学术刊物 生活杂志 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 企业数据分析报告

企业数据分析报告精品(七篇)

时间:2022-04-15 05:50:38

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇企业数据分析报告范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

企业数据分析报告

篇(1)

关键词:财务分析;大数据;教学改革

作者简介:王晖(1973-),女,黑龙江鸡西人,北京信息科技大学经济管理学院,讲师;段文军(1969-),女,山东蓬莱人,北京信息科技大学经济管理学院,副教授。(北京 100192)

基金项目:本文系北京信息科技大学教学提高-专业建设项目(项目编号:5028023501)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)25-0111-02

当今时代不断涌现各种新型信息方式,例如博客、社交网络等;不断兴起各种新技术,例如云计算、物联网等。数据的产生不受任何的限制,数据以前所未有的速度不断增长和累积,大数据时代已经来到。[1]《华尔街日报》认为大数据时代是引领未来繁荣的三大技术变革之一。麦肯锡公司在一份报告中提出数据是一种生产资料。企业每天面对海量的财务数据,如超市的销售记录、银行的交易记录、淘宝网站数千万笔交易记录(产生量超过50TB,存储量40PB①)。企业如能利用这些巨大的数据集挖掘出有价值的信息,那么企业就能掌控下一个创新、竞争和生产力提高的关键。大数据时代,尤其是财务大数据时代,呼唤创新型人才。[2]呼唤具备综合财务分析能力的人才,利用财务大数据为企业创造财富。

如何培养财务分析人才?在财经类高校本科,一般都开设“财务分析”课程,该课程教学目的是培养学生对真实企业进行综合财务分析,并能独立撰写财务分析报告的能力。[3]本文以北京信息科技大学(以下简称“我校”)为例,探讨大数据时代下财务分析人才的需求特点,对高校“财务分析”课程设置的影响,并提出改进“财务分析”课程教学的建议。

一、大数据时代下财务分析人才需求特点

相较于其他类型数据,财务数据更大、更复杂,蕴藏着更多宝贵信息。麦肯锡公司2011年报告推测,利用大数据分析,零售商可增加运营利润60%,制造业设备装配成本会减少50%。[2]在财务大数据环境下,如何整理与统计这些杂乱无章的数据?如何让财务数据开口说话为企业管理者经营决策提供科学依据?朱东华(2013)认为,大数据时代下,传统的数据分析方法已经不再适应当前的数据环境,同时,各种企业对数据的依赖与日俱增,甚至定量分析方法将逐步取代定性分析方法。[4]财务大数据和大量的财务数据分析需求助长了企业对统计和数学背景的人才需求。

可见,大数据时代下财务分析人才应该具备扎实的统计学和数学功底,能够熟练运用定量分析方法分析数据以获取信息,撰写分析报告为企业相关利益人决策提供依据。

二、“财务分析”课程教学现状

张先治(2007)认为,财务分析是财务分析主体为实现财务分析目标,以财务信息及其他相关信息为基础,运用财务分析技术,对分析对象的财务活动的可靠性和有效性进行分析,为经营决策、管理控制及监督管理提供依据的一门具有独立性、边缘性、综合性的经济应用学科。[5]财务分析课程是为我校经济管理学院财务管理专业本科三年级开设的一门专业必修课。学生前期已经学过数学、经济学、会计学、财务管理、统计学等课程。财务分析课程正是在学生掌握前期所学各门课程的基础上,培养学生综合运用所学专业知识,分析判断企业的财务状况,并根据数据分析结果找出企业存在的问题,提出解决方案。[6]为了更好地实现“财务分析”课程教学目的,课程组的老师们经过讨论,决定修改2008级财务管理专业教学计划,将原来课堂教学的方式改为1/2的学时用于课堂教授基本理论,1/2学时用于实践教学。笔者自2011年开始,按照新的教学计划给三届学生讲授了“财务分析”课程。

1.理论教学部分

教材选用东北财经大学出版社出版,张先治和陈友邦主编的《财务分析》(第五版)。该教材体系完整,内容丰富,全书以一家虚拟的ZTE公司为例,演示财务报告分析、财务效率分析和财务综合分析。每章设有案例和复习思考题,该书还有配套的习题集。在课堂教学中,以教材为主线,突出介绍各种财务分析方法的使用,以及根据分析结果得出结论,提出解决方案。

2.实践教学部分

一人一企,边学边分析。每位学生选择一家上市公司作为分析对象,利用学校购买的金融数据库以及相应网络资源,结合所学财务分析理论知识进行上机实验,在Excel内完成数据分析,并将分析结果形成财务分析报告。学生分析判断和决策能力在实战中得以锻炼,教学效果得到改善。

但是,随着大数据时代的来临,外部环境对数据分析能力要求的提升,仅仅学会利用Excel进行水平分析、垂直分析、趋势分析、比率分析和因素分析,已经远远不能满足市场对财务分析人才的需求,学生就业的竞争力无从谈起。结合前面大数据时代下财务分析人才需求特点,我校学生财务分析能力的培养存在着以下问题:

1.学生数据收集、整理和分析能力弱

定量分析方法应用的基础是数据,财务分析人员必须学会从海量的网络资源中搜集并筛选与自己的分析对象和分析目的相关性较强的资料信息,[7]这些资料信息可能是结构化数据,例如金融数据库等;也可能是非结构化数据,例如网页等。从实践教学环节反映出学生数据收集和整理能力弱,分析其原因主要是:

(1)学生不熟悉对财务分析有帮助的网络资源。搜集有价值的数据需要一定的技巧,其中最为重要的是熟悉一些重要的网站,知道相应的数据应该在哪里找到的概率比较大,做到有的放矢。

(2)学生无法将非结构数据快速地转换成所需的数据形式。类似金融数据库这样的结构数据,学生基本能够筛选出所需信息。但是,对于类似网页这样的非结构数据,他们就只能运用最原始的复制粘贴的方法提炼数据信息,耗时且耗力。2013年2月1日,人保财险执行副总裁王和在中国第七届“保险业管理信息化高峰论坛”上指出,在过去的两三年里,结构和非结构数据发生了本质性的逆转。过去就整个社会来讲,绝大多数的数据是结构数据,而现在非结构数据正呈快速增长的趋势,现在以及未来,非结构数据将占到95%,甚至更多。

“财务分析”课程讲授的基本方法主要是比率分析和因素分析法等。目前,无论是学术界还是业界,研究人员大量使用统计模型进行财务数据分析,例如聚类分析、多元回归、因子分析、时间序列预测法等。因而,我校学生数据分析能力急需加强,尤其是统计学和数学的基础要扎实。

2.学生财务分析报告撰写水平有待提高

财务分析的结果是以财务分析报告的形式展示给企业利益相关人,为其进行财务预测、财务决策、财务控制和财务评价等提供可靠信息。财务分析报告是对企业经营状况、资金运作的综合概括和高度反映。李宝智(2012)认为,报告应具备八要素:准确、完整、可比、用户导向、相关、问题的解决方案、及时和易用。[8]从我校学生提交的财务分析报告看,与上述要求还有很大差距。

三、“财务分析”课程教学改革建议

1.培训网络资源使用

重点介绍几个数据库的使用:

(1)金融数据库。我校购买了两款金融数据库,北京聚源锐思数据科技有限公司金融数据库(http://)和深圳市国泰安信息技术有限公司CSMAR财经系列研究数据库(http://)。登陆金融数据库后,输入查询条件即可下载上市公司财务数据,速度快且数据量大,数据格式可以任意选择。

(2)中国资讯行(国际)有限公司高校财经数据库(http://),INFOBANK于1995年在香港成立,是一家专门收集、处理及传播中国商业、经济信息的香港高科技企业,信息范围涵盖19个领域、197个行业。

(3)国务院发展研究中心信息网(国研网)(http://.cn)。国研网已建成了内容丰富、检索便捷、功能齐全的大型经济信息数据库集群,包括:六十几个文献类数据库、四十多个统计类数据库等。

网站资源:中国证券监督管理委员会(http://)、上海证券交易所(http://.cn)、深圳证券交易所网站(http://)、巨潮资讯网(http://.cn)和相关协会网站等。

2.培养数据预处理和建模能力

收集到数据之后,需要对数据进行预处理,利用统计学的理论和方法将数据转换成一个分析模型。[9]学生在统计学、计量经济学课程中,已经完成基本模型理论、SPSS或者Eviews三分析软件的学习。但是,若想实现对大数据的整理和分析,应该掌握R或者Matlab统计分析软件,同时,还要掌握一种编程语言,例如C++、JAVA、C#等。利用编程语言调用统计分析软件,从而实现大数据的分析。另外,建议学生了解Perl语言编程,该语言擅长处理非结构数据。

3.培养文献阅读及财务分析报告撰写能力

数据分析之后,需要撰写财务分析报告,为各方利益相关者的决策提供依据。不同财务分析的目的,形成的财务分析报告具体要求会有所差异,但是撰写财务分析报告的基本步骤相同。首先查阅文献,阅读相关学术文章、财务分析师分析报告、评级机构报告等;其次,模仿写作,组织财务分析结果,形成报告。此中没有捷径,需多看、多写。

注释:

①1TB 等于1000GB,1PB 等于1000TB。

参考文献:

[1]孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,(1).

[2]邬贺铨.大数据时代的机遇与挑战[J].求是,2013,(4).

[3]张肖飞.财经类高校《财务分析》课程案例教学改革研究[J].商业会计,2013,(1).

[4]朱东华,张嶷,汪雪锋,等.大数据环境下技术创新管理方法研究[J].科学学与科学技术管理,2013,(4).

[5]张先治.财务分析理论发展与定位研究[J].财经问题研究,

2007,(4).

[6]陈卫军,徐文学,陈平.基于上市公司网上资源的《财务分析》实训教学探讨[J].财会通讯,2012,(2).

[7]王桢.网络环境下财务分析案例教学方法的改进[J].中国教育信息化,2012,(1).

篇(2)

1.重策略执行而轻战略制定,企业整体运作意识不强

战略是企业发展的长期性、全局性指导思想,策略则是战略的具体化。从决策逻辑上来说,企业必须先确定营销战略,然后再根据战略制定策略。具体在营销模拟实验中,学生先要进行SWOT分析,明确企业的优势、劣势、机会和威胁;然后进行STP分析,把握各细分市场之间的差异性,明确公司的目标市场,确定产品的市场定位;之后再制定公司的具体发展目标,如市场占有率目标、销售额目标、利润目标,这些内容基本都属于公司战略决策的范畴,对企业后阶段的策略制定起着方向性的指导作用。但在实验操作实际中,很多学生对战略分析不够重视,把大部分时间和精力都放在了策略制定与执行上,热衷于进行新产品的开发、新品牌的推出、价格的制定与调整、渠道的选择、广告促销等,至于为何要这样去制定和执行,以后要怎样去制定和执行,则缺少全盘考虑。实际上,由于学生前期的战略分析不全面,战略目标不明确,很多策略的针对性和实用性不强,甚至有些策略就凭主观感觉或估计来确定。

2.决策过程不严谨,数据分析能力弱

由于市场环境越来越复杂,决策风险越来越大,企业的决策日趋客观严谨,决策中越来越重视数据的支撑作用。数据是市场的真实反映,揭示了事物发展的客观规律,本身就是决策的重要参考,培养学生的数据分析能力和严谨思维也是营销模拟实验教学的一个重要目标。市场模拟营销实验中包含大量的数据,比如销售量、销售额、增长率、利润额、利润率、生产成本、投资收益率、知名度、股价等等,另外还有许多图表,如折线图、饼形图、柱状图及矩阵图等,每一次营销计划执行后,这些数据或图表就会发生相应的变化。这些数据中蕴含着丰富的市场信息,非常值得我们去挖掘,但这些数据或图表并没有被学生很好地利用,学生对数据的敏感度不够,不擅长去分析其中包含的信息,对它们的认识有些表面化,往往是在进行简单的了解后便很快制定出营销策略,决策过程欠严谨。

二、市场营销模拟实验教学的优化对策

1.科学分组,确保竞争公平

为使每一位同学都能始终保持实验兴趣,也为了保证小组竞争的公平,教师在实验开始前必须对全班进行科学分组。分组时要考虑以下几点:首先要确定每组的人数,每组人数不宜过多,太多了影响决策效率,还可能导致人浮于事,一般三人一组比较好,团队比较精干,也便于协商或讨论;然后要确定小组成员选择标准,每一小组至少要有一位专业能力相对突出的同学,以保证决策过程的专业性和合理性,并带动其他同学积极参与。确定组队标准后,学生可以先行组合,然后把组队名单交给老师,老师根据实际情况对各组成员进行适当调整,尽量使各组的实力保持相对平衡。

2.突出战略决策,做好市场分析与战略定位

企业的决策需要有战略思维,要预先做好市场及产品的规划,在此基础上再制定出不同阶段的营销策略。为此企业需要对营销环境做出全面细致的分析,了解企业的优势、劣势、机会和威胁,并在市场细分的基础上做出目标市场的选择,确定产品在目标市场的定位,最终形成成熟的营销方案。这种战略分析能力体现出了学生的宏观视野和逻辑思维,但往往也是很多学生的弱项,需要教师在实验环节中予以特别重视,通过一系列强化训练来培养。比如要求学生在每次实验中必须提交两份战略分析报告,一份是SWOT分析报告,一份是STP报告,报告中必须对营销环境、战略定位、营销目标做出详细分析和具体明确,并阐述原因和依据,在分析报告没有提交之前,不能进入下一个实验环节。在每一年度的营销实验结束后,教师还要对全班所有同学的分析报告进行评比,将评比结果作为期末成绩的参考。通过这种硬性规定,让学生重视战略分析,逐步提高从全局把握问题的能力。

3.强化数据分析,做到严谨决策

数据分析能反映一个人看待问题的深度以及思维的严谨性,但对于很多学生来说,由于营销分析工具掌握不牢固,对数据分析的方法比较生疏,难以从多个数据中发现事物之间的内在联系或规律,更多是根据主观感觉或个人经验,再结合一些表面的数据来制定营销对策,决策过程存在某种随意性。为改变这一不良决策习惯,教师在实验中必须强调一点,就是所有的决策必须有数据支撑,必须有数据分析,用数字说话。这并非提倡决策的“数据主义”,只是强调严谨决策的重要,这种训练对学生以后的行为习惯和逻辑思维将产生积极影响,让学生更理性地看待问题和解决问题。以营销模拟实验中的广告投放决策为例,就要求学生先了解企业本年度的营销预算、广告的目标、媒体的成本、媒体的传播效应、企业目前的知名度等数据,然后对这些数据进行科学计算,得出广告投放的时间、次数和费用,而不能凭估计随意给定一个数字。

4.加强课堂管理,确保实验效果

篇(3)

无论是政治,还是经济形势,任何政府、企业、个人,面对未来进行投融资等项目决策,不经过数据分析论证就简单的决定会带来巨大的危害,已经渐渐的被人们认同。所以,只要参与社会政治、经济等活动,进行投融资,期望带来一定的经济效益,或者社会效益,就必须加强数据分析工作,对投融资意向进行评估,为决策提供科学的依据。

(一)项目数据分析

1、什么是项目数据分析工作

项目数据分析就是研究将经济学理论用数学模型表示,并应用于项目投资分析的方法论。项目数据分析过程是:提出项目(研究机会)、初步可行性研究(市场、技术、资源、环境研究、效益、风险分析评价)、测算经济效益、评估和决策、可行性研究(市场、技术、资源、环境研究、效益、风险分析评价)、评估和决策、项目实施。

2、项目数据分析工作的内容、特点

(1)项目分析工作的内容

一般来说,项目数据分析的内容包括项目的经济效益评价、项目的风险分析和项目的比较选择。

项目的经济效益评价主要是在假设项目没有风险情况下的经济效益,主要针对非贴现指标(会计收益率和投资回收期)和贴现指标(净现值、内部收益率、获利指数和动态投资回收期)。

项目的风险分析,主要是进行盈亏平衡分析、敏感性分析和概率分析。

项目的比较选择,主要是独立方案、互斥方案和不完全互斥方案的设计、评估等选择。

(2)项目分析工作的特点

项目数据分析工作是一门边缘科学,其特点是以定量分析为主要分析手段,通过分析翔实的数据进行项目的论证得出定性结论,并以定量数据进行说明。显然,项目数据分析,必须通过建立数学模型的方法进行分析涉及经济学、数学、统计学和预测学。

(二)什么是投融资

1、项目投融资的概念。

投资是指 “为了在获得预期的收益而作出的确定的垫支或牺牲的各种经济行为” 。因此,投资并不局限于与基础建设相关的经济活动,还包括证劵投资、信贷投资和信托投资。

2、项目投资的特点

项目投资的特点是现在投入资金进行经济效益的博弈,通过对该项目的管理进行长期或者未来的收益,不仅具有时间性,而且具有较强的风险性,其本质就是获得预期的收益。

一些大型的投资项目,通常都由一家专业的财务顾问公司担任其项目的财务顾问,财务顾问公司做为资本市场中介于筹资者与投资者之间的中介机构凭借其对市场的了解以及专门的财务分析人才优势,为项目制定严格的,科学的,技术的财务计划以及形成最小的资本结构,并在资产的规划和投入过程中做出理性的投资决策。

(三)项目数据分析工作对投融资具有重要的意义

1、数据分析工作提高了工作效率,增强了管理的科学性。无论是国家政府部门、企事业单位还是个人,数据分析工作都是进行决策和做出工作决定之前的重要环节,数据分析工作的质量高低直接决定着决策的成败和效果的好坏。

2、越来越多的企业将选择拥有中国项目数据分析师资质的专业人士为他们的项目做出科学、合理的分析,以便正确决策项目;越来越多的风险投资机构把中国项目数据分析师所出具的项目数据分析报告作为其判断项目是否可行及是否值得投资的重要依据;越来越多的企业把中国项目数据分析师课程作为其中高管理层及决策层培训计划的重要内容;越来越多的有志之士把中国项目数据分析师培训内容作为其职业生涯发展中必备的知识体系。

二、从事项目数据分析工作的感受

(一)从数据分析师的角度,项目数据工作需要做到以下几个方面的服务,才可以为被服务对象提供优质的有价值的投融资报告。

1、真诚服务

所谓真诚服务,主要是因为投融资报告的价值来自于数据分析师精湛的业务能力,细致的数据搜集能力、阅读能力、分析能力和预测能力。无论是竞争性项目、还是基础性项目,由于数据分析工作时一门边缘科学,需要对真实和翔实的数据进行定量或者是定性分析,需要对国家或者国际政策进行审读,需要对经济形势进行判断,需要对项目所属的行业进行科学的宏观把握,因此,项目数据分析师在搜集相关数据,在分析相关数据时,在阅读国家或者国及政策时,在斟酌行业趋势时,都需要真诚的付出,否则,闭门造车或者移花接木式的投融资报告,只能是危害客户,只能给客户带来更大的风险,而不是丰厚的收益。

2、真心服务

所谓真心服务,主要是指项目数据分析师在服务客户时,需要站在客户的角度思考问题。由于项目数据分析师,是从属于某公司,因此从公司利益出发,需要为公司赚取一定的利润,这部分利润就来自于数据分析师所服务的客户。从客户角度思考,实际上客户委托数据分析师针对企业的项目意向而进行的数据分析,实际是希望数据分析师提供的项目方案,不仅是可行的,能够为公司获得预期利益,而且是风险较小的,可以操作实施的投融资报告。

3、真实服务

所谓真实服务,就是指数据分析师在进行项目数据分析,通过建立数学模型的方法进行分析并提出具有科学性的、前瞻性的、科学性的、可操作性的投融资项目预测报告时,需要是真实服务。一般来说,客户在提出项目设想时,是充满了憧憬,也具有天真的幻想,那么数据分析师提出的可行性报告如果是刻意逢迎客户的主张,那么对客户来说将是灾难性的打击。

4、真情服务

所谓真情服务,主要侧重于项目付诸于实践中,项目数据分析师跟踪调查项目实施的禁毒,以及修正项目风险分析和比较选择。

(二)从数据分析师所服务的客户角度来看,客户也需要做到以下几个方面的工作:

1、信赖数据分析师的服务

对数据分析师服务的企业来说,信赖数据分析师是必要的。一方面,投融资项目报告,制定严格,具有科学性,是理性的投资决策;另一方面,

2、忠诚数据分析师的服务

3、诚挚和数据分析师的合作

数据分析师在进行投融资项目分析时,一方面,客户的意项是否描述清晰、完整、完全,是非常重要的,它决定了投融资项目报告的起点和方向;另一方面,企业的真实经营状况,也对项目报告具有决定性的意义。因此,企业需要同数据分析师进行诚挚的、真诚的合作,否则,项目数据报告就存在不可预知的、本可避免的巨大风险。

三、为项目方和投资方案例分析

支持创新 不忘避险—“倍爱康”生物科技项目作为股东类项目,“中投信保”为“倍爱康”提供4笔贷款担保,累计担保余额1900万元,实现保费收入28.5万元。

“倍爱康”是由冶金自动化研究院投资兴办的高新技术企业,主营磁分离酶联免疫检测系统等医疗器械和试剂的购销与制造。企业贷款用途为引进加拿大的磁酶免系统。但贷款后对该产品的市场推广未见成效,研发费用又较高,在销售无法取得突破的情况下,使得公司的净利水平偏低。同时,下游各地方医院压款情况严重。虽引入的国外先进技术不如预期般成功,企业仍按时还贷,该项目顺利完结。

篇(4)

2016年,中国互联网的发展风起云涌、波澜壮阔。人工智能技术引发新革命,席卷全球并改造着各行各业,中国企业在人工智能领域的角色日益重要;《国家网络空间安全战略》,建设网络强国成为国家战略;大数据国家战略加速落地,大数据基础设施建设如火如荼。尤其是工信部近日印发了《大数据产业发展规划(2016-2020年)》,特别提出加快推进大数据产业应用能力,到2020年,大数据相关产品和服务业务收入突破1万亿元,年均复合增长率保持30%左右。

显然,大数据的产业应用能力建设不容忽视。

截至目前,国双已在商业、运营商、政府、新媒体、司法等五条业务线方向取得了优势和突破。

数据洞察

2017年2月28日下午,“关键洞察――国双2017年数据报告会”于在北京召开。

会上,国双除了重磅《2016中国互联网发展报告》外,还展示了基于用户的电商购买、品牌搜索和自媒体评论等行为数据分析提炼而成的定制化报告《数往知来――用户竞争态势分析报告》。另外,还推出了其全新的CMP汽车营销解决方案。

2013年和2016年,国双先后两次被国家知识产权局评为“北京(中关村)审查员实践基地”;2014年和2015年,连续两年发明专利申请量位居中关村前十,并连续入选中关村知识产权领军企业,2016年入选国家知识产权优势企业。

国双联席总裁李峰表示:“国双数据中心自2013年成立以来,每年都会中国互联网发展报告,揭示中国互联网用户行为发展态势和趋势。迄今为止,国双已经连续五年这一主题报告。”一直以来,国双“专注数据,创造价值”,在数往知来的趋势中,洞察关键动向。他们协助企业主从海量数据中,找到关键数据,形成决策依据。

国双数据中心基于独有的交互式数据挖掘平台,全方位采集Web端、移动端等源头的海量数据,运用多维度数据剖析方法,打造了《2016中国互联网发展报告》(以下简称《报告》),从全网概况、访问特征、渠道分析、行业视角等四个方面,以女装、IP影视剧植入、汽车、美妆等四个行业领域为典型案例,多维透视解读了2016年中国互联网的发展大势。

会上,国双数据中心总监徐瑛对《报告》进行了解读,指出2014年以来手机端访问量增长率呈逐年上升的趋势。2016年手机端访问量较去年再创新高,全年增长率由7.4%上升至20.4%;与此同时,PC端访问量增长率逐年下降,由-7.9%跌至-19.2%。而访问终端方面,来自于国产手机品牌华为的访问量超越三星位居第二位,与苹果的差距进一步缩小。

网民每日上网时间分布方面的统计显示,在PC端,人们的活跃时间依然呈现出双峰“马鞍”状的分布,即最高峰出现在早10时,下午15时;但是在移动端,访问的高峰期出现在夜间的21时左右,对于新媒体内容营销运营者来说,要掌握消费者上线访问的时间点,非常关键。

在IP影视剧的植入方面,2016年饮料、食品、美妆等行业较多品牌选择IP影视剧植入,其次是手机、零售、汽车等。就单一品牌来看,OPPO、三只松鼠等植入更多IP影视剧。康师傅及百度地图因分别植入《青云志》及《从你的全世界路过》等IP电视剧获得较高关注,收获了很好的品牌效益。

而在汽车行业方面,2016年人们对汽车行业的关注度呈上升趋势。紧凑型车关注度占比45.9%,位居第一位;SUV关注度占比达19.2%,超越中型车,成为本年热议的细分市场。紧凑型车在经历4月、10月的两个关注高峰后,均出现平缓回落趋势,SUV关注度则成波动式爬升,表明近年来兴起的SUV热还在持续燃烧。

数据解读

本次会上,国双产品市场总监张桐介绍了国双为客户推出的系列定制化报告《数往知来――用户竞争态势分析报告》(以下简称《竞争态势报告》)。《竞争态势报告》基于用户的电商购买行为数据、品牌搜索行为数据和自媒体评论行为数据,去量化分析品牌搜索竞争格局、品牌电商竞争格局和品牌口碑竞争格局,帮助品牌主实现清晰化运营、优化营销内容和指导媒介投放。

在市场瞬息万变的今天,对于企业来说,时刻关注竞争对手变得尤为重要,而大数据带来了更大范围的竞品监测,更高效率的情报反馈,更有效的横向对比。国双“数往知来”系列报告是以竞品情报为核心的报告体系,通过追踪每个用户的搜索行为,购买行为和评论行为,深度刻画用户竞争格局,找出用户的品牌筛选因素、购买决策因素和二次传播因素,从而帮助品牌实现清晰化运营,量化指导营销内容决策和投放媒体的选择。会上所展示的用户竞争态势分析报告,通过动态可视化的数据分析呈现,让企业主可以很直观捕捉数据分析结果,快速调整营销策略。

数据支撑

近年来,中国汽车销量增速放缓,市场趋于饱和,竞争加剧。数据显示,77%的购车者从萌生购车想法到成交提车只花了不足90天时间,购买决策窗口期更短。而在比较筛选阶段,高达61%的消费者改变了他们原有的车型偏好,消费者更加善变。这些都为汽车企业带来了严峻的挑战,预示着车企需要在研发、制造、营销、售后等从上下游产业链环节,随时掌握消费者需求变化,灵活应变调整,才能在竞争中稳步发展,立于不败之地。

篇(5)

    从现在来看,对经济的统计调查分析报告有两方面的意义,一是认清现状,及时改正,通过对过去的数据的统计调查和分析可以发现已经存在的问题,并可以就其中的联系进一步剖析和研究,发现问题真正的原因,对于没有收益或者收益日渐下滑的项目应该马上停止,把不适合企业发展的部分剔除掉,保证经济健康快速的发展。二是抓住机会,创造利润,大多数我们得到的都是数量上的,表面的东西,我们要做的就是通过一系列的调查分析,将数量转化为质量。我们要通过对当前经济的分析来找到在当今社会大多数行业市场饱和的情况的商机,抓住稍纵即逝的机会,创造更大的利润。

    2 经济统计调查分析报告策略现存的问题

    2.1 经济调查中存在的困难

    在调查中,我们不可能把所有地区,所有企业的经济都进行一遍盘查,那样不仅耗费大量的人力,物力,更会使得到的调查数据太过冗杂,不便于分析,那么如何正确的进行抽样调查,保证选择的样本具有代表性,能够代表大多数的经济状况,而不具有特殊性就成为了经济调查的难点。而且调查得到的数据繁多,如何从大量的数据中找到有用的数据,成为了重点和难点,由于统计调查人员的个人素质和统计数据的繁多,给统计调查工作带去了很大难度,在数据的统计调查上,如何保证调查得到的数据的正确性也是一个难点,经济的统计调查是一切数据分析的开始,如果统计调查得到的数据出现错误,将会影响接下来的工作。

    2.2 经济统计分析中存在的困难

    如果说统计是基础,那么对经济的分析就是得出我们需要的结果唯一手段,经济分析、就是运用当前所有的数据,把数量上的东西,把一些数字化的东西变成结论,变成指导下一步运作和计划的准则。如何根据现有的大量的数据,得出正确的,对企业,国家经济发展有力的分析结果,就要看分析人员的素质了,分析人员要有超前的洞察力和分析能力,才会真正地得出有用的结论。

    2.3 经济统计报告中存在的困难

    经济的变化是十分迅速的,上一秒还在盈利,也许下一秒就已经亏损,在得出经济分析的结论之后,有效,快速,及时的送达分析报告也是十分重要的环节,但是由于工作人员的怠慢等原因很有可能耽误信息的送达,导致不能对当前经济已经发生的错误做出及时的改正,造成亏损。

    3 经济统计调查分析报告策略

    3.1 经济统计调查策略

    在经济统计调查中,要建立统一的机制,制定一套完整的调查程序,各个部门及时沟通在调查中出现的问题,并予以解决,根据国家的统计报表制度,建立自己的半年或季度统计报表制度。从制度建设入手,健全信息沟通渠道。建立培训制度,对调查人员进行培训,提高其调查工作的方法和手段,使调查工作更好更快地开展。还可以建立考核制度,对调查人员的工作进行及时考核,以监督和激励调查人员的工作。

    3.2 经济统计分析策略

    对于经济统计的分析的重要性已经不用再强调了,那么如何保证分析结果的正确性呢?首先要使用正确的分析方法,由于统计分析的复杂性,所以在分析中要用到管理学,社会学等多个学科的知识。现有的统计分析方法有静态经济分析,动态经济分析等多种方法,采用正确的,适合的分析方法是得出分析结果的首要保证。其次,要建立完善的分析体制,对于不同的经济体按照不同的分析体制进行分析,力求更快,更好的对数据进行分析。再次,要提高分析人员的素质,正因为分析工作的复杂和困难,对分析人员的素质就提出了很高的要求,分析人员要了解当前局势,要了解各个学科方面的内容,要能够正确运用分析方法,能够变量分析,将经济学,数学,统计学很好的运用到一起去,才能统揽全局,得出最正确,最客观的分析结果。

    3.3 经济统计报告策略

    经济统计报告存在的问题可以说是最好解决的,但是我们也要引起重视,在得出了分析结果之后,要把它体现在报告书上。首先要规范报告内容,要严格按照报告书的格式,根据分析结果填写,要保证报告书将分析结果清晰明了的呈现出来,做到全面不丢失分析结果信息。其次,要提高报告人员的意识,要让他们做到及时的将报告送达到上一级领导手中,保证分析结果的不延误,以免影响下一步的进行。

篇(6)

关键词:大数据;复合人才;教学内容;实践形式;校企合作

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)45-0201-03

一、引言

随着计算机软硬件技术的快速发展,计算技术已从传统的PC平台计算模式发展到嵌入式计算、移动计算、并行计算和服务计算等多种计算系统并存及融合的计算模式,处理的对象也呈现出网络化、多媒体化、大数据化和智能化需求的特征,而物联网、移动互联网的快速发展促进了这一趋势,从而迎来了大数据时代的到来。大数据是继云计算、物联网之后兴起的又一新兴发展方向,被学术界、工业界乃至政府机构密切关注和广泛研究。

大数据又称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极的目的的资讯。在维克托・迈尔・舍恩伯格及肯尼斯・库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法。一般说来,大数据具有4V的特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

二、大数据时代对人才的要求

从广义上讲,大数据人才就是具备大数据处理能力的科学家和工程师。目前,国际上开设了大量的数据科学方面的课程、数据科学学位计划以及数据科学短期培训班。从国际上设置的培养计划来看,大数据人才应该系统地掌握数据分析相关的技能,主要包括数学、统计学、数据分析、商业分析和自然语言处理等,具有较宽的知识面,具有独立获取知识的能力,具有较强的实践能力、创新意识和团队合作意识。具体来说,大数据人才首先应具备获取大数据的能力,例如能根据任务的具体要求,综合利用各种计算机手段和知识,收集整理海量数据并加以存储,为支撑相关的决策和行为做好数据准备。其次,应具备分析大数据的能力,对于经过预处理的各类数据,能够根据具体的需求,进行选择、转换、加载,采用有效方法和模型对数据进行分析,并形成分析报告,为实际问题提供决策依据。最后,应具备良好的团队合作精神,大数据时代下的数据分析任务通常无法依赖个人能力来完成,需要在团队制度的约束下,与他人一同携手、互相鼓励、分工合作来实现既定目标,因此具备较强的责任心与团队合作精神也是大数据从业人员必备的基本条件。

三、大数据人才培养的探索

大数据产业的发展,对大数据人才提出了新的需求,国内各高校在积极进行大数据学术研究的同时,也开始考虑将大数据相关课程纳入培养体系,以满足社会对大数据人才的需求。以下结合作者在数据库及分布式技术系列课程中的教学经验,以及大数据分析与处理方面的实践经验,探讨大数据系列课程教学内容和实践形式的设置。

在教学内容的设置上,大数据系列课程建议可分为理论教学和技术教学两个方面,因为理论是大数据认知的必经途径,也是被广泛认同和传播的基线;而技术是大数据价值体现的手段和前进的基石。在理论方面,讲授的理论内容可涵盖如下几点:

(1)大数据概念:大数据概念出现的历史,关于大数据定义的各种流派以及说明,大数据的四个特征,大数据与云计算、物联网的关系,大数据与大规模数据、海量数据的差别。这个部分主要突出“大数据”概念中应包含的“对数据对象的处理行为”。

(2)典型的大数据应用实例:精选有新意的大数据分析典型案例,可帮助学生更清晰的理解大数据的概念和含义,这样的案例如:美国梅西百货的实时定价机制(根据需求和库存的情况对多达7300万种货品进行实时调价)、百度搜索的实时热点排行榜(以数亿网民的搜索行为作为数据基础,建立权威的关键词排行榜与分类热点)、沃尔玛的搜索引擎Polaris(利用语义数据进行文本分析、机器学习和同义词挖掘使得在线购物的完成率提升了10%~15%)、谷歌流感趋势工具(通过跟踪搜索词相关数据来判断全美地区的流感情况)等。在教学过程中,教师应注意将授课的重点放在系统化的开发步骤和关键性问题的求解上,介绍案例的设计思想、主要方法和应用过程等。

(3)大数据关键技术与挑战:介绍大数据时代面临的新挑战,包括大数据集成(数据异构性和数据质量问题)、大数据分析(数据形式多样化、数据处理的实时性、索引结构的复杂性等)、大数据隐私问题(隐私保护和数据分析的矛盾)、大数据能耗问题(低功耗硬件的设计)、大数据处理与硬件的协同、大数据管理易用性问题以及性能测试基准。

(4)大数据存储和管理技术:介绍如何把采集到的大数据存储起来,建立相应的数据库,并进行管理和调用。主要内容包括:分布式文件系统(HDFS)、去冗余及高效低成本的大数据存储技术、新型数据库技术(键值数据库、列存数据库、图存数据库以及文档数据库等)、异构数据融合技术、分布式非关系型大数据管理与处理技术、大数据索引技术和大数据移动、备份、复制等技术。

(5)大数据分析及挖掘技术:介绍从大量数据中寻找其规律的技术,通常由数据准备、规律寻找和规律表示3个阶段组成。数据准备是从上述大数据中心存储的数据中选取所需数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含规律找出来;规律表示则是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。根据挖掘任务可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等。

在技术方面,可考虑分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程,具体可包括以下几点:

(1)NoSQL技术:NoSQL产生的背景、NoSQL现状、NoSQL数据库与关系数据库的比较、聚合数据模型、分布式模型、数据一致性、典型的NoSQL数据库分类、NoSQL数据库开源软件。

(2)MapReduce:MapReduce模型概述、编程模型:Map和Reduce函数、MapReduce工作流程、并行计算的实现、实例、Yarn等

(3)Hadoop分布式文件系统:Hadoop出现的背景、Hadoop的功能与作用、为什么不用关系型数据库管理系统、Hadoop的优点、Hadoop的应用现状和发展趋势、Hadoop项目及其结构、Hadoop的体系结构、Hadoop与分布式开发、Hadoop应用案例、Hadoop平台上的海量数据排序。

(4)还可进一步包括数据流的管理与挖掘、云数据库、图数据库等。

由于大数据系列课程所涉及的技术具有很强的应用背景和实践意义,因此应摒弃传统教学模式中“重理论、轻实践”的思想,在掌握大数据相关的理论知识和技术知识之后,还需重点培养学生的综合实践能力,以满足社会就业的需要。为此,应设立一定的大数据技术实践课程内容,帮助学生从知识型向能力型转变。结合上一节分析的大数据时代对人才的具体要求,建议按以下流程设置实践环节的内容:

(1)分组。如前所述,大数据时代下的数据分析任务通常需要以团队的形式来完成,因此首先要求学生根据自身情况,结合各自的技术优势,合理进行分组。

(2)选题。在具体选题上,可使用校企合作的具体项目或以Apache Hadoop、MongoDB、Dremel、Gephi等一系列的开源大数据分析软件作为实践平台,以Kaggle为数据科学平台来进行选题。

(3)明确需求并撰写大数据分析任务书。明确选定的题目范围内,数据分析要研究的主要问题和预期的分析目标。只有明确了数据分析的目标,才能正确地制定数据收集方案,即收集哪些数据,采用怎样的方式收集等,进而为数据分析做好准备。

(4)数据收集及预处理。由于大数据分析最终的结果与其获取的数据质量紧密相关,因此收集的数据是否真正符合数据分析的目标是必须注意的重要问题。该步骤要求学生从分析目标出发,从浩瀚的数据中正确的收集高质量且服务于既定分析目标的数据,然后对数据进行必要的加工整理,包括填写空缺值、平滑噪声数据、识别和删除孤立点、解决不一致性、规范化(消除冗余属性)和聚集(数据汇总)等。

(5)探索性数据分析。由于大数据分析的数据量通常达到PB甚至YB级以上,因此希望直接选定一个分析模型是不现实的,而且面对高维海量数据,也很难直接看出数据的规律。在这个步骤中,应指导学生通过基本描述统计量的计算、基本统计图形的绘制、用各种形式的方程拟合等手段,计算某些特征量等方法探索规律性的可能形式,帮助学生快速掌握数据的分布特征,这是进一步深入分析和建模的基础。

(6)模型选定分析。在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。有时选择几种统计分析方法对数据进行探索性的反复分析也是极为重要的。每一种统计分析方法都有自己的特点和局限,因此,一般需要选择几种方法反复印证分析,仅依据一种分析方法的结果就断然下结论是不科学的。

(7)模型的验证及分析报告。指导学生对选择的数据分析模型及结果进行分析,可使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。观察模型提供决策的信息是否充分、可信,所发挥的作用是否与期望值一致,数据分析方法是否合理,是否将风险控制在可接受的范围。

以上这种项目式实践形式的优势是:在学生参与完成某一具体的大数据分析任务过程中,通过主动地学习来自主地进行知识的建构,让学生经历项目开发的整个过程,从中去发现和掌握相关知识,达到既能熟悉大数据分析过程,又完成了经验的积累,还能实现学习知识、培养能力的目的。在这里,教师不再是知识的传授者,而是项目活动的组织者和咨询者。

四、校企合作推动人才培养

一方面,大数据的核心业务必然是一种扎根于特定行业,综合运用已有的存储、分析、挖掘、展现技术,根据用户需求并融入行业特色技术模型的一站式大数据平台业务。另一方面,对于企业来说,各类业务产生的数据为数据分析创造了非常好的基础条件。大数据解决方案是有价值的,但是苦于找不到既懂数据分析技术,又懂得业务的专业人才。由此可见,既懂得相关技术,又谙熟企业业务的复合型人才才是企业部署大数据应用最迫切需要的人才。因此,企业可以与学校联合培养自己所需要的大数据人才,这种方式有两方面的优势:一是大数据技能训练的对象,即大量的数据,只有企业才具备;二是在企业的支持下,学校也能通过针对性的实践训练来培养学生的大数据处理技能。

大数据时代下的校企合作的形式多种多样,可通过联合办学、联合制定人才培养方案、合作开发课程和教学内容、设置实训项目、教学管理和共建“双师”结构教学团队等形式展开。

五、结语

篇(7)

关键词:国库统计 大数据 分析与预测

一、大数据时代国库统计分析转变

(一)树立大数据思维

“大数据时代预言家”维克托认为:世界的本质就是数据,大数据将开启一次重大的时代转型,一直以来所延续的传统统计分析思想已变得陈旧且落后。国库统计分析思维应当在大数据背景下加以转变。一是关于大数据抽样调查工作的思想。抽样调查是目前统计分析工作中的重要调查方式,但应该清醒地认识到,传感器、网络和数据处理技术,为获取全局数据提供了可能,抽样调查方式越来越多的被大数据取代成为必然。二是大数据统计思想:允许数据存在不精确性。纵观目前的各类数据,一方面,数据来源不断扩展,另一方面数据处理方法飞速发展,我们应该把重心放在统计分析效率上,而不是一味地追求数据的精确性上。三是大数据相关关系的思想,由验证因果向寻求关联转变。统计分析报告是统计工作的下游产品,对决策的意义常常大于常规报表。大数据的应用,统计分析也将发生转变,在做好因果分析的基础上向寻求关联转变,原因分析更加精准和深刻,对策建议更具参考价值。

(二)被动统计到主动分析,从人工统计到智能统计

在这样一个信息爆炸的大数据时代,无论政府机构还是社会公众都可以通过多种途径获取信息,国库统计分析部门也不例外,更应该变被动为主动,对经济转型期的一些重大问题尤其是关系到可持续发展的重要问题,做好数据统计分析,提高发展质量,实现经济转型。涂子沛指出人类使用数据的巅峰形式,是通过数据赋予机器“智能”。大数据在包括国库统计分析中应用的终极形式就是分析智能化。

(三)从事后统计向事前预测转变

统计分析报告是统计工作的重要产品,完整的进度性常规分析应该包括对未来一定时期数据的预测。但由于小数据和信息量的局限,预测一般很少作为报告的重点,多是在假定发展条件、相关政策不变的情况下对未来情况做出的粗略研判,影响了统计对决策的参考价值。而大数据的核心就是将数学算法与海量的数据有效结合,来预测事情发生的可能性。大数据的广泛应用,将有利于统计报告实现由单一的事后分析,向注重事前预测转变。

二、大数据在国库统计分析全流程应用的探讨

当前,大数据浪潮带来了一场新的革命,面对经济发展的新形势新要求,国库统计分析要学会积极的运用大数据的思想和方法,来应对各种新挑战。国库统计分析要积极主动建立大数据分析应用机制,破解新常态下面对的各种问题,实现工作的创新与发展。本文重点分析国库统计分析全流程下大数据的应用。

(一)数据源:建立国库统计分析数据池

目前国库统计分析所用数据主要通过“3T”系统产生基础数据和监管类数据,通过收集各类型政策文件、影像资料、领导讲话、内网信息等形成综合性数据。但这些数据远未达到支撑大数据统计分析的基础。国库统计分析应当建立“数据池”这一基础工程,通过人行内部数据整合、银行和其它机构数据接入、互联网数据抓取和引入等多渠道扩充基础信息源和数据库,为国库统计分析的大数据应用奠定数据基础。

一是加速整合现有国库数据。我国国库汇集了各级政府财务数据和各级国库管理数据,包括从中央到县乡的各级机构化和非结构化数据,也包括税务、海关、财政、银行等部门处理的各类收支退存等国库资金运行数据,涵盖面极广。但现有数据资源存在着部门隶属、无法共享等问题,大数据要求建立统一、高效、共享的国库业务大数据池,就必须打破现有藩篱,尽早实施“国家金库工程”,完善内部数据源。

二是扩大国库统计分析数据源。最重要的是打通各级政府及其下属各部门之间的数据传输通道,实现政府办公、工商行政、招商引资、外贸出口、仲裁诉讼等政府活动所产生的数据接入共享。其次是实现一行三会、商业银行、行业协会、企业实体等生产运营数据的持续传输和报送。最后是互联网数据,互联网是大数据的重要载体,也是数据收集的快捷途径,通过各类互联网平台,门户以及行业网站,可以收集海量数据来增加国库统计分析领域数据采集的前置性和时效性。

(二)数据采集与存储:软件与硬件结合

大数据的应用中,由于数据来源非常广泛且类型多样化,需要存储和分析挖掘的数据量也是十分庞大的,因此数据展现和处理的高效性以及可用性十分重要。因而,大数据的收集和存储应当通过先进的计算机技术自动实现,并结合线下需求采取人工收集等传统方法,以补足系统无法收集的数据的遗漏。国库统计分析数据的采集应当在国库大数据资源池基础上,通过构建云计算应用平台,统筹整合各直属国库大量分散的数据和软硬件资源,通过应用云计算平台的资源和功能,以提升和优化整体效能,从而实现全国国库统计分析的大集成、大整合以及大应用。对于其他横向联网数据,比如一些保密性较强的科学研究数据和企业生产经营数据,则可以与研究机构和企业建立合作关系,使用特定系统接口等相关方式采集数据。

在数据存储方面,在通过完善的物理存储技术和云计算平台等软硬件设施的基础上,按国库统计层级建立分级仓储式数据中心,以人行总行为总库,各项业务与非业务数据达到汇总存储,各级行通过内部接口或云计算平台实现数据上传下载,同时本级行建立分中心数据存储仓,采集本级区域内纵向和横向数据并存储。同时按照保密和信息安全等要求,实施分级授权和设置防火墙、实时加密存储数据和卷标存储加密等技术。

(三)数据清洗与结构化处理

国库海量的、不规则的数据无法提供有效决策支持,只有通过数据清洗技术将大数据转变为结构化和规则化的数据,才能体现大数据价值。数据清洗包括检查数据一致性,处理无效值和缺失值等,是发现并纠正数据文件中可识别的错误的最后一道程序。经过数据清洗技术处理残缺数据、错误数据和重复数据后将有效数据写入数据库。

在国库大数据统计分析上,通过数学知识(概率、统计、离散化等)建立合理模型,充分利用和挖掘数据内容。综合运用开源类和非开源类数据分析工具包括R、Python、MATLAB、SPSS、EVIEWS等软件进行数据分析。具体实现统计分析、数据挖掘和模型预测等功能,并以可视化的结果予以呈现。统计分析包含假设检验、差异分析、相关分析、方差分析、回归分析、logistic回归分析、因子分析、聚类分析、主成分分析、判别分析、bootstrap技术等。数据挖掘包含相关性分组或关联规则、聚类、描述和可视化、复杂数据类型挖掘等。模型预测包含预测模型、机器学习、建模仿真等。

在统计分析过程中,国库统计分析应该重点实现云应用的创新与共享。统计人员可以根据业务的新要求,在云平台数据开放接口的基础上,自由构建合理的数学模型和算法,实现业务应用的创新和扩展。与此同时,以算法的方式将统计人员的智力成果和业务知识固化,当经验证为可信任应用时,可自动进入云平台的应用共享库,在得到授权的前提下,自由使用或补充完善,实现知识固化、资源共享。

(四)国库运行智能化统计分析

在云应用平台上,国库统计分析首先要将日、旬、月和年作为数据的时间维度,将国库收入、国库支出以及国库库存等统计指标作为数据的为空间维度,利用云计算的强大能力,并借助数据分析展示工具,预先计算处理数据。或者根据用户事先提交的数据挖掘需求自动完成相关数据预处理。统计分析人员随时可以从两个维度上深度挖掘数据,并使用QLikView等数据分析工具,实现统计大数据的多维度、可视化展示。

二是实现常规统计分析的智能化生产。可以通过完善和丰富大数据应用平台的分析功能,实现机器式的学习,输入必要的参数后,系统将自动计算数据,并关联提取大数据池中的相关数据和信息,进而依据特定的模板输出分析报告,最后由分析人员对输出的分析报告进行质量把关和进一步的补充完善。

三是构建统计分析数据模型,提高预警预测水平。不断进行新的分析预测数学模型的探索和构建,充分利用国库统计大数据平台上的海量数据和动态实时数据,不断提高预测水平。

(五)数据展示与反馈

以智能化统计分析为主的大数据应用技术,为数据结构化和可视化的展示提供了支持。简要国库运行数据、系统化运行指标、国库资金运行报告、国情和舆情监测报告、企业和金融服务报告、国库运行情况预测等为中央银行、各级政府部门制定有关政策提供统计信息和参考依据,充分发挥国库在国家预算执行中的促进、反映和监督作用。同时建立信息反馈机制,对现有统计分析结果予以反馈,还包括对未满足需求提出反馈,丰富和完善大数据应用成果,充分发挥国库统计分析应用大数据的社会价值。

综上所述,从全流程看,大数据应用自数据端建立“”数据池“”到处理端智能分析在到应用端数据展示,大致可以通过下图(图1)形象展示:

三、有效提升大数据应用的政策建议

(一)从制度层面保障大数据统计分析的有效开展

制定专门的大数据应用法律法规,在由总行统一部署、统一实施的基础上,各地区分支机构结合当地实际制定特色大数据应用和发展规章制度。从数据产生、采集、存储、挖掘和应用等大数据处理全流程做出明确安排。一是通过总行层面的发文、通知等鼓励通过大数据方法加强国库统计分析,建设大数据共享和应用平台;二是强化大数据统计所需软硬件采购、数据源互联互通及模块化分割等作出具体安排;三是要求大数据应用所应达到的在信息、统计报告、预测与预警等功能上的目标和绩效予以明确,充分利用大数据平台提供统计分析支持;四是强化信息技术安全,防止信息泄露、网络攻击、系统失灵等问题,明确应急处置方案。做到严格立法,有法可依,有章可循。

(二)加大基础设施建设和人才投入,满足大数据应用的软硬件要求

大数据基础设施可分为硬件和软件两类。硬基础设施主要包括用于收集、存储、分析和应用大数据的信息化系统架构;软件基础设施主要包括各类数据信息、数据挖掘和大数据应用专业软件以及金融企业的人力资源。人民银行应通过专项资金投入等方式构建大数据应用的软硬件设施和和培养专业人才,并通过持续培训使全体员工了解并使用大数据进行国库统计分析。也可邀请专业的大数据解决方案服务商作为咨询顾问,整合国库不同生产系统数据,优化数据应用行为,加快统计系统建设步伐。

(三)提高大数据管理和应用能力

国库统计分析应不断的加强国库运行数据的采集、储存、保护和管理工作,不断提升统计分析水平。加强对国库统计分析中涉及的地方债、营改增、房地产、小微企业经营、财政专户、盘活库存等热点领域可以设计建立相应跟踪监测指标体系。与此同时加强改革数据的统计制度、方法以及程序,研究大数据共享制度,为宏观经济分析提供便捷、坚实的大数据基础。

建立国库大数据分析应用机制是新形势下的当务之急。国库统计分析需不断改革创新,强化大数据的思维,提高大数据的意识和驾驭大数据的能力,积极探索新的大数据应用方法和途径,从而在国家宏观决策、服务经济社会发展、服务国库管理方面,进一步提升国库统计分析服务的能力和水平。

参考文献:

[1]沈昱池.大数据时代我国财政信息共享的思考[J].地方财政研究,2015(11):47-67

[2]陈健慧,赵昕.国库统计分析数据集中系统建设[J].金融电子化,2010,03:89-90