助于现行航震鉴定标摊b所引进的”综合抗震能力由数量上的区别”有可能使不同性能要求的结构所具有的抗震能力由数量上的区别。比如在判断结构抗力的高低中,可以采用结构楼层的受剪承载力与设计地震剪力的比值。而在结构变形能力高低方面,可以用结构所具有的变形能力与基本变形能力的比值来表征,这样就能保证不同性能要求下所对应的抗震措施的数量化。对于丙类结构的抗震设计,主要利用抗力和变形能力进行组合,并作为综合抗震能力的基本值。而乙类建筑,设计的综合抗震能力要低于相应的基本值。

三、建筑结构设计对建筑抗震性能的影响

1、 砌筑体结构影响基本变化能力的构造,重点是将整个圈梁、主要构造柱数量、具置、断面截面尺寸和配筋数量的分级,局部的墙体尺寸、楼梯间的构造等只适用于考虑局部影响。比如,5-6层砖房的主要构造柱数量,房屋四角和楼梯间四角应该设计为第一等级,用于房屋隔开间的内外墙链接处和楼梯间四角设计为第二等级。对于房屋每开间的内外墙链接位和楼梯间四角设计为第三等级;此处不用设置构造柱与抗震设计不同。当然,在相同设防烈度和性能要求的前提下,对与层数要求不同的砌筑结构,基本延性构造的要求也不同,构造柱设置就需要随房屋层数的不断增加而相应提高。目前主要难题是,需要根据具体实例进行计算和分析,针对同地点、同结构的房屋按照不同等级采取相应措施后,其措施的构造影响能力系数如何确定?是否可在某个范围内取值。

2、 钢筋混凝土结构对变形能力构造的影响,可适当的调整内力、提高结构柱箍筋和纵向钢筋体积配箍率、抗震墙墙体和构造作为抗震能力分级的重点,而框支层、短柱、链接的构造作为局部的影响。不同层数钢筋混凝土结构在相同设防烈度性能的要求,延性构造要求也不一样。目前,内力调整、纵筋总配筋率和箍筋体积配箍筋率等都成型的分级和取值,但如何将其转化为相应的影响系数还需要进一步的计算和研究。

3、 钢筋结构对变形能力构造的影响,可调整内力、各节点域内构造、构件的长细比和支撑设置作为重点的分级,这时构件的宽厚就是结构的局部影响。在相同设防烈度和性能的要求下,对建筑层数不同的结构建筑,基本延性构造需求也不同。钢结构规范中也有一些现成的定量取值,也要研究将其转化为影响系数的方法。

四、建筑结构设计中的抗震设计措施

1、要严格选择地基选址

地基选址是进行建筑结构设计的基础,因此,在房间结构抗震设计中,要科学避开山嘴,山包,陡坡,河流等不利因素,要本着坚硬,牢固,平坦,开阔的选址原则。亲身实地,利用先进技术设备,进行地质勘探,山石水土监测,并取样论证,科学严谨分析。力求使得整个地基牢固可靠,地质稳定无渗漏,无坍塌,无暗河,无熔岩,无火山……从而保证整个地基不会因为承载而发生小范围的坍塌。影响到整体承载能力和抗震能力设计。

2、确保结构的整体性

在建筑结构抗震设计中,一般而言,要尤其注意其是由诸多构件共同组合在一起,如此,要进行整体化的对待。要充分调动各个构件的作用来完成整体建筑的抗震效果。当建筑的一些构件基本都失去了原有的功能时候,那么,在地震来临之后,很容易让整体的建筑结构丧失对地震的抵抗能力。在这种情况下,很容易让整个建筑坍塌,因此,要保证所有构件的功能协调,并确保所有的构件都能够在地震作用下保证良好的性能,如此,可以让建筑结构的整体抗震能力增强。同时,要坚持实施多级防震措施。传统建筑结构多采取的是三级设防措施,即小震不坏、中震可修、大震不倒。但在新的时期,建筑结构必须是采取的多级设防模式,保护建筑主体抗震能力,减轻经济损失,使得建筑抗震中更加安全。

3、屋顶建筑抗震设计也是整个设计的一个重要环节。近几十年来,从多数建筑抗震设计评定结果看,屋顶建筑设计还存在一些问题,例如:屋顶设计较高或者设计过重。屋顶设计较高或者设计过重,无形当中加大了屋顶建筑变形,而且地震作用也加大了,尤其对自身和屋顶之下的建筑物的抗震作用都不利。有时屋顶建筑的重心和屋顶之下的中心不在同一直线上,如果屋顶的抗侧力墙和屋顶之下的抗侧力强出现间断,在地震发生时,带来的地震扭转作用也会更严重,对抗震更不利。所以,进行屋顶建筑设计过程中时,应该最大限度的降低屋顶建筑的高度。选用强度较高、轻质、刚度均匀的材料,使得地震作用传递不受阻碍;屋顶重心和屋顶之下的建筑中心在同一直线上;如果屋顶建筑非常高,屋顶建筑就必须具有较强的抗震性,让屋顶建筑地震作用和突变降低到最小,尽量避免发生扭转效应。

4、要合理且恰当地布局地震外力的能量传递与吸收的途径,在地震当中,要确保建筑的支柱、梁与墙的轴线,处于同一个平面上,从而可以形成构件的双向抗侧力结构体系。并且可以使其在地震的作用下,呈现弯剪性的破坏,并使塑性屈服情况,尽量的发生在墙的根底部,从而连梁适合在梁端产生塑性屈服,这样还具有足够的变形的能力。在震灾中,在墙段部分充分发挥抗震功能之前,要按照"强墙弱梁"的原则,来大力加强墙肢的承载力,避免墙肢遭到剪切性的破坏现象,从而最大限度的提高建筑结构的整体的抗震能力。

5、要根据抗震等级,在对墙、柱以及梁节点设计中,采取相对应的抗震构造措施,力求确保建筑物结构,在地震的作用下可以达到三个水准的设防标准。还可以根据"强柱弱梁"、和"强剪弱弯" 、以及"强节点弱构件"几种构造的原则,在建筑设计中,合理的选择柱截面的尺寸,以此控制柱的轴压比,并还要注意构造配筋的要求,还要保证,钢筋砼结构建筑在地震的作用下,能够具有足够的承载能力以及具备足够的延性。

6、在建筑设计过程中,要设置出多道抗震的防线,即,在设计一个抗震结构的体系当中,有一部分延性比较好的构件,在地震的作用下,首先可以担负起第一道抗震防线的作用,然事,其他的构件,在第一道抗震防线屈服以后,在地震中,会依次的形成第二道、第三道或者是更多道的抗震的防线,这样的抗震结构体系的设计,在建筑设计当中,对于确保建筑结构具有的抗震安全性,是非常的行之有效的设计方法和手段。

五、结束语

建筑结构抗震设计,关乎民生,关乎经济发展,社会稳定,对建筑实施结构的抗震设计,主要涉及对建筑高度,承载力,总体结构,各个部件的性能规划等一系列的因素,要求通过对各个构件和整体规划的基础上,既实现满足居民生活生产保障安全的需要,又具有值得欣赏的美学价值。

参考文献:

[1]陈维东 建筑结构抗震设计存在的问题及其对策 [期刊论文] 《中国高新技术企业》 -2009年5期

[2]丁勇春 钱玉林 马国庆 建筑结构的抗震分析和设计 [期刊论文] 《四川建筑》 -2004年4期

[3]崔烨 孙晓红 建筑结构抗震设计与分析 [期刊论文] 《科技资讯》 -2011年17期

[4] 郭华 江雄华 现代建筑结构抗震设计方法研究 [期刊论文] 《中国新技术新产品》 -2010年16期

篇(5)

【关键词】房建结构,结构设计,抗震设计现状,要求

中图分类号:S611 文献标识码:A 文章编号:

一、前言

房建结构抗震设计,关乎民生,关乎经济发展,社会稳定,对房屋建筑实施结构设计,主要涉及对建筑高度,承载力,总体结构,各个部件的性能规划等一系列的因素,要求通过对各个构件和整体规划的基础上,既实现满足居民生活生产保障安全的需要,又具有值得欣赏的美学价值。增强房建结构的抗震设计,必须综合考虑地基,房屋的结构体系选择,综合布局等多方面建设因素,是一项及其专业,严谨,复杂的高技术工作。

二、建筑抗震的主要影响因素

1、抗震设计标准

目前,国内在不同地区设定的基本设防烈度,主要是根据该地区以及具体建筑在一段时间内遭受地震以及地震强度的概率而定的。如果是一般建筑,则执行基本烈度设防,如果是重要的建筑物,则相应地提高设防烈度,但是,随着设防烈度的提高,建筑的造价会相应增加。

2、建筑结构形式

为了有效地保证建筑物“小震不坏,中震可修,大震不倒”,在最新的设计规范中,砖混内框架结构被严格取缔了。目前,主要采用的是框架结构、剪力墙结构等。框架结构空间布置灵活,相对造价低,但是其在水平地震力作用下,容易发生剪切变形,因此,框架结构适用的高度相对较低。剪力墙结构平面布置没有框架灵活,但其平面内自身刚度大,强度高,整体性能好,在水平荷载作用下变形小,抗震性能较强,适用于高度较高的高层建筑。

3、抗震措施

抗震措施主要是根据建筑的重要性决定的。在确定建筑等级及场地类型之后,将先进的抗震理念和系统的分析计算纳入到抗震设计中,即可改善建筑抗震性能,提高建筑抗震效果。

三、框架结构抗震设计的基本要求

有抗震性要求的框架结构,应设计成延性框架,遵守“强柱弱梁” 、“强剪弱弯”、强节点、强构件等设计原则,柱截面不宜过小,应满足结构侧移变形及轴压比的要求。在进行框架结构抗震设计的时候,需要确定框架结构的抗震等级,根据不同的等级进行设计,主要是为保证框架结构具有较好的延性,并且能满足合理、经济的设计要求。构件设计时应满足各自的基本要求:①框架结构在进行梁端抗震设计时,既要允许塑性铰在梁上出现又不要发生梁剪切破坏,同时还要防止由于梁筋屈服渗入节点而影响节点核心区的性能,使梁形成塑性铰后仍有足够的受剪承载力,梁筋屈服后,塑性铰区段应有较好的延性和耗能能力。②框架柱在设计时,应该遵循强柱弱梁,使柱尽量不要出现塑性铰,在弯曲破坏之前不发生剪切破坏,使柱有足够的抗剪能力,同时控制柱的剪切比不要太大。③框架节点在地震破坏时,主要是节点核心区剪切破坏和钢筋锚固破坏,因此在设计时,要采取“强节点弱构件”的设计概念,保证在多遇地震时,节点应在弹性范围内工作;在罕遇地震时,节点承载力的降低不得危及竖向荷载的传递。

四、框架结构构件抗震设计的构造措施

1、框架梁的截面抗震设计尺寸,宜符合下列各项要求:截面宽度不宜小于 200mm;截面高宽比不宜大于 4;净跨与截面高度之比不宜小于4。在计算出梁控制截面处考虑地震作用的组合弯矩后,可按一般钢筋混土受弯构件进行正截面受弯承载力计算。梁端纵向受拉钢筋的配筋率不应大于 2.5%,且计入受压钢筋的梁端混凝土受压区高度和有效高度之比,一级不应大于 0.25,二、三级不应大于 0.35。梁端截面的底面和顶面纵向钢筋配筋量的比值,除按计算确定外,一级不应小于 0.5,二、三级不应小于 0.3。梁端剪力设计值应根据强剪弱弯的原则,按的要求加以调整,对一、二、三级抗震等级分别采取1.3、1.2、和1.1梁端剪力增大系数。

2、框架柱的截面抗震设计尺寸,宜符合下列各项要求:截面的宽度和高度均不宜小于 300mm;圆柱直径不宜小于 350mm。剪跨比宜大于 2。截面长边与短边的边长比不宜大于3。柱轴压比不宜超过下表的规定;建造于Ⅳ类场地且较高的高层建筑,柱轴压比限值应适当减小。柱的钢筋配置,应符合柱纵向钢筋的最小总配筋率,中柱和边柱的一、二、三、四抗震等级分别是1.0、0.8、0.7、0.6,角柱、框支柱的一、二、三、四抗震等级分别是1.2、1.0、0.9、0.8。同时每一侧配筋率不应小 0.2%;对建造于Ⅳ类场地且较高的高层建筑,数值应增加 0.1。 当采用HRB400 级热轧钢筋时应允许减少 0.1,混凝土强度等级高于 C60 应增加 0.1。

3、框架节点核芯区箍筋的最大间距和最小直径宜按规范中的柱箍筋加密区的箍筋最大间距和最小直径,一、二、三级框架节点核芯区配箍特征值分别不宜小于 0.12、0.10 和 0.08 且体积配箍率分别不宜小于 0.6%、0.5% 和 0.4%。柱剪跨比不大于 2 的框架节点核芯区配箍特征值不宜小于核芯区上、下柱端的较大配箍特征值。

五、基于剪力墙结构建筑体形的抗震优化设计

高层建筑结构的设计,除了要合理选择结构抗侧力体系外,要特别重视建筑体形和结构总体布置。建筑体形是指建筑的平面和立面;结构总体布置是指结构构件的平面布置和竖向布置。建筑体形和结构总体布置对结构的抗震性能具有决定性的作用。

1、震害及抗震概念设计

结构抗震设计有许多不确定因素(地震特性、结构扭转等),进行精确的抗震计算是非常困难的。结构的抗震设计除了进行细致的计算外,要特别注重结构概念设计。概念设计是指在结构设计中,结构工程师运用“概念”进行分析,做出判断,并采取相应措施。根据概念设计,抗震房屋的建筑体形和结构总体布置应符合如下原则:采用规则结构,不采用严重不规则结构;明确的计算简图和合理的传力路径;具有必要的刚度和承载力,具备良好的弹塑性变形能力和消耗地震能量的能力;部分结构或构件破坏不应导致整体结构倒塌,增加超静定结构的次数。满足抗震设计原则:即:“强节弱杆”、“强竖弱平”、“强剪弱弯”;置多道抗震防线,形成两道或多道的抗震防线,增强结构抗倒塌能力。

2、建筑平面和结构平面布置

高层建筑的外形分为板式和塔式两大类:板式建筑平面两个方向的尺寸相差较大,塔式建筑平面两个方向的尺寸接近。多数高层建筑为塔式。对抗风有利的建筑平面形状是简单规则的凸平面,如圆形,正多边形、椭圆形等平面,以减小风压,有较多凹凸的复杂平面,对抗风不利,如V形、Y形等。对抗震有利的建筑平面形状是简单、规则、对称、长宽比不大的平面。

六、结束语

综上所述,建筑结构设计中的抗震设计十分重要,加上我国今年来地震较多,加强房屋抗震设计对于居民的安全具有很大作用,应该不断的加强研究。

参考文献:

[1] 张立军 房屋建筑结构设计体系选型及抗震没计 [期刊论文] 《科技与生活》 -2011年14期

[2]孟虎 房建工程砖混结构的抗震设计与前瞻性研究 [期刊论文] 《科技与企业》 -2011年9期

[3]万忠伦 成都驿园高层住宅结构抗震设计 [期刊论文] 《铁道建筑》 PKU -2008年12期

[4]吕西林.周德源、李思明、陈以一、陆浩亮.抗震设计理论与实例[M].同济大学出版社.2011

篇(6)

关键词:型钢混凝土结构;抗震性能水平;容许变形值;量化指标

abstract

combining with performance grades of reinforced concrete structures at home and abroad, the seismic

performance of steel reinforced concrete (src) structures can be induced into four levels: normal service, temporary service, life safety and collapse prevention. the failure modes and characteristics of src columns are introduced, and limit states of the four seismic performance levels and their dominating parameters are put forward. on the basis of the experiments and results of src frames and columns, the story drifts angle limitation and range of crack width on the column end are obtained for four different seismic performance levels. finally considering ideas of performance based seismic design, problems needed much further study about src structures are proposed.

keywords: steel reinforced concrete (src) structures, seismic performance levels, tolerantdeformation values, quantitative index

1. 引 言

型钢混凝土结构(src 结构)又叫劲性钢筋混凝土结构或钢骨混凝土结构,是钢-混凝 土组合结构的一种形式。src 结构通过把钢和混凝土巧妙地组合在一起,充分发挥了这两 种材料的特性,其具有比传统结构承载力高、强度刚度大、稳定性和抗震性能好等优点。随 着超高层建筑的发展和理论研究的深入,src 结构在我国将具有非常广阔的应用前景。目 前国内外对 src 结构的研究工作和成果主要集中在构件的承载能力,即针对强度计算开展 研究[1]。随着基于性能抗震设计理论的提出和发展,人们意识到这种传统基于力的设计方 法还存在缺陷,开展基于性能的 src 结构抗震设计理论则更加科学合理,既符合当代抗震 设计理念的发展趋势,又为工程实践应用和推广型钢混凝土结构提供基础。

确定 src 结构在不同性能水平下的容许变形值是实现其基于性能抗震设计理论的前提 和关键。由于结构的性能与破坏状态有关,而结构的破坏状态又可由结构的反应参数或者某 些定义的破坏指标来确定,所以,结构性能水平可以用这些主要的参数来划分。容许变形值 被认为是比较重要的反应参数,但对此方面的研究还比较欠缺,本文即在此背景下研究 src 结构功能失效的判别参数和容许变形值的大小。

2. src 结构的性能水平和抗震设防目标

2.1 性能水平划分

结构的抗震性能水平是指建筑物在某一特定设防地震水准下预期达到的最大破坏程度, 或容许的损坏极限状态。目前对钢筋混凝土结构性能水平的划分比较明确,比如我国现行抗 震规范[2]将其分为三档,美国 vision2000、fema273 和 atc-40 分为四档,当然还有学者 提出其他不同的划分标准。

性能水平为基于性能的抗震设计和震后修复加固提供依据,对于 src 结构,结合已有 的划分方法和试验理论研究成果[2],将其性能水平分为四档,见表 1 所示。

表 1 src 结构四个性能水平及其宏观描述

tab.1 target performance levels and damage control of src structures

 

2.2 抗震性能目标确定

结构的性能目标是指一定超越概率的地震发生时,结构期望达到的某种功能水平。我国 现行抗震规范采用小震不坏、中震可修、大震不倒的三水准设防目标,但在表 1 提出的 src 结构性能水平背景下,已有的三水准抗震设防目标需要更加细化。按照小中大三个地震作用 水平和“四档”性能水平,可对 src 结构建立表 2 所示的抗震性能目标。

表 2 src 结构抗震性能目标

tab.2 seismic performance objectives

 

(其中:①为基本目标,指一般使用要求的建筑应具备的最基本性能目标;②为重要目标,指重要性很高

或地震后危险性较大的性能目标;③为非常重要目标,指对安全有十分危险影响的性能目标)

可以看出,排除掉不符合实际工程的情况,这里对 src 结构建立了 10 个抗震性能目标,

其比钢筋混凝土结构的三水准设防目标有所提高,且“中震可修”的性能目标变得更加具体 化。以上三个地震作用水平、四档结构性能水平和 10 个抗震设防目标的提出为实现 src 结 构基于性能的抗震设计理论奠定了基础。

3. src 框架柱的破坏模式及描述

src 构件是在混凝土中主要配置型钢,同时配有受力和构造钢筋。型钢分为实腹式和 空腹式,实腹式型钢主要有 i 字钢、h 形钢和 l 形钢等。理论和实践均证明,实腹式 src 构件具有较好的抗震性能,而空腹式 src 构件的抗震性能与普通 rc 构件的抗震性能基本 相同。因此,这里主要研究含钢率为 4%~8%的实腹式 src 构件。

3.1 破坏模式和特点

src 柱在水平荷载作用下主要产生三种破坏模式,破坏形态按剪跨比的不同大致分为 三种。当剪跨比小于 1.5 时,src 柱发生剪切斜压破坏,首先剪跨段产生许多大致平行的斜 裂缝,将混凝土分成斜向受压短柱,钢骨腹板此时基本处于纯剪应力状态,最后钢骨腹板在

近似纯剪应力状态下达到屈服强度,剪压区混凝土压碎而破坏;当剪跨比为 1.5~2.5 时,src

柱在反复荷载作用下发生剪切粘结破坏,首先在最大弯矩处出现剪切斜裂缝或竖向粘结裂 缝,随着荷载的增加与往复循环,粘结裂缝扩展成两条沿型钢翼缘的竖向粘结主裂缝,最后 裂缝处混凝土保护层剥落,剪切承载力下降,构件破坏;当剪跨比大于 2.5 时,src 柱的承 载力往往由弯曲应力起作用,一般发生弯曲破坏,其首先在最大弯矩截面处形成水平裂缝, 随着荷载增加,柱底纵筋屈服,紧接着型钢翼缘屈服,随之腹板屈服,外围混凝土不断剥落, 纵筋和型钢翼缘压屈,最后 src 柱达到最大承载力而破坏。

3.2 与 rc 柱破坏的主要区别

试验研究表明,src 柱比 rc 柱具有更优越的抗震性能,其优越性主要在于型钢的影响。 型钢的存在使构件的变形能力增强,破坏时吸收的能量增大,延性也相应得到提高。rc 柱 的最终破坏是由于压区混凝土的压酥,src 柱由于设置较强劲的钢骨,压区混凝土逐渐压 酥后,rc 部分的承载力将向钢骨转移,其后期仍有相当大的变形能力来延缓破坏。可见, 无论在承载能力和刚度方面,还是在延性和耗能能力方面,src 构件均体现了良好的抗震 性能,其在不同性能水平下的变形容许值也将大于传统 rc 结构,这方面的研究工作值得深 入开展。

4. src 结构功能失效的判别标准和容许变形值大小

4.1 四个性能水平及其极限状态

目前关于结构性能水平的划分方法很多,美国 vision2000、fema273 和 atc-40 均将 其划分为四种性能水平,日本和墨西哥则采取三重性能水准,参照已有的划分标准和我国新 的“建筑工程抗震性态设计通则(试用本)”,本文按照我国抗震设计的需要和建筑损伤加重 的程度,对 src 结构采用正常使用、暂时使用、生命安全和接近倒塌四个性能水平。

传统基于力的抗震设计理论将 rc 结构的极限状态分为承载能力极限状态和正常使用 极限状态,基于性能的抗震设计考虑到“投资-效益”因素,从结构受力和业主损失两方面出 发,对应于所提的四个性能水平,将 src 结构的破坏极限状态分为正常使用极限状态、暂 时使用极限状态、生命安全极限状态和接近倒塌极限状态。

4.2 不同性能水平的失效判别标准和参数

为了确定 src 框架柱在四个性能水平下的容许变形值,首先应该能够对各种性能水平 的损坏极限状态进行描述,相应的就必须建立 src 柱不同性能水平的失效判别标准和参数。 传统的 rc 结构采用层间位移角这种单一指标作为量化参数,对于 src 结构,可以利用层 间位移角、裂缝宽度、塑形耗能、塑形转角和延性系数等加以描述和量化。

src 压弯构件经历了混凝土开裂、裂缝延伸扩展,直到压区混凝土剥落,受压纵筋和 型钢受压翼缘屈服,承载力达到峰值的一系列过程,构件最终以受压区混凝土破碎作为丧失 承载力的标志。为了与上述四档性能水平相对应,可将其整个受力过程划分为弹性阶段、带 裂缝工作阶段、弹塑性工作阶段和破坏阶段。

在前述 src 柱破坏形态与剪跨比的定量关系基础上,可以建立 src 柱三种破坏模式各 自的失效判别标准。经过分析,发现得出的三种失效判别标准之间有很多共同点,因此可将 其归纳为统一的判别标准以便应用。对于 src 柱,从开始加载到沿柱身出现剪切斜裂缝或 弯曲裂缝为正常使用性能阶段,此为弹性工作阶段,以开始出现斜裂缝或弯曲裂缝为正常使

用性能极限状态;从混凝土开始出现裂缝到受拉钢筋或型钢受拉翼缘屈服为暂时使用性能阶

段,此阶段是带裂缝工作阶段,以受拉纵筋或型钢翼缘屈服为暂时使用性能极限状态;从型 钢开始出现屈服到外围混凝土剥落,纵筋压屈且水平荷载达到最大值为生命安全性能阶段, 此为弹塑性工作阶段,以水平荷载达最大值为生命安全性能极限状态;从 src 柱承载力达 最大值到混凝土保护层严重剥落,直至核芯混凝土发生局部破碎且承载力严重下降为接近倒 塌性能阶段,此阶段为塑形阶段,以核芯混凝土发生局部破碎为接近倒塌性能极限状态。

4.3 不同性能水平的容许变形值

结合上述判别标准,可分别以层间位移角、裂缝宽度、塑形耗能和延性系数等作为 src 结构四个性能水平极限状态的判别参数。考虑到其中一些指标计算的难度,并为了与我国抗 震规范的性能指标相一致,这里以层间位移角和框架柱的裂缝宽度作为各种性能水平极限状 态的判别指标。

为了得到各种性能水平的层间位移角范围,本文对国内外 src 试验柱、src 平面框架 试验共约 90 个数据进行了统计分析,试验框架柱大部分为实腹式 src 构件,轴压比范围为

0.3~0.8,体积配箍率为 0.8%~2.2%。通过分析文献[4]-[20]中试验柱和平面框架的变形性能, 以及对各个性能水平极限状态的层间位移角统计结果来看,所有试件在未开裂弹性阶段的层 间位移角分布范围为 1/400~1/185,其中 1/400 对应的 src 柱仅有不到 4%的配钢率且轴压 比较高,大部分试件的弹性位移角集中在 1/350~1/200 范围内;仅有少数试件测到 src 柱 受拉钢筋或型钢屈服时的层间位移角,分布范围为 1/120~1/100,有的学者统计为 1/133~

1/100,但大部分集中在 1/120 左右;所有试件均得到了 src 构件在接近倒塌极限状态的层 间位移角,其分布范围为 1/53~1/11。

表 3 src 结构各性能水平的层间位移角分布范围及分布比

tab. 3 distribution range and proportion of inter-storey drift

正常使用阶段

 

从上表各性能阶段的层间位移角分布情况来看,src律性较好。按照各个性能水平层间位移角的分布比例,在达到一定安全保证率的情况下,将

src 框架结构正常使用、暂时使用和接近倒塌三个性能水平极限状态的层间位移角限值定

为 1/350、1/120 和 1/35;同时,将生命安全状态的层间位移角限值设在 1/120 和 1/30 之间, 取为 1/75。

另外,框架柱的裂缝宽度也易于作为各种性能水平极限状态的判别指标。文献[4]-[20]

所做的 src 框架柱抗震性能试验中,在对层间和柱端位移角测量的同时,考察到的柱端裂

缝宽度 在正 常使用 、暂 时使用 、生 命安全 和接 近倒塌 四个 性能水 平的 分布范 围为

0.05~0.1mm、0.5~1mm、1~2mm 和大于 2mm。

综上所述,本文提出的 src 框架结构在不同性能水平时的层间位移角限值和柱端裂缝 宽度可总结为表 4。

表 4 src 框架结构性能水平量化指标限值

tab. 4 limit value of quantitative index for src structures

 

5. 结论及建议

1) 提出基于性能的 src 结构抗震设计理论这一新课题,结合国内外对钢筋混凝土结构 性能水平的划分标准,将 src 结构的性能水平划分为正常使用、暂时使用、生命安全和接 近倒塌四个等级,在此基础上建立了 src 结构的 10 个抗震设防目标;

2) 总结了 src 柱在不同剪跨比时的破坏形态,提出了四个性能水平的失效判别标准和 参数,建议各自的层间位移角限值分别取 1/350、1/120、1/75 和 1/35,并将对应的柱端裂缝 宽度范围定为 0.05~0.1mm、0.5~1mm、1~2mm 和>2mm;

3) 本文所提四个性能水平的容许变形值仅建立在少量试验基础上,还需要将试验量测 结果和大量数值模拟结合起来,从理论上建立容许变形值的计算公式;同时,已有的 src 结构试验研究主要针对框架结构,目前迫切需要开展型钢混凝土组合件和型钢混凝土剪力墙 的试验研究,以便为全面实现 src 结构性态抗震设计提供依据。

参考文献

[0]

[1] jgj138—2001/j130-2001. 型钢混凝土组合结构技术规程[s]. 北京:中国建筑工业出版社,2001.

[2] gb50011-2001.抗震结构设计规范[s]. 北京:中国建筑工业出版社,2002.

[3] 李俊华, 王新堂等. 低周反复荷载下型钢高强混凝土柱受力性能试验研究[j]. 土木工程学报.2007,

40(7):11~18.

[4] 贾金青,姜睿,厚童.钢骨超高强混凝土框架柱抗震性能的试验研究[j].土木工程学报,2006,39(8):14~18.

[5] 闻洋.钢骨高强混凝土柱受力性能的试验研究[j].混凝土,2006,(9):25~26.

[6] 薛伟辰,胡翔.钢骨混凝土框架滞回分析研究[j].地震工程与工程振动,2005,25(6): 76~80.

[7] 李斌,闻洋,李云云.钢骨高强混凝土柱受力性能的试验研究[j].包头钢铁学院学报,2006,25(2):197~199.

[8] 蒋东红 , 王连广 , 刘之 洋 . 钢 骨高强 混凝土框 架 柱开裂荷 载 的试验研 究 [j]. 四川建筑 科 学 研 究,2002,28(3):7~9.

[9] 曹万林等.异性截面钢骨混凝土柱抗震性能试验研究[j].世界地震工程,2004,20(2):64~68.

[10] 白国良,石启印.空腹式型钢混凝土框架柱的恢复力性能[j].西安建筑科技大学学报,1999,31(1):32~34.

[11]黄亮.深圳时代财富大厦超高层建筑结构若干问题研究[j].工程抗震与加固改造,2006,28(3):60~64.

[12] 薛建阳,赵鸿铁.型钢混凝土框架模型的弹塑性地震反应分析[j].建筑结构学报,2000,21(4):28~33.

[13] 徐培福等.带转换层型钢混凝土框架—核心筒结构模型拟静力试验对抗震设计的启示[j].土木工程学 报,2005,38(9):1~8.

[14] 杨勇, 郭子雄, 聂建国. 型钢混凝土竖向混合结构过渡层抗震性能研究综述[j]. 工程抗震与加固改 造,2006,28(5):78~86.

[15] 李丕宁, 秦荣.基于性能的高层钢—混凝土混合结构住宅设计 [j].工程力学, 2007, 24(sup1):87~93.

[16] 田玉基等.钢骨混凝土梁式托柱转换层结构的研究[j].工业建筑,2000,30(2):54~57.

[17] 刘阳.核心型钢混凝土柱抗震性能实验研究[硕士论文].华侨大学硕士学位论文,2006.

[18] 庄云.src 柱—rc 梁组合件抗震性能试验研究[硕士论文]. 华侨大学硕士学位论文,2006.

[19] 王妙芳 , 郭子 雄 . 型钢混凝土柱抗震性态水平及极限状态的讨论 [j]. 工程抗震与加固改造 .2006,

28(3):31~36.

[20] mizuo inukai, kazuya noguchi, masaomi teshigawara, and hiroto kato. seismic performance composite columns using core steel under varying axial load [j]. 13th

world conference on earthquake engineering, 2004:598~606.

篇(7)

关键词:建筑结构;性能;抗震设计;概念;特点;问题;方法

中图分类号:TU318 文献标识码:A 文章编号:

随着人们生活水平的提高,人们对社会的需求开始呈现多样化的特点,而随着建筑物越来越高,体型变得越来越复杂,建筑结构的抗震设计也变得更有挑战性。人们为了保障自身的安全,对此便有了更多的关注,对基于性能的抗震设计也更加重视起来,在此种方法下,会对设计者有所要求,那就是要对建筑物在地震作用下可能形成的性态反应做出一定的评价。这种方法有很多好处,最主要的就是对于不安全的设计,能够正确的辨别出来,还可以提出一些方案来解决问题,使得建筑结构更加安全和经济。

1基于性能的抗震设计概念

以往提到的基于力的抗震设计或者基于位移的抗震设计,由于力和位移都是很明确的物理概念,可以被很容易地理解。但是基于性能的抗震设计,由于性能一词是一个宏观概念,不像力或位移可以直接成为设计参数,也可以直接应用到设计中去事实上,这里提到的结构性能往往可以与结构的破坏程度相关,而结构的破坏程度又可以由结构的反应参数来表示(如应力、力、位移、能量以及一些定义的破坏指标)。所以基于性能的抗震设计是比基于力或者基于位移抗震设计更为广泛的设计理念,更为直接地满足个人或者社会对建筑物的要求,即要求建筑物是否安全可靠,是否满足他们的使用需要,而不是普通使用者能提出的建筑物可以抵抗多强地震力,或者是变形控制在什么程度。

基于性能的抗震设计并不是一个全新的概念,尽管目前基于性能的抗震设计得到国际上广泛的重视与研究,也取得一些初步的成果,但是对于基于性能的抗震设计,现在还没有一个统一的定义。比较有权威性的是美国SEAOC,ATC和FEMA等组织给出的基于性能设计的描述。其中,对基于性能抗震设计的描述是“性能设计应该是选择一定的设计标准,恰当的结构形式,合理的规划和结构比例保证建筑物的结构与非结构的细部构造设计,控制建造质量和长期维护水平,使得建筑物在遭受一定水平地震作用下,结构的破坏不超过一个特定的极限状态”。一些学者也对基于性能抗震设计进行了描述,可见,尽管不同的机构或者个人对于基于性能的抗震设计描述不完全相同,但是这些论述中有一共同思想,就是基于性能抗震设计的主要思想:即结构在其设计使用期间内,在遭受不同水平的地震作用下,应该有明确的性能水平并使得结构在整个生命周期中费用达到最小。

2 我国现行建筑抗震设计理论的存在的问题

2.1我国现行的建筑抗震设计理论设计方法较为保守,缺乏新的设计理念,很大程度上阻碍了新的设计技术的实施。同时,在设计时候,缺乏对建筑结构性能的考虑,而只是根据我国一些曾经制定的抗震设计规范而行,只从刻板的标准出发,没有能综合考虑到各种实际状况。

2.2我国的设计理论和设计方法在很多抗震指标上规定不清晰,抗震设计理念不明确,加上很多建筑的使用者缺乏一定的抗震建筑知识,难以对所使用的建筑结构的抗震性能和抗震能力做出一个很明确的评判。

2.3目前,我国的建筑抗震设计多是重视对建筑的整体承载力和建筑的结构强度来进行,而忽视了对其他因素的考虑比如建筑结构的性能设计。同时,很多现行设计理论在进行建筑的设计时候,更多的注意着建筑的主题结构的抗震损失,而忽视了很多细节,对损失的控制力度不强。经济评估准则并没有在建筑业中得到广泛应用。

3 性能抗震设计理念的特点

通过对现行抗震设计理论的实践,可以对两者进行对比,以得到性能抗震设计理念的特点。

3.1多级设防。

相对于现行的三阶段设防目标(小震不坏、中震可修、大震不倒),性能抗震设计注重多级设防,保护非结构件与内部设施,后者的设计理念既保证使用者安全,又减轻业主和社会的经济损失与压力。

3.2投资效益准则。

性能抗震设计偏重于安全、经济等多方面。在安全与经济之间找到合理、平衡的切入点,确定最佳方案,以优化设计为目的。

3.3自由度大。

相比较传统抗震设计刻板的被动状态,性能抗震设计可根据业主的要求确定目标,给设计带来新的动力。

4 建筑结构基于性能的抗震设计方法

作为性能设计理论的重要内容,基于性能的抗震设计方法显得尤为重要。那么怎样合理的运用基于性能抗震设计理念则引起了人们的广泛关注,为了能够把它有效地运用到实际中来,有很多学者都对此进行了思考,但是却还没有统一的认识,通过他们的总结,我们可以知道让性能设计思想运用到实际设计中来主要有以下步骤和方法:

4.1性能抗震设计阶段

4.1.1概念设计。根据用途和业主的要求,合理确定设防目标,通过场地、建筑平面等进行初步设计。

4.1.2 计算设计。根据预定的设防目标,计算出能影响各类因素的抗震参数,参数与预定目标不符要及时修改,直至满足参数需求。以基于位移的抗震性能设计为例,主要包括步骤有确定不同强度地震作用下性能目标;根据初步设计,确定结构内的位移的极限值;通过等效阻尼比等各类等效数值,确定等效刚度;设计采用必需的构造措施;评价结构强度要求和变形能力。以严谨、科学、合理的态度进行评估,如计算阶段有不符合,则需重复计算设计步骤,以不断完善结构设计。

4.1.3性能评估。通过各类的分析法得出设计结果来确定该建筑结构的性能。

4.2 性能抗震设计方法

目前大致主要有:位移影响系数、能力谱、直接位移设计等方法。

4.2.1位移影响系数法。基于结构性能设计方法,通过分析得出的最大期望位移值,利用等效方法、模态进行确定。以达到此系数的修正作用。此方法还存在着由于它是整体抗震评估方法,无法具体体现主要结构、楼层的损坏情况与抗震水准等问题。

4.2.2能力谱法。1975年被提出,随后不断改进。能力谱设计是将能力谱曲线与地震反应谱转化而来的需求谱,进行比较来评估其抗震性能。此方法侧重对结构的实际性能进行验算、评估。另外,能力谱设计法比较适用于平面结构可简化且分布较均匀的结构,否将会产生不小的误差。

4.2.3直接位移设计法。侧重于结构性能设计,概念简单,根据地震等级来预期位移计算,使结构达到预定位移。此方法也存在着只能从建筑结构材料的极限变化得到数值,而不能考虑到预期以外的强震效应的不足。

5 结语

建筑结构基于性能的抗震设计是比较宽泛的体系,它是现行抗震设计的延续与发展,以结构性能分析作为基础,建筑物的性能目标以全面、科学的因素来确定,使建筑物在面对不同等级的地震时,能达到预期的抗震目标。与传统抗震设计相比,优点明显:基于性能抗震相较于以往更系统化;性能抗震设计的适应性、连贯性更好,应用意义更大;灵活性的加大,使设计人员能发挥创造性,增加对新技术、新材料的推广应用等。性能抗震设计方法也需要解决一些设防水准数据化的划分,合理的参数取值范围介定等问题,才能更好的服务于社会经济建设,达到符合我国国情的设计规范。

参考文献:

[1]贾明明.钢框架结构基于性能可靠度的抗震性能设计.哈尔滨工业大学 硕士论文.2003,9.

[2]邹昀,吕西林.基于结构性能的抗震设计理论与方法[J].工业建筑. 2006,36(9).

[3]汪梦甫,周锡元.基于性能的建筑结构抗震设计[J].建筑结构,2003,33 (3).

[4]程耿东,李刚.基于功能的结构抗震设计中一些问题的探讨.建筑结构学报,2001,21(1).

[5]SEAOC VISION 2O00 COMMITTEE.“Performance-Based Seismic Engineering”, Report Prepared by Structural Engineers Association of California, Sacramento, California, U.S.,1995.