期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 滤波器设计论文

滤波器设计论文精品(七篇)

时间:2022-06-17 09:29:58

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇滤波器设计论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

滤波器设计论文

篇(1)

关键词:谐波;有源电力滤波器;滤波电感设计

引言

并联有源电力滤波器是一种用于动态抑制谐波和补偿无功的新型电力电子装置,近年来,有源电力滤波器的理论研究和应用均取得了较大的成功。对其主电路(VSI)参数的设计也进行了许多探讨[1][2][3],但是,目前交流侧滤波电感还没有十分有效的设计方法,然而该电感对有源滤波器的补偿性能十分关键[2]。本文通过分析有源电力滤波器的交流侧滤波电感对电流补偿性能的影响,在满足一定效率的条件下,探讨了该电感的优化设计方法,仿真和实验初步表明该方法是有效的。

图1

1三相四线并联型有源电力滤波器的结构与工作原理

图1为三相四线制并联型有源电力滤波器的结构。主电路采用电容中点式的电压型逆变器。电流跟踪控制方式采用滞环控制。

以图2的单相控制为例,分析滞环控制PWM调制方式实现电流跟踪的原理。在该控制方式中,指令电流计算电路产生的指令信号ic*与实际的补偿电流信号ic进行比较,两者的偏差作为滞环比较器的输入,通过滞环比较器产生控制主电路的PWM的信号,此信号再通过死区和驱动控制电路,用于驱动相应桥臂的上、下两只功率器件,从而实现电流ic的控制。

以图3中A相半桥为例分析电路的工作过程。开关器件S1和S4组成A相的半桥变换器,电容C1和C2为储能元件。uc1和uc2为相应电容上的电压。为了能使半桥变换器正常跟踪指令电流,应使其电压uc1和uc2大于输入电压的峰值。

当电流ica>0时,若S1关断,S4导通,则电流流经S4使电容C2放电,如图3(a)所示,同时,由于uc2大于输入电压的峰值,故电流ica增大(dica/dt>0)。对应于图4中的t0~t1时间段。

当电流增大到ica*+δ时(其中ica*为指令电流,δ为滞环宽度),在如前所述的滞环控制方式下,使得电路状态转换到图3(b),即S4关断,电流流经S1的反并二极管给电容C1充电,同时电流ica下降(dica/dt<0)。相对应于图4中的t1~t2时间段。

同样的道理可以分析ica<0的情况。通过整个电路工作情况分析,得出在滞环PWM调制电路的控制下,通过半桥变换器上下桥臂开关管的开通和关断,可使得其产生的电流在一个差带宽度为2δ的范围内跟踪指令电流的变化。

当有源滤波器的主电路采用电容中点式拓扑时,A,B,C三相的滞环控制脉冲是相对独立的。其他两相的工作情况与此相同。

2滤波电感对补偿精度的影响

非线性负载为三相不控整流桥带电阻负载,非线性负载交流侧电流iLa及其基波分量如图5所示(以下单相分析均以A相为例)。指令电流和实际补偿电流如图6所示。当指令电流变化相对平缓时(如从π/2到5π/6段),电流跟踪效果好,此时,网侧电流波形较好。而当指令电流变化很快时(从π/6开始的一小段),电流跟踪误差很大;这样会造成补偿后网侧电流的尖刺。使网侧电流补偿精度较低。

假如不考虑指令电流的计算误差,则网侧电流的谐波含量即为补偿电流对指令电流的跟踪误差(即图6中阴影A1,A2,A3,A4部分)。补偿电流对指令电流的跟踪误差越小(即A1,A2,A3,A4部分面积越小),网侧电流的谐波含量(尖刺)也就越小,当补偿电流完全跟踪指令电流时(即A1,A2,A3,A4部分面积为零时),网侧电流也就完全是基波有功电流。由于滞环的频率较高,不考虑由于滞环造成的跟踪误差,则如图6所示网侧电流的跟踪误差主要为负载电流突变时补偿电流跟踪不上所造成的。

分析三相不控整流桥带电阻负载,设Id为负载电流直流侧平均值。Ip为负载电流基波有功分量的幅值,。

下面介绍如何计算A1面积的大小,

在π/6<ωt<π/2区间内

ic*(ωt)=Ipsinωt-Id(1)

在π/6<ωt<ωt1一小段区间内,电流ic(ωt)可近似为直线,设a1为直线的截距,表达式为

ic(ωt)=a1-[uC1-Usmsin(π/6)/L]×t(2)

ic(π/6)=ic*(π/6)(3)

ic(t1)=ic*(t1)(4)

由式(1)~式(4)可以求出a1及t1的值。

在π/6<ωt<ωt1(即1/600<t<t1)区间内,ic与ic*之间的跟踪误差面积A1为

同样可以求出A2,A3,A4的面积。

A2=0.405[(I2dL)/(330IdL+(Ucl+0.5Usm))]

由对称性,得到A3=A1,A4=A2

因此,在一个工频周期内,电流跟踪误差的面积A为

A=A1+A2+A3+A4

=[(0.81Id-0.45δ)IdL]/[165IdL+(Uc1+0.5Usm)]+[(0.81Id-0.45δ)IdL]/[330IdL+(Ucl+0.5Usm)](5)

这里假定上电容电压Uc1等于下电容电压Uc2,Usm为电网相电压峰值,L为滤波电感值(假设La=Lb=Lc=L),Id为非线性负载直流侧电流。

3滤波电感对系统损耗的影响

有源滤波器一个重要的指标是效率,系统总的损耗Ploss为

Ploss=Pon+Poff+Pcon+Prc(6)

式中:Pon为开关器件的开通损耗;

Poff为开关器件的关断损耗;

Pcon为开关器件的通态损耗;

Prc为吸收电路的损耗。

3.1IGBT的开通与关断损耗

有源滤波器的A相主电路如图7所示。假设电感电流ic为正时,则在S4开通之前,电流ic通过二极管D1流出,当S4开通后,流过二极管D1的电流逐渐转移为流过S4,只有当Dl中电流下降到零后,S4两端的电压才会逐渐下降到零。因此,在S4的开通过程中,存在着电流、电压的重叠时间,引起开通损耗,如图8所示。

由图8可知单个S4开通损耗为

开通损耗为

式中:ic(t)为IGBT集电极电流;

Uc为集射之间电压(忽略二极管压降即为

主电路直流侧电压);

ton为开通时间;

T0为一个工频周期;

fs为器件平均开关频率;

Iav为主电路电流取绝对值后的平均值。类似可推得关断损耗为

Poff=6×(IavUctorr)/2×fs(10)

式中:toff为关断时间。

3.2IGBT的通态损耗

假设tcon为开关管导通时间,考虑到上下管占空比互补,可假设占空比为50%,即tcon=0.5Ts。

则通态损耗为

Pcon=6∑ic(t)Ucestcon/T0=3IavUces(11)

式中:Ts为平均开关周期;

Uces为开关管通态时饱和压降。

3.3RC吸收电路的损耗

RC吸收电路的损耗为

Prc=6×1/2CsUc2fs(12)

式中:Cs为吸收电容值。

fs=(U2c-2U2sm)[2]/8δLUc(13)

通过以上分析,可以得到系统总损耗为

Ploss=Pon+Poff+Pcon+Prc(14)

4滤波电感的优化设计

在满足一定效率条件下,寻求交流侧滤波电感L,使补偿电流跟踪误差最小。得到如下的优化算法。

优化目标为minA(Uc,L)

约束条件为Ploss≤(1-η)SAPF(15)

应用于实验模型为15kVA的三相四线制并联有源滤波器,参数如下:

SAPF=15kVA,Vsm=310V,η=95%,

Id=103A,Iav=18A,δ=1A,

Cs=4700pF,Uces=3V,ton=50ns,

toff=340ns。

在约束条件下利用Matlab的优化工具箱求目标函数最小时L与Uc1的值。可得到优化结果为:跟踪误差A=0.1523,此时交流侧滤波电感L=2.9mH,直流侧电压Uc=799V。

5仿真与实验结果

表1列出了有源电力滤波器容量为15kVA时,电感取值与补偿后网侧电流的THD的比较。

表1不同电感L取值下仿真结果

交流侧滤波电感L/mH直流侧电压Uc/V网侧电流的THD/%

2.980016

580021.5

780024

图9,图10与图11是当Uc=2Uc1=800V,APF容量为5.2kVA时,电感L分别取7mH,5mH,3mH时的实验结果,补偿后网侧电流的THD分别为14.1%,18.3%,20.1%,与优化分析的结果相吻合。

篇(2)

关键词:目标跟踪;雷达;多模型算法;IMM(交互式多模型算法)

DOI:10.16640/ki.37-1222/t.2017.13.196

1 多模型算法的简述

一个线性随机混合系统包括目标的状态方程、目标的测量方程和在马尔科夫链是齐次时,从一个状态模型到另一个状态模型的转移概率,并且每个模式变量在系统的模式空间上的多模型(Multiple Model,MM)估计通常由以下四部分组成:

(1)模型设计。首先,设计一个模型集是由有限个模型构成的,其中,每个模型都和模型空间中的一种模式相对应。即由每个模型匹配在时刻的系统模式。

(2)滤波器的选择。选择合适的递推滤波器才能完成混合估计。对于线性系统常采用的滤波方法有KF,而非线性系统常采用的滤波方法有EKF、UKF等。

(3)估计融合。

(4)滤波器的重初始化。这部分的研究内容是将每个滤波器进行初始化,是不同的MM算法之间的主要区别也是研究的重点。需要得到每个模型在初始时刻的先验概率和初始时刻系统的先验信息。

2 IMM算法的基本原理

IMM算法是次优算法在状态估计的算法,每个k时刻的状态都需要经过滤波器的估计,这时的滤波器就成为当前状态下有效的滤波器。前一时刻所有滤波器输出状态估计的加权值求和是现在每一时刻的初始值。

模型转移概率是IMM算法中可以使用多个运动模型,每个运动模型都有一个对应的滤波器和模型概率,通过马尔科夫矩阵可以完成对不同模型之间的转换。

IMM算法中通过模型概率、模型转移概率以及量测信息来计算每一个滤波器的状态估计值,并在各个滤波器之间进行并行处理,之后模型概率的加权平均值就可以用砑扑慊旌系淖刺的估计值并且能获取状态估计误差协方差。这样就完整的进行了一次一次递推操作。按照此方法并且每次下一时刻完成递推就是依靠前一时刻的状态估计和之前获取的误差协方差来完成的。IMM递推由以下四部分组成:

(1)重初始化过程中,在量测的信息Zk-1条件下先把k-1和k时刻的状态分别与m(i)、m(j)模型相匹配,并把k-1个滤波器的交互作用的结果即混合估计、对应的协方差和从一个模型到另一个模型的转移概率表示出来。

(2)模型条件滤波 获取量测信息之后,进行一步预测在重初始化及KF滤波算法的基础上,进行状态估计和协方差的一步预测并且得到量测预测新息和信息的协方差,最终得到似然函数在高斯条件下模型的匹配和每个滤波器对应的滤波增益并将状态估计和对应的协方差进行更新。

(3)模型概率更新 将每个滤波器对应的模型概率进行更新。

(4)总体估计 即总体的状态估计为所有滤波器的状态估计的概率进行加权求和,时刻的总体估计为

3 IMM 算法的特点

雷达目标跟踪技术在不断发展的同时目标机动性和不确定性因素也原来越复杂,单模型跟踪算法很难再到达我们对目标的预测的精度要求。因为单模型跟踪算法只是适用于跟踪运动状态单一的目标,一旦目标的运动状态有所变化,单模型跟踪算法就会暴露了自身的缺陷,从而导致踪误差大,造成目标丢失的情况也就随之出现。因此,我得出的结论是单模型算法的适应性较差,为了避免上述问题的出现,应该选用IMM算法。

IMM算法的特点:

(1)多个运动模型在IMM算法的模型集中。模型集可以根据所跟踪目标的实际情况进行增加删除修改运动模型,算法的适用范围进行了扩大,较强的适应性目标运动模式的转变。

(2)IMM中将模型转移概率矩阵作为基础理论,可以满足模型之间进行自主切换,自适应性效果明显。

(3)算法中每个模型都有与之对应的滤波器,滤波器可以自行选择,常用的滤波器有 KF。针对不同的实际运动模型,选择针对性的滤波算法,例如UKF、PF等都是比较好的选择。随后对算法进行模块化编程。

4 仿真研究及性能分析

我们判断一个目标跟踪系统的可靠性通过使用均方根误差(Root Mean Square Error, RMSE)。在时刻,RMSE的定义为

其中,蒙特卡洛仿真次数用M表示,数理统计中的大数定理是蒙特卡洛仿真理论依据,对研究的问题建立概率模型,并进行统计抽样随机变量,进行估计结果的精度是基本思想。从式(2)可以看出,RMSE是一种指标用来评价时刻的真实值和估计值,从而可以反映出目标跟踪系统的精度。

参考文献:

[1]王娟.维护国家海权建设海洋强国[J].决策与信息,2013(02):45-48.

[2]刘安龙.二维相控阵典型信号处理和数据处理算法研究[D].(硕士位论文)成都:成都电子科技大学,2014.

篇(3)

通信系统中存在着各种时延,当时延达到一定程度会严重影响通信系统的质量。例如,在多天线无线通信系统中,接收到的来自同一信号源不同路径的信号会存在时延,时延差会导致合并之后的信号达不到理想的信噪比或者严重失调。为了保证通信的正确性,需要对这些时延进行一定的补偿。本文主要讨论多天线系统中2路信号的时延补偿及其FPGA实现。

时延补偿就是为了让具有时间差的2路信号在时间上对齐,从而使得合并之后信号的输出信噪比最大。根据时。

常见的小数倍时延补偿方法有2类[23]:频域补偿法,即频域线性相位加权;时域补偿法,主要通过各种最小误差准则逼近理想系统获得的有限冲击响应,主要包括基于最小均方误差(MSE)准则滤波法、拉格朗日(Lagrange)插值法和基于Farrow结构的滤波器组方法等。

频域补偿法是在时域上截断输入信号,并认为截断后信号的频谱相当于整个输入信号的频谱,然后在此基础上线性相位加权,不过实现相对较复杂。

本设计中采用的是sinc函数滤波法,该方法操作简单且易于FPGA实现。采用sinc函数滤波器的方法,相当于先对信号进行插值,再做抽取,从而实现小数倍延时补偿。本文先利用sinc滤波器法对信号进行小数倍时延补偿,由于sinc函数滤波器的非因果性等原因,会使该通道产生多余的时延,把产生的时延补偿之后再进行整数倍时延补偿。

1时延补偿设计原理

在低信噪比环境下,多天线系统中接收端的2路信号要进行合并以恢复出原始信号,而2路信号相对时延差会影响合并信号的正确性,因此,必须估计出2信号间的相对时延差,并进行时延补偿。时延补偿的精度取决于时延估计的精度。本文介绍时延估计的精度为Ts/2的补偿方法,具体方案是对超前的数据进行延迟,即

时延差的分辨率为Ts/2,所以延迟可能是整数倍Ts,也可能是x.5倍Ts。整数倍延迟可以用D触发器来实现,而x.5倍的延迟则采用先对1路信号进行Ts/2的延迟,然后再进行整数倍延迟的方式实现。

采用sinc函数滤波器实现信号的Ts/2延迟。在满足抽样定理的条件下对信号进行抽样,能够获得信号的全部信息,用这些信息就可以对原始信号进行重构。从频域来看,是将采样信号经过一个理想低通滤波器恢复原信号;从时域来看,是通过函数进行内插来恢复原信号。

采样数据对原始信号的重构可以利用sinc函数抽样内插[7],即通过一理想低通滤波器来实现,其频率响应为H(jΩ)=TsΩ≤Ωs/2

2时延补偿的FPGA实现

假设接收端收到同一信号源发送的具有相对时延差的2路复信号,每个码元采4个样值,2路信号的时延差最大为4个采样周期Ts,时延差估计精度为0.5 Ts。下面介绍通过FPGA实现时延补偿的设计思路及实现过程。

2路信号的时延差有整数倍也有小数倍。当时延差为整数倍N时,则可以利用N个D触发器级联,将超前的1路数据延后N倍Ts。例如,若s2超前s1为2 Ts,如图3所示,则可利用D触发器将s2路延迟2 Ts。

本模型中输入端的2路复信号,每路数据有虚部和实部,一共输入4路数据,每路数据位宽为16位。由于实部和虚部经过的是同样的处理,所以可以先设计出实部处理模块,虚部同样处理,最后例化在一起即可。按照此方法,所有控制部分的模块使用数量将是单路(实部或者虚部)的2倍。由于实部和虚部是经过同样的处理过程,所以可以将实部和虚部数据分别映射到32位信号的高16位和低16位一起处理,此法虽然数据存储和数据处理的资源没有变化,但控制部分可节约近一半的资源。

FPGA设计采用Altera公司的Quartus II 12.1sp1,利用Modelsim工具进行仿真,sinc函数滤波器可以利用Quartus中现有Ip核FIR Compiler来实现。

本设计中,sinc函数滤波器的阶数选择为30阶,先在MATLAB中设计得到各抽头系数,再进行功率归一化处理,使滤波器输入输出信号的功率保持不变。再把滤波器抽头系数导入Quratus II FIR Compiler中生成滤波器IP核。滤波器的输入数据位宽设为16位,抽头系数位宽设为12位,它们相乘之后位宽变为了28位,加上滤波器IP核默认1位的冗余位,故输出位宽变为了29位。由于每路数据位宽为16位,这29位数据需要截短为16位才能进行下一步的处理。由于输入数据是16位有符号数,抽头系数是12位有符号数,相乘后结果变为28位有符号数,因为2个数都是有符号数,所以实际上只需用27位即可表示相乘结果。滤波器IP核中默认了1位的冗余位,因此把输出数据的最高位(符号位)作为16位输出数据的最高位,输出数据的25至11位作为16位数据的低15位。

sinc函数滤波器重复调用了2个,分别处理s2路的实部和虚部。后面的D触发器输入数据位宽为32位,故滤波器输出实部虚部截短为16位之后,还要分别映射到32位信号的高16位和低16位,以作为D触发器输入。

4结语

本文在已知来自同一信号源的2路信号相对时延差的情况下,通过延迟超前数据的方法,利用FPGA设计实现了2路信号的时延补偿。其中时延精度为0.5 Ts,0.5 Ts延迟通过sinc滤波器实现。滤波器处理数据过程要产生额外的2[专业提供写作论文和 论文写作服务,欢迎您的光临dylw.net]种时延,即不定的处理时延和固定的时延。利用滤波器输出有效位控制FIFO的读出来消除不定的处理时延,固定时延则可通过移位寄存器来补偿。在消除这些延时之后,再控制数据选择器选择合适的数据输出,实现2路数据的延迟补偿。

参考文献:

篇(4)

关键词:有源电力滤波器 直流电容参数 能量流动 瞬时无功理论

1 概述

电力电子技术的应用改善了电力系统的性能,但是也带来了电网中谐波的污染问题。随着人们对电力环境优化要求的提高,对谐波进行治理的技术也成为人们研究的热点。电力系统的谐波问题早在20世纪20年代和30年代就引起了人们的注意。当时在德国,由于使用静止汞弧变流器而造成了电压、电流波形的畸变。1945年J.C.Read发表的有关变流器谐波的论文是早期有关谐波研究的经典论文。

有源电力滤波器是治理谐波的最优产品。参考文献[1]中提出了有源电力滤波的瞬时无功理论,参考文献[2]分析了有源电力滤波器在非理想条件下电流滞环控制,参考文献[3]研究了新型注入式混合有源滤波器的数学模型及电流控制方法,文献[4]分析了并联有源滤波器的最优电压滞环电流控制和有源滤波器滞环电流控制的矢量方法,对不同电流跟踪方式APF连接电感选取与设计进行了研究。并且对有源电力滤波器中连接电感的特性分析及优化进行了分析。但对有源电力滤波器直流侧电容的参数如何确定涉及的文献较少。本文根据瞬时无功理论分析了用于不同补偿目的时有源滤波变流器交直流侧能量的流动关系,给出了变流器的有功损耗和瞬时有功功率交流分量是引起电压波动的原因,以三相不可控负载为例给出了电容值选取的具体计算方法。

2 APF工作原理及能量流动分析

有源电力滤波器(APF)的组成分为两部分。第一部分电路系统是指令运算,第二部分电路系统是补偿电流。系统的主要电路包含PWM变流器,缓冲电路,直流侧电容电路,交流侧电感几部分组合而成。控制系统组成分为三部分。第一部分为指令运算,第二部分为电流跟踪,第三部分为驱动电路。APF的主电路是通过6组开关器件来进行控制的,通过这些开关器件的通断组合来决定主电路的工作状态。

如果忽略各部分的损耗其交流侧的瞬时有功功率将全部传递到直流侧。即交直流侧的能量交换主要取决于瞬时有功功率P,从而引起直流电压波动。假设电源提供的瞬时有功和瞬时无功功率为pS和qS,滤波器提供的瞬时有功和瞬时无功功率为pA和qA,负载的瞬时有功和瞬时无功功率为pL和qL。当只补谐波时负载所需的瞬时有功和无功率的交流分量由滤波器提供。此时电源只需提供负载所需的瞬时有功和无功率的直流流分量,即对应电流的基波分量。有源滤波器提供负载所需的瞬时有功和无功率的交流分量。由于瞬时无功只在交流侧三相之间进行,在APF交直流侧进行交换的能量只有瞬时有功交流的分量,其平均值为零。当只补无功时负载所需的瞬时无功率分量由滤波器提供,有功分量由电源提供。此时APF交直流侧没有能量交换。当同时补偿谐波和无功时,负载所需的瞬时无功功率由滤波器提供,负载所需的瞬时有功功率交流分量由滤波器提供,瞬时有功功率直流分量又电源提供。在APF交直流侧进行交换的能量只有瞬时有功交流的分量。

3 补偿电容值的计算

电容电压的波动主要是由能量交换引起。在忽略变流器等损耗的情况下,在只补无功时交直流侧能量交换为零,电容值提供直流电压,容值可为零;对于其他两种情况,有源电力滤波交直流侧能量交换为负载的瞬时有功的交流分量。虽然其平均值为零,但是其将会引起直流侧电压的波动。

假设电源电压无畸变,电源电压三相电压,且负载电流为三相电流,由瞬时无功理论可求得负载的瞬时有功功率和瞬时无功率。电容的C值由关系式∫%pdt=0.5×C×(Udc+Udc)2-0.5×C×Udc2确定。

4 仿真与实验结果分析

利用Matlab/ Simulin进行仿真。直流电容电压的仿真图如图所示,仿真模型负载选用相电压220V三相不可控负载。采用ip-iq法产生指令电流,利用三角波比较法使输出电流跟踪指令电流,直流侧电容电压的稳定采用PI调节,KP=8,Ki=0.01。时间每格为10ms。通过具体的实验测量,得到的电源电流的THD值也从25%下降到4.8%。实测直流电容电压波形中,电压每格20V(采用10:1霍尔),时间每格为4ms。从直流电容电压波形图分析中可以看到周期性的波动,其上下波动的变化范围在±5V,如果直流电容电压是900V的话,测量的纹波为0.55%。由以上的测量结果可以看出本系统对直流环节具有较好的控制效果,其直流波动指标可以满足要求。

5 结论

对于有源电力滤波而言,要想取得良好的补偿效果,除了需要先进的算法和控制策略外,其电容参数的选取同样重要。本文根据有源电力滤波的原理与数学模型分析了直流电容电压和电网电压的关系,得出了直流电容电压的确定原则;根据瞬时无功理论分析了只补谐波或者只补无功和两者同时补偿时有源滤波交直流侧能量的流动关系,给出了变流器的有功损耗和瞬时有功功率交流分量是引起电压波动的主要原因;以三相不可控负载为例给出了电容值选取的计算方法;最后通过仿真和实验利对直流电容参数的确定进行了验证,电容的波动小于5V,补偿后电流的THD值小于5%,取得了理想的效果。

参考文献:

[1]王兆安,杨君等.谐波抑制和无功功率补偿「M].北京:机械械工业出版,1998.

[2]徐君,徐德洪.并联有源滤波器非理想条件电流滞环控制分析[J],电力电子技术,2007,41(1):60~63.

篇(5)

由于红外成像设备在日益复杂的环境中广泛应用,不可避免会带来噪声和干扰。前端模拟电路处理红外探测器输出的原始模拟信号,是红外成像设备重要组成部分。本文通过前端模拟电路的硬件设计,重点讨论降噪抗干扰的方法,提高设备的可靠性。

【关键词】

红外;降噪;抗干扰

1引言

随着红外探测器成像技术的发展,人们对红外图像质量的要求也越来越高。同时由于系统集成化的趋势,系统可能会同时装备红外、激光、电视等设备,这些设备运行产生的电磁场可能会使红外设备产生不应有的响应,表现为图像噪声大、干扰等现象,严重时甚至影响设备的功能。在红外成像设备中,前端模拟电路连接红外探测器的输出和图像处理单元的输入,直接处理探测器输出的最原始模拟信号。加强和优化前端模拟电路的降噪和抗干扰设计,对提高设备整体的稳定性和抗干扰能力具有十分重要的意义。

2前端模拟电路设计

红外热像仪前端模拟电路部分主要实现的功能有:探测器工作偏压的产生;对探测器输出的模拟信号前置放大;高速模数转换和数据的合成排序等。

2.1探测器偏压供给电路设计由于探测器是敏感器件,尤其是长波探测器,电压波动影响其性能,探测器偏压供给电路给探测器提供严格的低噪声工作电压。探测器正常工作所需的偏压包括读出电路所需的模拟电压VDDA、数字电压VDDL和光电二极管偏压Gpol。模拟电压和数字电压均为固定值5V,而不同探测器的Gpol值并不完全一样,因此Gpol偏压可采用电阻分压方式,通过调节不同的电阻值实现不同的Gpol电压输出。我们采用REF195ES芯片生成模拟电压和数字电压。REF195ES最大输出电流30mA,电压输入范围从5.1V到15V,固定输出5V,输出精度±2mV,很好满足了探测器对模拟电压和数字电压的要求。输出电压可经过低通噪声滤波器电路,进一步降低噪声。低通噪声滤波器电路通常采用串联RL电路或串联RC电路,基本电路结构形式如图1、图2所示[1]。从式(1)、(2)可以看出,只要适当选择R和L的参数,截止频率可以设置成任何值,因此可以设计出具有任意截止频率的低通滤波器。为了提高电路的抗干扰性,本文设计一个RC滤波器,其电容值要求远大于A/D转换器的输入电容。这个电容为采样电容提供电荷,从而消除瞬变。RC滤波器同时也减小放大器地驱动容性负载时产生稳定性问题概率。与电容串联小电阻有助于防止自激和震荡。负载电容较大时,交流性能由负载电容和隔离电阻控制。

2.2信号放大电路设计红外探测器输出的模拟信号在送入A/D转换器处理前,经过两级放大:第一级是噪声滤波电路,它的作用是滤除探测器CMOS读出电路的噪声,同时提供与探测器匹配的输出阻抗。第二级放大电路是反相放大电路,它将输入的模拟信号反相放大,同时对信号进行偏置调节。(1)第一级滤波电路。滤波器按照电气指标一般分为无源滤波器和有源滤波器。由于无源滤波器存在滤波易受系统参数的影响、对某些次谐波有放大的可能、体积大等缺点,此设计中着重考虑应用有源滤波器。与无源滤波器相比,有源滤波器有如下优点:1)信号在无源器件上的损失可以在有源器件上得到补充。2)由于运算放大器具有输入阻抗高、输出阻抗低、高增益、高稳定性和闭环增益等参数调整灵活的优点,因此使用有源滤波器的设计较为方便[2]。压控电压源二阶滤波电路是一种常用的有源二阶滤波电路。压控电压源二阶滤波电路的特点是:运算放大器为同相接法,滤波器的输入阻抗很高,输出阻抗很低,滤波器相当于一个电压源。其优点是:电路性能稳定,增益容易调节。(2)第二级反向放大电路。放大器的负极输入端接上级信号,正极输入端接可调正电平。增加反向偏置的原因是,红外探测器的输出是探测器响应电压叠加上直流分量,减少直流电平的大小以便于下一步信号放大。正相输入的参考电平的好坏对输出有影响,设计中采用可调电阻分压来提供正相输入的参考电平。

2.3A/D转换电路设计A/D转换器作为前端模拟电路最重要的组成部分,直接影响到后端信号的处理,因此选择合适的A/D转换器十分重要。选择A/D器件主要考虑以下三种因素:l采样位数,即精度要求;l采样频率,取决于模拟信号的变化快慢;l信噪比。以某型探测器为例,其模拟视频输出信号动态范围大于74dB,最大输出速率5MHz。根据输出模拟信号的动态范围可以计算出,A/D转换器的转换位需大于12位。由于探测器数据输出最大速率是5MHz,因此A/D转换器的转换速率也必须得大于5MHz。为了满足某型号探测器性能指标的要求,我们选用AD9240。AD9240是美国AD公司生产的一种14位、10MSPS高性能模数转换器,它具有片内高性能采样保持放大器和电压参考。在单一+5V电源下,它的功耗仅有285mW,信噪比与失真度为77.5dB,信噪比(f=5MHz)为78.5dB。AD9240的模拟输入范围非常灵活,可以是DC或AC耦合的单端或差分输入[3]。AD9240内部结构框图如图4所示。其中VINA与VINB是信号输入端,CLK提供采样时钟,VREF提供参考电平,SENSE控制AD9240的采样电压幅度和参考电平来源。红外探测器的输出电压范围为1.6V~4.6V,为了使A/D转换器发挥最佳分辨率,需将A/D转换器的动态范围覆盖红外探测器的输出范围。同时为了减少温度飘移与内部噪声,提高参考电压精度,此设计中采用了单端输入的外部参考源。当使用外部参考方式时,还应当在CAPT与CAPB之间加一个电容网,如图6所示。该电容网有三个作用:一是与内部参考放大器一起在大频率范围下提供一个低阻抗源以驱动A/D内部电路。二是提供内部参考放大器需要的补偿。三是限制由参考电源产生的噪声干扰。

3结论

篇(6)

【关键词】掺铒光纤放大器;增益平坦;增益箝制

0.引言

近些年DWDM技术发展迅猛,商用的DWDM 系统最高速率已达800Gb/s, 光传输距离也从600km大幅扩展至2000km 以上。DWDM 技术之所以发展如此迅速,主要得益于掺铒光纤放大器(Erbium-Doped Fiber Amplifier,EDFA)技术的日益成熟。EDFA 能够对光信号进行直接放大,对数据透明,增益大、噪声低,在价格和可靠性方面比电中继有优势,因而在光通信系统中得到了广泛的应用。在长距离传输DWDM 系统中,EDFA 可以大大增强系统的传输能力,但增益平坦度并不理想,容易造成各个信道之间的光功率和信噪比各不相同,从而使得增益高的信道,出现光功率饱和与非线性效应,使增益低的信道出现光信噪比恶化等现象。因此,对EDFA 的增益平坦性的研究就显得格外重要。

1.EDFA的各种增益平坦化技术

国外从上世纪九十年代初就开始进行EDFA增益平坦化的研究。早期曾报道过利用光凹槽滤波器滤波的方法[1],通过被动滤波,在38mW的980nm泵浦下,增益为27dB时,EDFA的3dB带宽达33nm。后来又有声光滤波的方法[2,3],其结果是15nm带宽范围内增益变化小于1dB,但由于声光滤波器不能集成到光纤上,并且连接技术复杂,因此在实际应用中受到很大的限制。

目前,对掺铒光纤放大器进行增益平坦化的操作,主要可以分为两类。一类是优化设计自身增益平坦的EDFA,如通过引入特种光纤来改善EDFA 增益的不平坦型,或者通过优化EDFA 结构参数如泵浦方式、泵浦功率分配以及EDF长度等来设计优化增益平坦的EDFA。由改变光纤基质类型改善放大器的增益平坦性,包括氟基掺铒光纤放大器(F-EDFA),碲基掺铒光纤放大器(T-EDFA)。通过掺杂来改善放大器的增益平坦性包括:掺铝的EDFA,掺钐EDFA,其他类型掺杂EDFA。

一类是使用增益均衡器进行增益平坦化处理。包括结构中加入光纤光栅增益平坦滤波器,利用光纤环镜进行增益平坦化,使用微光干涉仪进行增益平坦化。从技术角度,则可划分为静态增益平坦技术和动态增益平坦技术两大类。是通过使用增益均衡器和改变掺杂光纤的基质材料、掺杂物质来实现的。

2.优化设计自身增益平坦性

随着掺杂技术以及光纤封装技术的发展和进步,特种光纤被引入到 EDFA 增益平坦化研究中来,即通过改变光纤基质类型或者掺杂来改善 EDFA 的增益平坦特性,采用这种方法不需要在 EDFA 外部插入任何增益均衡器,也不会影响放大器的工作效率,是一种可行且具有发展潜力的增益平坦技术。 另外,还可以通过调整级联 EDFA 中的结构参数(掺铒光纤长度,泵浦功率和泵浦位置)来改善 EDFA 的增益平坦性。

2.1 改变光纤基质类型

2.1.1 氟基掺铒光纤放大器(F-EDFA)

1994年,法国的D.Bayart等人研究发现,采用氟化物光纤制成的EDFA具有很大的平坦增益带宽。它们使用7.1米长双向泵浦的氟基掺铒的光纤放大器(F-EDFA),同时监视放大器的后向ASE,通过调整泵浦源的电流,使EDFA最后平坦度低于0.5dB[4](未平坦前为4.5dB)。

1996年,Makoto Yanada等人对氟基掺铒光纤放大器进行了进一步研究,他们的实验证明:对于8个通道的WDM系统,位于1532-1560nm范围的信号,不同通道的增益差异小于1.5dB;F-EDFA在1534-1542nm波长范围内具有很好的平坦度,对于WDM信号增益差异小于0.2dB[5]。

2.1.2 碲基掺铒光纤放大器(T-EDFA)

1997年,NTT公司在OFC’97上报道了其研制的一种新型碲基(Te)EDFA,由于碲基玻璃具有高的稳定性、耐腐蚀性和稀土离子可溶性,因此是一种非常好的EDF的基质材料。碲基玻璃中的铒离子可以在很大的带宽范围内具有较大的受激发射截面,尤其在1600nm波长附近时,铒离子仍有较大的受激发射截面,它的上限波长达1634nm。实验表明,在80nm(1530nm~1610nm)的带宽范围内,可以保持20dB的较高增益,而增益变化小于1.5dB[6]。

2.2 掺杂改善EDFA增益平坦性

理论和实验研究表明,在掺铒光纤中同时掺杂Al(铝)离子时,由于高浓度的铝可以很好地吸收1550nm的增益峰,因此可以使EDFA的增益获得好的平坦度。提高掺铒光纤中的铝离子浓度是近些年通过掺杂改善放大器增益平坦性研究其中的主要手段,实验证明采用这种掺杂方案可以有效改善放大器的增益平坦性[7]。

2002 年,Uh-Chan Ryu 等人采用掺Sm (钐)环形光纤插入放大器中,进行了L 带和 C+L 带增益平坦化实验, 获得了很好的增益平坦度:在 1570-1600nm(L 带),平均增益为 21dB, 增益变化不超过0.7dB,在 C+L 带范围内,平均增益为 11.5dB,增益变化不超过 1dB[8]。

3.增益均衡器进行增益平坦化处理

3.1 静态增益平坦技术

采用透射谱与掺铒光纤增益谱反对称的滤波器或者通过算法优化设计 EDFA 参数来实现放大器增益平坦,这种静态增益平坦技术简单易行,效果明显;缺点是只能实现静态增益谱的平坦,在信道功率突变时增益谱仍会变化,原理如图1所示。

图1 静态增益平坦技术原理示意图

3.1.1基于光纤光栅的增益平坦滤波器

在 EDFA 中插入与 EDFA 增益谱相反的光纤光栅的损耗谱,“削平”增益峰也是有效可行的增益平坦方法。 实验证明,光纤光栅可采用闪耀光栅或者闪耀光栅的复合体,也可以是长周期光栅[9]。

2004 年,赵志勇、于永森等人采用啁啾相位掩膜板和程控扫描曝光技术,在经过载氢增敏化处理的普通单模光纤上制作出可以用于 EDFA 平坦化的光栅增益平坦滤波器, 可以获得增益在 30nm 带宽范围内增益变化不超过±0.3dB[10]。

3.1.2基于光纤环镜的增益平坦滤波器

由于光纤的弯曲会产生一定的损耗,而其损耗随光网络中掺铒光纤放大器增益平坦性研究工作波长(

2001 年,S.P.Li 等人提出利用高双折射光纤环行镜(HiBi-FLM),如图2所示,具有良好的增益平坦效果,在 33nm 的带宽范围内,增益变化为±0.9dB[11]。

图2 基于HiBi-FLM的增益平坦EDFA

3.2 动态增益均衡器(Dynamic Gain Equalizer, DGE)

DGE 虽然可以很好地解决增益谱的平坦问题,但当放大器的输入端部分光波长丢失或各个输入光功率变化比较大时, 静态增益平坦滤波器对改善级联EDFA 系统的光信噪比就显得无能为力,这就需要采用动态增益均衡技术。DGE 可以灵活地调整信道中的光衰减, 可以通过相应控制算法实时地产生 DWDM系统所要求的光衰减,从而实现各个信道的增益和功率的均衡,提高网络系统的智能化程度。

全光纤声光可调滤波器(Acoustically Optical Tunable Filter, AOTF)声光技术是通过在光纤上放置声学变化器来实现增益均衡,声学变化器产生表面声波,形成类似光栅的特性,通过控制滤波器带陷的位置和深度,并利用滤波器级联使输出平坦,其原理图如图3所示。

图3 声光动态增益均衡器原理示意图

4.增益锁定和增益控制技术

最常用的增益箝制技术可以分为两种, 一种就是采用光电反馈实现增益控制,即通过比较EDFA的放大自发辐射功率电平与基准电平,以此调节泵浦功率来稳定增益。另一种方法则是基于全光器件实现增益锁定,即在EDFA内引入某一适当波长(不同于信号波长)的光反馈形成激光振荡,在满足激光阈值的情况下,激光功率会随粒子数反转水平而变化的这种自动调节作用可以补偿输入信号功率变化所带来的影响,从而保证EDFA增益不变,解决了增益谱随系统状况变化的问题。

采用单根光纤光栅全光增益箝制的EDFA结构如图4所示,它共有四种结构。图中FBG为窄带光栅,带宽小于等于0.9 nm。ISO为光隔离器,主要用于阻止反向光影响可调谐激光器(TLS)的工作状态。WDM为波分复用器,Pump为泵浦光,OSA为光谱分析仪。光纤光栅从放大的自发辐射(amplified spontaneous emission,ASE)谱中选出满足布拉格反射条件波长(一般不能接近信号光波长),使其反射回掺铒光纤进行再次放大,这些反射回的光信号和其他波长如信号光共同享用相同的反转粒子数,随着光逐渐增强并进入饱和,粒子数的反转得到了限制,使得粒子数的反转可以自动地保持在某一水平,从而使得L-band增益谱得到箝制。

判断增益箝制放大器的一个重要参数就是临界输入功率Pc,定义为从最高小信号增益下降0.2 dB所对应的输入功率。Pc越大,则说明箝制深度越大。通常,掺铒光纤可以用980nrn或1480nm的泵浦光进行泵浦。因此,在基于单根光纤光栅箝制的L-band EDFA设计中,泵浦光波长的选择与箝制结构的确定是十分重要的。这里,铒光纤长度L取10 m;1555 nm,光纤光栅反射率R取99%;信号光波长取1570nn:进入铒光纤的泵浦功率Sp取90mw;根据强则煊[12]按图4分别接入980nn泵浦和1480nm泵浦进行数值模拟。根据数值模拟结果综合分析可知,采用1480nm泵浦、结构(a)的L-band EDFA其箝制深度、增益和噪声系数综合性能最好。

图4 全光增益箝制的EDFA结构

5.结论

本文详细介绍了实现 EDFA 增益平坦化的主要方法以及国内外在此方向上的研究进展,并对这几种增益平坦化方法进行了比较分析。本文还介绍了一种增益箝制技术,采用单根光纤光栅来箝制EDFA增益,对EDFA的增益平坦实验研究有一定的指导意义。随着高速率、大容量通信系统的不断发展,掺铒光纤放大器的应用已越来越广泛和重要,用增益平坦的光纤放大器代替复杂的光中继器以增长无中继距离,已成为当前光纤通信领域中的一个热点。随着EDFA增益平坦化技术的不断改进和创新,必将会进一步促进WDM系统的光网络的发展。

参考文献:

[1]M.Tachibana, et. al., IEEE Photonics Tech. Lett, 1991, 3(2):118.

[2]S.F.Su,et, al., Electronics Letters, 1993 , 29(5):477.

[3]S.H.Huang, et. al., IEEE Photon Technol Lett,1991, 9(6):389.

[4]D.Bayart, et. al. Electronics Letters, 1994. 30(15):1407.

[5]Makoto Yamada, et. al., IEEE Photon tech. Lett., 1996, 8(9):882.

[6]Atsu Shi Mori, OFC’1997.

[7]罗杰,伍叔坚. 长波段掺铒光纤放大器用掺铒光纤的设计考虑[J].光子学报, 2000,29(12):1138-1141.

[8]UH-CHAN Ryu. Inherent enhancement of gain flatness and achievement of broad gain bandwidth in erbium-doped silica fiber amplifiers [J],IEEE Journal of Quantum Electronics, 2002, 38(2):149.

[9]PAUL F.Wysocki. Dual-stage erbium-doped,erbium/ytterbium-codoped fiber amplifier with up to +26-dBm output power and a 17nm flat spectrum[J] .Optics Letters, 1996, 21(21):1744-1746.

[10]赵志勇,于永森. 基于啁啾光纤光栅的增益平坦滤波器 [J].吉林大学学报,2004, 42(2):255-256.

[11]LI S P, CHIANG K S, GAMBLING W A. Gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror [J], IEEE Photon.Tech. Lett, 2001, 13(9): 92.

[12]强则煊.低噪声、高增益、高平坦度掺铒光纤放大器的分析与实验研究[D] 浙江大学,2004 :70-78.

作者简介:

张静(1983-),女,安徽淮南人,硕士研究生,现主要从事激光器和光通信的教学与研究。

篇(7)

论文摘要:随着高新技术的不断开发,数字通信及控制技术也在飞速发展,计算机通信及控制技术得到了广泛应用,针对各种情况探讨了保证计算机通信与控制系统可靠运行的措施。

1在设计计算机通信与控制系统时要注意以下事项

(1)在对计算机通信与控制系统设计和配置时,要注意到系统的结构要紧凑,布局要合理,信号传输要简单直接。

在计算机通讯与控制系统的器件安装布局上,要充分注意到分散参数的影响和采用必要的屏蔽措施:对大功率器件散热的处理方法;消除由跳线、跨接线、独立器件平行安装产生的离散电容、离散电感的影响,合理利用辅助电源和去耦电路。

(2)计算机通信与控制系统本身要有很高的稳定性。

计算机通信与控制系统的稳定性,一方面取决于系统本身各级电路工作点的选择和各级间的耦合效果。特别是在小信号电路和功率推动级电路的级间耦合方面,更要重视匹配关系。另一方面取决于系统防止外界影响的能力,除系统本身要具有一定的防止外界电磁影响的能力外,还应采取防止外界电磁影响的措施。

(3)算机通信与控制系统防止外界电磁影响的措施,应在方案论证与设计时就给予充分考虑。

例如数字信号的采集传输,是采用脉冲调制器还是采用交流调制器,信号在放大时采用几级放大器,推动司服系统工作时采取何种功放,反馈信号的技术处理及接入环节,电路级间隔离的方法,器件安装时连接和接地要牢固可靠,避免接触不良造成影响,机房环境选择和布局避免强电磁场的影响等。

2排除电源电压波动给计算机通信与控制系统带来的影响

计算机通信与控制系统的核心就是计算机,计算机往往与强电系统共用一个电源。在强电系统中,大型设备的起、停等都将引起电源负载的急剧变化,也都将会对计算机通信与控制系统产生很大的影响;电源线或其它电子器件引线过长,在输变电过程中将会产生感应电动势。防止电源对计算机通信与控制系统的影响应采取如下措施:

(1)提高对计算机通信与控制系统供电电源的质量。

供电电源的功率因数低,对计算机通信与控制系统将产生很大的影响,为保证计算机通信与控制系统稳定可靠的工作,供电系统的功率因数不能低于0.9。

(2)采用独立的电源给计算机通信与控制系统供电。

应对计算机通信与控制系统的主要设备配备独立的供电电源。要求独立供电电源电压要稳定,无大的波动;系统负载不能过大,感性负载和容性负载要尽可能的少。

(3)对用电环境恶劣场所采取稳压方法。

对计算机等重要设备采用UPS电源。在稳压过程中要采用在线式调压器,不要使用变压器方式用继电器接头来控制的稳压器。

3防止由于外界因素对供电电源产生的传导影响

由于外界因素对电源产生的传导影响要采取以下措施。

3.1采用磁环方法

(1)用磁环防止传导电流的原理。

磁环是抑制电磁感应电流的元件,其抑制电磁感应电流的原理是:当电源线穿过磁环时,磁环可等效为一个串接在电回路中的可变电阻,其阻抗是角频率的函数。

即:Z二f/(ω)

从上式可以看出:随着角频率的增加其阻抗值再增大。

假设Zs是电源阻抗,ZL是负载阻抗,ZC是磁环的阻抗,其抑制效果为:

DB=20Lg[(Zs+ZL+ZC/(ZS+ZL)]

从上述公式中可以看出,磁环抑制高频感生电流作用取决于两个因素:一是磁环的阻抗;另一个是电源阻抗和负载的大小。

(2)用磁环抑制传导电流的原则。

磁环的选用必须遵循两个原则:一是选用阻抗值较大的磁环:另一个是设法降低电源阻抗和负载阻抗的阻值。

3.2采用金属外壳电源滤波器消除高频感生电流,特别是在高频段具有良好的滤波作用

电源滤波器的选取原则

对于民用产品,应在100KHZ一30MHZ这一频率范围内考虑滤波器的滤波性能。军用电源滤波器的选取依据GJBl51/152CE03,在GJBl51/152CE03中规定了传导高频电流的频率范围为15KHZ-50MHZ。

4抑制直流电源电磁辐射的方法

4.1利用跟随电压抑制器件抑制脉冲电压

跟随电压抑制器中的介质能够吸收高达数千伏安的脉冲功率,它的主要作用是,在反向应用条件下,当承受一个高能量的大脉冲时,其阻抗立即降至很低,允许大电流通过,同时把电压箝位在预定的电压值上。利用跟随电压抑制器的这一特性,脉冲电压被吸收,使计算机通信与控制系统也减少了脉冲电压带来的负面影响。

4.2使用无感电容器抑制高频感生电流

俗称“隔直通交”是电容器的基本特性,通常在每一个集成电路芯片的电源和地之间连接一个无感电容,将感生电流短路到地,用来消除感生电流带来的影响,使各集成电路芯片之间互不影响。

4.3利用陶瓷滤波器抑制由电磁辐射带来的影响

陶瓷滤波器是由陶瓷电容器和磁珠组成的T型滤波器,在一些比较重要集成电路的电源和地之间连接一个陶瓷滤波器,会很好起到抑制电磁辐射的作用。

5防止信号在传输线上受到电磁幅射的方法

(1)在计算机通信与控制系统中使用磁珠抑制电磁射。

磁珠主要适用于电源阻抗和负载阻抗都比较小的系统,主要用于抑制1MHZ以上的感生电流所产生的电磁幅射。选择磁珠也应注意信号的频率,也就是所选的磁珠不能影响信号的传输,磁珠的大小应与电流相适宜,以避免磁珠饱和。

(2)在计算机通信与控制系统中使用双芯互绞屏蔽电缆做为信号传输线,屏蔽外界的电磁辐射。

(3)在计算机通信与控制系统中采用光电隔离技术,减少前后级之间的互相影响。

(4)在计算机通信与控制系统中要使信号线远离动力线;电源线与信号线分开走线。输入信号与输出信号线分开走线;模拟信号线与数字信号线分开走线。超级秘书网

6防止司服系统中执行机构动作回馈的方法

6.1RC组成熄烬电路的方法

用电容器和电阻器串联起来接入继电器的接点上,电容器C把触点断开的电弧电压到达最大值的时间推迟到触点完全断开,用来抑制触点间放电。电阻R用来抑制触点闭合时的短路电流。

对于直流继电器,可选取:

R=Vdc/IL

C=IL*K

式中,Vdc:直流继电器工作电压。

I:感性负载工作电流。

K二0.5-lЧF/A

对于交流继电器,可选取:

R>0.5*UrmS

C二0.002-0.005(Pc/10)ЧF

式中,Urms:为交流继电器额定电压有效值。

Pc:为交流继电器线圈负载功率。

相关文章