期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 电源技术论文

电源技术论文精品(七篇)

时间:2022-08-12 09:02:30

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇电源技术论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

电源技术论文

篇(1)

粉尘比电阻大于1011Ω·cm(高比电阻)时,采用传统工频、高频电源的电除尘器收尘,由于高电阻粉尘在电场中的高粘附力,使振打无法有效地将粉尘从收尘极板上除下,最终引成反电晕现象,降低了除尘器的除尘效率。脉冲电源独特的基础电压叠加脉冲电压的双电模式,相比于传统的工频、高频电源,能使粉尘的驱进速度明显提高,如图1所示,这使得同收尘面积的静电除尘器在使用不同电源控制系统时产生完全不同的除尘效果。增强系数H=Wp/Wdc,其中Wp为应用脉冲电源后的粉尘驱进速度,Wdc为应用常规电源后的粉尘驱进速度。从上图中看出,粉尘比电阻越高,应用脉冲电源后的效果越好,当粉尘比电阻为1013Ω·cm时,增强系数达到2.2倍,即脉冲电源对粉尘驱进速度的提高效果是常规电源的2.2倍,这就使得脉冲电源在高比电阻粉尘的除尘效率上完全优于常规电源。同时,脉冲电源的脉冲电流大,电压脉宽窄(≤120us),电除尘器电压上升率高,达2KV/us,荷电和电晕效果好,火花电压高,比常规电源提高几十KV,而基础电源电压总低于火花电压,能有效抑制反电晕和二次扬尘,有利于收尘。依据多年电除尘研究经验和相关工业应用,电除尘器电场越往后,粉尘比电阻越高。在除尘器后两级电场粉尘的平均比电阻一般都能达到1.0×1011~1.0×1013(Ω·cm)数量级。利用多伊奇公式η=1-e-w·A/Q及其他相关知识,可以计算出脉冲电源对不同比电阻粉尘的理论除尘效率,如表1所示。从表中可见,比电阻越高,脉冲电源的除尘效率越好,比电阻为1.0×1012~1.0×1013(Ω·cm)时,理论效率可达99.9934%。

2.脉冲电源的组成及结构

脉冲电源是适用于电除尘器的电源,目前在世界各地的电厂、钢铁厂及水泥厂的环保除尘机械设备中得到了广泛应用,除尘效果显著。它主要由控制柜和高压输出变压器两部分组成,分别放置于控制室和电除尘器顶部。脉冲电源系统一般由基础电压产生部分、脉冲电压产生部分、控制部分及通讯部分组成。其原理图如图2所示。1)基础电压Vdc产生部分三相交流电源输入至三相升压变压器,经三相整流桥和滤波电路后,产生一个高压直流电压,再经扼流电感L2和耦合电感L4送至电除尘器中,供应电除尘器ESP所需的基础电压。2)脉冲电压产生部分三相交流AC380V输入至三相升压变压器,经整流桥、滤波电路后,得到一个高压直流电压,经扼流电感L1给储能电容Cs充电。当高压IGBT(SW1)导通时,储能电容Cs、扼流电感L3、耦合电感L4、电除尘器ESP等效电容形成谐振回路,储能电容Cs内的电量在该回路内谐振,在电除尘器ESP两端形成一个脉冲电压。该脉冲电压与基础电压叠加,产生最终所需的加至电除尘器ESP上的电压波形,如图3所示。谐振后半部分,电量回充给储能电容Cs,节约电能。当高压IGBT关断时,谐振回路断开,电源继续给储能电容充电至原电压,等待下次脉冲的产生,如此循环。3)控制部分通过一个核心控制器(嵌入式系统),控制基础电压、脉冲电压的产生,并接收脉冲电源的反馈信号、监控关键位置的运行状况,调整脉冲电源的运行状态,使脉冲电源适应各种复杂工况的要求,产生最大的收尘效率及节能目标。同时采用快速、智能的火花响应、处理机制,保证火花状态下设备的安全、稳定运行。4)通讯部分通过以太网控制器,在通讯协议,比如Modbus的基础上搭建整个通讯系统,在上位机界面上监控各个脉冲电源的运行情况,并统一控制、调配,便于运行和管理,提高工作效率。

3.脉冲电源除尘的特点和优势

对于常规除尘器控制电源,脉冲电源具有如下主要优势:1)脉冲电源具有常规电源各种特性;2)在基准电压的基础上叠加脉冲电压,有效抑制高比电阻粉尘的反电晕现象,同时使电场获得尽可能大的电晕场强,使高比电阻粉尘充分实现电离、吸附、放电等过程;3)在获得较高场强的状态下,使得电耗最大可能的节省。对于电除尘器本体一类的改造,脉冲电源具有如下主要优势:(1)改造简便,可在不停炉、短期停电的状态下完成改造;(2)改造周期短,见效快;(3)故障时影响小,无需停炉整改;(4)改造成本低;(5)对于原本体小的除尘器有适当提效功能。综合考虑,脉冲电源较其他除尘器技术具有全面的、可靠的优势,采用脉冲电源对电除尘器进行改造是目前适应国家新环保标准的最佳改选方案。

4.脉冲电源工程应用及发展前景

篇(2)

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

篇(3)

关键词:低功耗;无线供能;电荷泵整流器;低压差线性稳压器;带隙基准电压源;电源抑制

中图分类号:TM44;TN722;TP393 文献标识码:A 文章编号:2095-1302(2016)12-00-04

0 引 言

近几年,受益于集成电路工艺技术与片上系统(System on Chip,SOC)的不断发展,射频识别、微传感网络以及环境感知等智能技术得到了飞速发展。其中,对于无线供能植入式芯片的能量管理、功耗等问题受到了持续关注与研究。当能量采集完成后,如何管理该能量是下一代被动与半被动植入式医疗设备的要点之一。

在低功耗植入式芯片中,如低噪声放大器、模数转换器等对工作电压及其纹波都有一定的要求,因此须通过无线能量管理单元(Wireless Power Management Unit,WPMU)将其电源性能优化。在被动式芯片中,电荷泵整流器(Charge Pump Rectifier,CPR)、带隙基准源(Bandgap Reference,BGR)、低压差线性稳压器(Low Dropout Regulator,LDO)是WPMU的重要组成单元[1]。芯片工作时,人体各种低频信号(EEG、ECG)会通过相应的耦合方式传输到电源通路上,从而产生低频噪声,因此必须采用相关技术获得高电源抑制比电源。论文首先通过电荷守恒定理对传统Dickson电路进行动态分析及能量转换效率的改进;然后采用电源抑制增强(Power Supply Rejection Boosting,PSRB)与前馈消除(Feed-forword Cancellation,FWC)等技术分别提高BGR、LDO在运放工作带宽内的电源抑制力(Power Supply Rejection,PSR),并在输出节点并联电容以滤除超高频纹波;最后为保证LDO在负载变化时的稳定性,利用零极点追踪补偿来满足相位裕度的要求。

论文对高性能无线能量管理单元预设指标为:

(1)CPR在输入500 mV交流小信号时能输出2 V电压并驱动200 A的电流。

(2)BGR输出电源抑制比在LDO的工作范围内尽可能大于60 dB,以减小对LDO的影响。

(3)LDO输出电源抑制比在生物信号频率处(01 kHz)及CPR输入信号处大于60 dB,从而提供负载电路高性能的工作电压。

(4)在满足以上性能的情况下,尽可能减小电路工作时的静态电流。

1 无线能量管理单元的基本原理

图1所示为论文采用的无线供能能量管理单元拓扑结构。由图1可知,WPMU主要包含CPR、BGR、LDO及保护电路(PRO)等模块。芯片通过片外天线采集到由基站发射的高频无线能量信号,CPR将信号整流后进行升压,产生纹波较大的电压,并将该能量储存到Cs中。由BGR与LDO所组成的环路通过负反馈输出纹波较小的VDD来驱动负载电路。其中BGR为LDO提供一个精准稳定的参考电压,因此BGR的性能影响着LDO输出电压的性能。芯片中的保护电路包括过温保护电路、过压保护电路、限流电路,其主要目的在于意外情况下对电路关断,实现对电路的保护。

设计能量管理单元时,在无线供能的环境下要注意相关性能的优化,而这又伴随着其它性能的牺牲,下面将详细分析论文采用的CPR、BGR、LDO设计原理及电路结构。

3 版图及后仿真结果

采用SMIC 0.18 m CMOS工艺,在Cadence下对电路进行仿真验证,无线能量管理单元的版图如图7所示,其中包含了CPR、BGR、LDO及PRO等模块,芯片的尺寸大小为277 m×656 m。

电路在工作时要避免反馈环路发生震荡,必须保证LDO环路的相位裕度,论文在tt、ff、ss三个工艺角下对其进行不同负载电流(0200 A)的仿真,仿真结果如表1所列。该结果表明在负载电流0200 A内,由于零极点追踪补偿的作用,相位裕度均大于60度,根据奈奎斯特稳定判据,LDO环路能在负载变化的范围内稳定工作。

图8所示为BGR、LDO的PSR仿真波形,从图中可以看出,BGR采用PSRB技术后,PSR在低频降低了近25 dB。当LDO采用FWC技术时,电源抑制在低频段得到了显著提升,电路空载时,在100 Hz内提升了近20 dB,满载时提升了近40 dB。

图912给出了WPMU中CPR与LDO的相关瞬态仿真结果,当输入频率为500 MHz、幅度为0.5 V的正弦波时,电路建立时间约为13 s,CPR的纹波约为5 mV,而LDO的输出电压纹波减小至2.3 V,即高频处PSR约为-66 dB。因此论文采用的LDO在生物信号频率处(DC-10 kHz)与输入信号频率处(100 MHz以上)具有较好的PSR。表2对相关文献与本文设计进行性能比较,可以看出,该电源管理单元能输出性能更好的工作电压。

4 结 语

论文针对CPR、LDO、BGR进行研究,设计了一种应用于低功耗无线供能植入式医疗芯片的能量管理单元。采用SMIC 0.18 m CMOS工艺提供的本征MOS管使CPR的效率得到提升。利用PSRB将BGR的PSR在低频处从-75 dB降低到-95 dB,这是优化LDO电源抑制能力的基本前提。通过FWC、零极点追踪补偿改善LDO的PSR与稳定度,在驱动0.2 mA的负载电流时,PSR为-85 dB@DC,而相位裕度在负载范围内均大于60度,该性能可适用于对电源性能要求较高的模块。

参考文献

[1]郭文雄.应用于植入式经皮能量传输的集成电路研究与设计[D].广州:华南理工大学,2013.

[2]Pierre Favrat, Philippe Deval, Michel J.Declercq. A High-Efficiency CMOS Voltage Doubler[J]. IEEE Journal of Solid-State Circuits, 1998, 33(3) : 410-416.

[3]To shiyuki Umeda, Hiroshi Yoshida, Shuichi Sekine, et al. A 950-MHz Rectifier Circuit for Sensor Network Tags With 10-m Distance[J]. IEEE Journal of Solid-State Circuits, 2006, 41(1): 35-41.

[4]Keith Sanborn, Dongsheng Ma, Vadim Ivanor. A Sub-1-V Low-Noise Bandgap Voltage Referen-ce[J]. IEEE Journal of Solid-State Circuits, 2007, 42(11) : 2466-2481.

[5]Mohamed El-Nozahi, Ahmed Amer, Joselyn Torres, et al. High PSR LOW Drop-Out Regulator With Feed-Forward Ripple Cancellation Techniq-ue[J]. IEEE Journal of Solid-State Circuits, 2010, 45(3) : 565-577.

[6]王忆.高性能低压差线性稳压器研究与设计[D].杭州:浙江大学,2010.

篇(4)

【关键词】大型综合医院,供配电,系统设计

中图分类号: N945.23 文献标识码: A 文章编号:

一.前言

近些年来,我国的科学技术水平有了长足的进步,经济得到繁荣,经济实力的支撑,和各种核心技术的突破,为我国医疗卫生事业的迅速发展提供了强有力的经济动力和技术支撑,人们生活质量得到改善的同时,也对我国的医疗卫生条件和服务水平有了更多的关注和重视。这些年来,虽然我国的医疗卫生条件有了很大的发展和进步,但是,从总体而言,我国医疗建筑设施的老化情况严重,比如供配电系统陈旧,不完善,安全隐患多等,同时,医疗建筑设施的老龄化要远远落后于我国医疗设备和医疗技术的突破,随着医疗设施的专业化和特性要求,对整个医院的设施系统都有了更高的要求,大型综合型医院的供配电系统是整个医院正常运转的基础环节,做好供配电系统的设计,不仅仅有助于提高医疗服务水平,提保证医疗质量,同时,有助于节约各种能耗,有助于维护系统的安全。

二.大型综合医院供配电系统设计分析

1.供配电形式设计和选择

(一)重要手术室、重症监护等涉及患者生命安全的设备及照明用电是一级负荷特别重要负荷,采用两路电源再加应急电源供电,并且严禁其他负荷接入应急供电系统。

(二)急诊部、监护室、手术部、分娩室、婴儿室、血液病房的净化室、血液透析室、病例切片分析、磁共振、介入治疗用CT及X光机扫描室、血库、治疗室及配血室的电力照明用电,培养箱、恒温冰箱,走道照明用电,百级洁净度手术室空调系统用电、重症呼吸感染区的通风系统用电,是一级负荷,采用两路电源供电(一路电源发生故障,另一路电源自动切换保障供电连续)。

(三)一般诊断用CT及X光机用电,客梯用电、一般手术室、病房、照明用电,是二级负荷,采用两回路供电。

(四)大型重要医疗设备的供电应由变电所单独的回路供电,其供电系统应满足设备对电源内阻的要求。大型医疗设备瞬时的冲击电流大,产生的瞬时压降大,给大型医疗设备供电,由变电所引出单独回路供电,可以保证线路的压降控制在一定范围,而且减少对其他设备的影响。医疗设备对电源压降有具体要求,体现在为电源压降指标和电源内阻指标,需要全面考虑供电回路的电阻和阻抗,满足大型医疗设备对内阻的要求。

(五)医院消防负荷,根据医院建筑分类而定,医院建筑要是一类高层消防负荷为一类负荷,其余医院消防负荷是二级负荷。消防设备两路电源供电,均在末端自动切,换疏散诱导照明采用双回路末端互投并自带蓄电池供电。

2.照明设计和照度选择

设计中应注意医疗功能性用房照明的特殊要求。诊室、病房、急诊观察室、治疗室等处采用高显色荧光灯,以便于观察病人的情况。色温在3500K左右,病房、急诊观察室、治疗室等处的顶灯采用漫反射型灯具,以减少眩光。在病房建议用间接照明,手术室、手术部清洁走廊、传染科、污物、污洗等处与业主结合确定是否设置紫外线灯。对特殊场所的照明应采取不同方式:磁共振扫描室、理疗室、脑血流图室等需要电磁屏蔽的地方,灯具采用了直流电源;测听室的照明采用白炽灯;眼科暗室用可调光的白炽灯。

3.接地保护设计

(一)大型综合医院接地系统设计中,医疗设备发生漏电会危及人们的生命,因此,对医院的电气安全提出了更高的要求,TN-C系统严禁用于医疗场所的供电系统中,一般采用TN—C—S系统,但是对于任何一个建筑单体在电源进户后,电源中性线和接地保护PE线严格分开,不再重合。医院接地系统在做好每个建筑物的总等电位联结后,对医院的一些特殊场所,如手术室、重症监护病房、血液透析室、病房带淋浴的卫生问等做好局部辅助等电位连接,这是医院接地系统的一个特点,不能疏忽。用于维持生命、外科手术和其他位于“患者区域”内的医院用电气设备和系统供电回路均应采用医疗IT系统,例如进行心脏手术的设备其正常泄露电流不得大于10mA,发生第一个接地故障时其泄露电流不得大于50 mA,因通过病人心脏的电流如超过50 mA可导致病人心室纤颤而死亡,为此需要严格限制第一次故障电流。主要措施是在手术室或其邻近处安装一台1:1的隔离变压器,其二次回路不接地,以IT系统供电,保障人生命安全。

(二)在整个大型综合医院的供配电系统设计中,笔者发现,在这些医院的诊疗设备中,都带有很多的计算机和微处理器,因而也对整个供配电系统中的基准电位的稳定性有着更为严格的要求。在供配电系统设计时候,对这个基准电位既可以设计为悬浮,也可以设计为接地,但是为了防止发生漂移,一般在设计过程中,会将基准电位设计选择为大地。同时将接地值严格控制在1 Q以下,如此,就要在设计过程中,将电气设备附近设计专用的电子信号接线盒,一般而言,多采用16—25mm2多股铜芯线穿绝缘管由建筑物的接地体直接引来。在大型综合医院中,病房里,病床的上方都会设计一个供氧吸引和电源插座的综合线槽,并在线槽的板面上设计专门的接地端子,也就是信号接地的端子,有着十分有效的接地保护效果,但是,在医院供配电系统设计实际操作过程中,由于信号地使用具有一定的随机性,固定性较差,因而,一般可以采取树干式垂直连接医院系统中的信号接地端。

4.节电设计

大型综合医院能耗较大,因此,要做好整个医院的节电设计,这不仅仅是进一步优化整个大型综合医院供配电系统的必要举措,也是我国医疗卫生行业发展的必然要求。同时,在我国面临严重的资源能源危机的情况下,加强对医院的节电设计,可以有效降低医院运行的成本,减轻患者的医疗负担,有助于推进我国和谐社会的进程。

在医院建设期间,在进行整个医院的供配电系统设计时候,要从我国节能等各个方面的相关法律规范和政策方面进行考虑,比如可以实施绿色照明,如此,有助于节约照明用电,减少各种能耗,降低污染,提高医院照明的优质高效。在设计过程中,可以使用新型的,节能效果很好的电子镇流器,三基色荧光灯等,在进行供配电系统设计时候,可以选择一些直管式高功率的灯具,同时,选择的灯具敞开覆盖面积要尽可能的宽泛,要具有很强的反射率。

在整个供配电系统设计时候,要选择好各种节能电器产品,比如节能型变压器,高低压电气开关,继电器、接触器等。并根据功率的不同,实施分级补偿措施,就地实施补偿。在电能的计量上,可以据实际情况,实施分级计量,并结合成本的有效核算,加强对整个供配电系统中电能的控制和使用。

三.结束语

虽然我国的大型综合医院在供配电系统设计中依然存在着一些问题和缺陷,但是,随着我国经济实力和科学技术实力的进一步增强,将会为我国的医疗卫生事业的发展奠定更为坚实的发展基础,为了保证大型综合医院的正常运转,提高医院服务水平和服务质量,可以实施独立的供配电系统,同时,要进一步完善各种应急措施,比如设置应急的电源,如此,可以在发生一些突发事件时候,保证医院的供配电能够正常进行,对人们的生命形成更强有力的保证。在进行医院的供配电设计时候,要充分考虑到医院建筑供电要求高,供电负荷复杂的特点,要在综合考虑整个医院的器械设备和功能的基础上,采取有效的设计工艺,严格设计流程,在医院相关各个部门共同的配合下,加强双方的沟通,保证供配电设计能够充分满足医院各方面的需求,同时,要在实践中,不断促进整个医院供配电系统的优化。

参考文献:

[1]杨继元 医院供配电系统设计简述 [期刊论文] 《黑龙江科技信息》 -2011年18期

[2]严晨 医院供配电系统设计 [期刊论文] 《现代建筑电气》 -2010年7期

[3]段晋晋 现代医院手术室供配电系统设计与研究 [期刊论文] 《科技风》 -2011年2期

[4]戴德慈 王磊 崔晓刚 医院建筑一级负荷供配电设计的技术措施 [期刊论文] 《智能建筑电气技术》 -2010年3期

[5]谭作用 浅谈手术室供配电电气设计方式及安全保护 [期刊论文] 《城市建设理论研究(电子版)》 -2011年28期

篇(5)

案例教学法的可行性

案例教学法是一种先进的教学方式,教师根据工程生产实际给出若干案例,学生分成若干研究小组,在教师地引导下组织文献查阅、研究和讨论,在规定时间内完成案例的设计后,通过报告的形式汇报研究成果,汇报完成后由教师和学生共同进行对相关问题的讨论。在这种教学方式下,学生由被动的接受者转变为知识的发掘者,实现教师与学生、学生与学生间的互动。与传统教学方式相比,案例教学法的优势十分突出,大大改善了教学效果,因此已经在我国高校的课堂教学中得到应用。[6,7]电力电子技术在工业生产和国民生活中应用广泛,同时也综合了电子技术、电路、自动控制等多个学科,因此具有很强的工程性和综合性。同时,“电力电子技术”强调理论联系实际,因此必须重视实践性教学。在“电力电子技术”的教学中引入案例教学法,对于达到课程的实践性和综合性要求,调动学生学习的自觉性和主动性,提高学生自学能力和实践能力,改善教学效果,大有裨益。

案例教学法的实施过程

新型教学法的实施步骤为:1.提出课题(案例)将全班学生分为5个课题小组,小组可由教师划定,学生也可以自由组合。根据“电力电子技术”教学大纲和教学目标要求,选取实践性较强的5个案例,分配给5个课题小组,每个小组负责1个课题,课题的选择由各组自行协商。由于学生刚刚接触“电力电子技术”,因此教师在选择案例时需注意案例的难度,案例不能过于简单,需具有挑战性,但也不能难度过大,占用学生过多的时间,甚至令学生失去兴趣。经过实践,笔者给出的第一批5个案例为:级联式晶闸管整流器的设计、高功率因数PWM整流器的设计、SPWM逆变电源的设计、矩形波交流电源的设计、高频高压脉冲电源的设计。当然,案例的选择并不是一成不变的,为了防止部分学生向上一届学生索要案例设计结果,同时考虑到电力电子技术发展迅速,每一届教学中都将对案例进行修改或更换.2.研究学习各课题小组根据案例的要求,进行分工合作,首先要充分理解教材,判断案例涉及教材中的哪部分章节的内容,深入阅读教材,然后根据教师提供的文献资料及学习方法,通过图书馆、期刊网等文献检索工具的帮助,查阅相关文献,对课题进行拓展学习。由于课题涉及的电路、自动控制等方面的理论较多,需要学生阅读较多的文献。小组成员之间需要经常沟通和讨论,并进行材料的整合并为报告做准备。3.仿真研究由于学时以及实验条件所限,学生无法对每个设计出的电路进行实验研究,为了检验设计结果的正确性,可采用仿真验证的方法。目前,有多种仿真软件可以仿真电力电子电路,其中最常用的是Matlab/Simulink和PSIM。这两种软件已被许多教师用于课堂教学中,但学生动手使用的并不多,实际上,这两种软件易学易用,学生无需在学习软件的使用方法上花费太多的时间。在案例设计过程中,学生可以随时用设计的仿真程序验证设计的正确性;设计完成后,要给出不同拓扑结构、不同控制策略、不同电路参数和控制参数下的主要波形,并由此确定最佳拓扑和参数。在第二和第三阶段,学生可通过网络课程平台与教师交流。4.报告讨论报告和讨论是案例教学法的重要环节,一般安排在课程结尾阶段进行。由于学时的限制,为每个案例分配的时间为20分钟~30分钟。课题组推举一位报告人,报告人应在报告前做好PowerPoint讲稿,报告时用5分钟的时间介绍案例的要求和设计结果。余下时间由全体学生讨论设计的合理性,学生也可以提出各种问题,由报告人进行解答,报告人解答不了的,由该课题组的其他成员解答。教师在此过程中应对讨论的深度和广度加以把握,最后对案例设计的结果进行点评,并记录学生在报告和讨论过程中的表现,作为考核的依据。5.撰写小论文通过一个学期的学习与实践,每个学生提交一份与案例相关的研究性小论文,教师应要求每个课题组内各成员间的小论文内容有区别,即应侧重于自己所研究的那一部分。6.期末考核期末考核的成绩由三部分组成:报告和讨论过程中的表现以及小论文的质量。为了保证考核的公平性,教师在布置任务时要为课题组的每个成员分配不同的工作。以“SPWM逆变电源的设计”为例,可将案例拆分为若干子课题,如:单相逆变电源的设计、三相逆变电源的设计、常规SPWM调制方法研究、梯形波SPWM调制方法研究、鞍形波SPWM调制方法研究等几个子课题。在小组成员较多的情况下,可令其中一部分同学用Matlab/Simulink仿真,其余同学用PSIM仿真,这样不仅使每个学生都有相互独立的任务,还可将不同仿真软件得到的结果进行相互验证。

案例举例

篇(6)

关键词:超级电容器,航空地面电源

 

1 引言

1.1简介

超级电容器是近十年来出现的最为与众不同的电容器。论文大全。超级电容器的问世实现了电容量由微法级向法拉级的飞跃,彻底改变了人们对电容器的传统印象。

超级电容器是一种电容量可达数千法拉的电容量极大的电容器。根据电容器的原理,电容量取决于电极间距离、介质与电极表面积。为了得到如此大的电容量,超级电容器尽可能地缩小电极间距离、增加电极表面积,为此采用了双电层原理和活性炭多孔化电极。双电层介质在电容器两电极施加电压时,在靠近电极的电介质界面上产生与电极所携带电荷相反的电荷并被束缚在介质界面上,形成事实上的电容器的两个电极,两电极的距离非常小,仅几纳米,同时活性炭多孔化电极可以获得极大的电极表面积,可以达到200m2/g,因而这种结构的超级电容器具有极大的电容量并可以存储很大的静电能量。图1为超级电容器的结构示意图。就储能而言,超级电容器的这一特性是介于传统的电容器与电池之间。

当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应,因此性能是稳定的,与利用化学反应的蓄电池是不同的。

1.2超级电容器的优缺点

1.2.1优点

(1)更长的循环寿命,能够循环百万次以上;

(2)低阻抗,和电池并联时能够增强负载电流;

(3)迅速充电,超级电容器能够在几秒钟内充满;

(4)简单的充电模式,无需检测是否充满,过充无危险;

(5)具有法拉级的超大电容量;

(6)脉冲功率比蓄电池的高近十倍;

(7)能在-40℃~60℃的环境温度中正常使用;

(8)无污染,真正免维护。超级电容器用的材料是安全和无毒的,而铅酸蓄电池、镍镉蓄电池用的材料具有毒性;

(9)超级电容器可以任意并联使用来增加电容量,采取均压措施后,还可以串联使用。

1.2.2缺点

(1)线性的放电曲线使其无法完全放电;

(2)低能量密度,一般只有一个化学电源能量密度的五分之一到十分之一;

(3)低电压,需要若干个连接后才能得到高电压,3个电容以上串联时需要平衡电压;

(4)高自放电,自放电率高过化学电源。

由此可知,超级电容器具有很好的性能,但是超级电容器目前还不能完全代替电池,因为超级电容器的应用特长是功率的输入/输出,而不是高能量。一种最佳的优化组合是将超级电容器与电池组合使用,因为电源车起动时电流很大,只用电池会大大降低电池寿命,如将超级电容器与电池组合使用,不仅可以减少起动电池的使用数量,而且还优化了输出能量,增加了电池使用寿命。依据这一思维,如能将这一最优组合方式用在航空地面电源起动系统中,那么航空地面电源性能将提升到一个新的水平。

2 航空地面直流电源的输出特性

2.1 422系列电源车的简介

422系列电源车不但在航空兵场站应用越来越多,而且已经被民航机场广泛采用。它较以往的电源车在技术性能和生产工艺上都有了较大的提高,体积小,重量轻,机动性能好。

422系列电源车采用了一组航空蓄电池GB,由两块182型电瓶经减格连接而成,端电压为26 V左右。它既是柴油机起动系统的工作电源,又是电源车的直流辅助电源。当接通蓄电池“输出”开关S4时,蓄电池输出控制接触器 KM1工作,将蓄电池GB与电源车供电电路接通。当输出28.5/57V电源和“0—70 V”电源时必须合上S4。

负载特性:突然加载,由0突加到800A×2,瞬时电压不低于25.5V,3s内稳定到27.5~28.5V;突然卸载,由800A ×2突减到0,瞬时电压不高于32 V,3s内稳定到28.5~29.5 V;超载,1200A×2,电压不低于25V。

2.2 422系列电源车的缺陷以及改进设想

422系列电源车起动采用起动电动机起动方式。在起动过程别是在起动瞬间,由于起动电动机转速为零,不产生感生电势,故起动电流为:

其中:为蓄电池空载端电压,为起动电动机的电枢电阻、为蓄电池内阻、为线路电阻。由于、、均很小,起动电流非常大。

例如用12V、45Ah的蓄电池起动安装1.9L柴油机的电源车,经过仿真可知,蓄电池的电压在起动瞬间由12.6V降到约3.6V!起动过程的蓄电池电压波形如图2;起动瞬时的电流达550A,约为蓄电池的12倍的放电率!起动过程的蓄电池电流波形如图3(图3中纵坐标为电流传感器两端的电压值,电流传感器的电流/电压变换比率为100A/V,即5.5V代表550A)。尽管车用蓄电池是起动专用蓄电池,可以高倍率放电,但在图2中可以看出,10倍以上高倍率放电时的蓄电池性能变得很差,而且,如此高倍率放电对蓄电池的损伤也是非常明显的。

在起动飞机的过程中,起动电流的突变更剧烈。在某型飞机的四级起动过程中,起动电流的变化会对蓄电池带来更严重的损坏。论文大全。起动过程的电压剧烈变化也是极强的电磁干扰,可以造成电气设备的“掉电”,迫使电气设备在发电机起动过程结束后重新上电,计算机在这个过程中非常容易死机。因此,无论从改善电源车电气设备的电磁环境还是从改善电源车的起动性能和蓄电池的性能、延长使用寿命来考虑,改善电源车电源在起动过程的性能是必要的。

问题的解决可以采取加大蓄电池容量的方案,但需要增加很多,使体积增大,这并不是好的解决方案。将超级电容器与蓄电池并联可以很好地解决这个问题,可以用于提供飞机发动机瞬间所需的冲击大电流,提高起动性能,缩短起动时间,降低起动瞬间大电流对蓄电池造成的损害,延长蓄电池的使用寿命。而且超级电容器在以内燃机为动力的422系列直流电源车上的采用可以解决电源车起动飞机发动机瞬间功率不足的技术难题。同时,在起动瞬间超级电容器对直流电源车发电系统尤其是内燃机具有很大的保护作用。

3 超级电容器在航空地面直流电源车中的应用

3.1电性能的改善

采用超级电容器与蓄电池并联时起动过程的电压波形如图4, 与图2相比采用超级电容器与蓄电池并联时起动瞬间电压跌落由仅采用蓄电池时的3.2V提升到7.2V;起动过程的平稳电压由7V提高到9.4V。

图4 采用超级电容器与蓄电池并联时起动过程的电压波形3.2 起动性能的改善

超级电容器与蓄电池并联应用可以提高电源车的起动性能,将超级电容器(450F/16.2V)与12V、45Ah的蓄电池并联起动安装1.9L柴油机的电源车,在10℃时平稳起动,尽管在这种情况下,当不连接超级电容器,蓄电池也可以起动,但采用超级电容器与蓄电池并联时起动电动机的速度和性能都非常的好。由于电源输出功率的提高,起动速度由仅用蓄电池时的起动速度300rpm,增加到450rpm;尤其在提高电源车冷天的起动性能(更高的起动转矩)上,超级电容器是非常有意义的,在-20℃时,由于蓄电池的性能大大下降,很可能不能正常起动或需多次起动才能成功,而超级电容器与蓄电池并联时则仅需一次点火。其优点是非常明显的。

3.3 对蓄电池应用状态的改善

超级电容器与蓄电池并联时,由于超级电容器的等效串联电阻(ESR)远低于蓄电池的内阻,因此,在起动瞬间起动电流大部分由超级电容器提供,有效地降低了蓄电池极板的极化,阻止了蓄电池内阻的上升使起动过程的平稳电压得到提高。最主要的是蓄电池极板极化的减轻不仅有利于延长蓄电池的使用寿命,而且也可以消除频繁起动对蓄电池寿命的影响。

4 结论

以上是对超级电容器在航空地面电源上应用的可行性分析。超级电容器已经在国民经济各个部门有了广泛的应用,如配合蓄电池应用于各种内燃发动机的电起动系统;用作高压开关设备的直流操作电源,用于铁路驼峰场道岔机后备电源;用于电传动装甲车辆的制动能量回收和起步加速电源以及军工车辆发动机的电起动装置;用于重要用户的不间断供电系统;用于风力及太阳能发电系统。论文大全。这些事实充分证明了超级电容器的良好性能。可以预见,随着超级电容器在航空地面电源上应用的不断深入,有可能缩短我军电源保障装备与航空主战装备的巨大差距,更好地保障航空主战装备。

参考文献

1 42Volt Super-Capacitor Provides Cranking Amps to Integrated Starter Alternator. FrankLev. Tavrima Canada Ltd, April 12,2002

2GJB572-88,飞机地面电源供电特性及一般要求

3GJB1910-94, 飞机地面电源车通用规范

4 陈艾等.超大容量电化学离子电容器.电子科学技术评论,1999,(4):34-36

篇(7)

关键词:自动,热备,通讯

 

1. 前言

随着发电技术迅猛发展目前新建火电机组单机容量600MW属于主流,我公司三四期扩建工程装机容量为4×600MW。论文大全,自动。面对如此规模的发电机组对煤炭的需求量也就越来越大,对输煤等公用系统的自动化控制要求也就越来越高。论文大全,自动。考虑机组容量对用煤量的问题,为了避免一条卸煤和上煤通路成为瓶颈耽误正常生产,设计了两条上煤通路,在正常情况下的运行方式是双路如果在其中一条有缺陷需要停运处理时就得单路运行这主要是考虑设备运行的稳定性。

2. PACSystem 控制系统介绍

利港电厂为三四期扩建工程配套输煤系统所使用的控制系统为 GE FANUC公司在2003年推出的新的可编程自动化控制器PACSYSTEMRX7I .虽然PAC形式与PLC相似, 但PAC系统的性能却广泛全面得多.它是一种多功能控制器平台,包含了多种用户可以按照自己的意愿组合,搭配和实施的技术和产品.

2.1)控制系统

本系统使用了两套GE 公司的PACSystem RX7i系列PLC,(RX 代表机架式安装,7代表基于90-70架构, i代表智能化意思),互为热备用即CPU冗余。为了避免同时失电,两个机架的电源都取UPS电源。其处理器的型号700 MHz Pentium,内存10MB和10MB FLASH。另外CPU冗余使用了一种新技术—映射内存,如果在一个内存中写入数据,它们会立即在其它内存中映射出来.它是一种光纤环和独立设备.这体现了冗余备份技术的可用性和可靠性.在实际生产运用中我们两个使CPU中的程序完全一样,采集信息、处理程序、发出命令由主CPU完成,备用CPU在实时跟踪主CPU工作。一旦主CPU失电或者通讯中断,备用CPU将代替主CPU继续完成工作。 主机通过以太网同PC机相连进行数据交换,由CPU通过判断采集的输入信号,经过预先编制好的程序进行运算处理后,再通过输出模块发出命令,来达到控制的目的。

3. 现场控制系统

3.1)系统控制对象

本套输煤系统的主要控制对象有:皮带机24条(其中4#A/B皮带可双向运行),卸船机2台,十个环式布料机和十个环式给料机,滚轴筛4台,碎煤机4台,取样装置两套,圆盘电磁除铁器10台,皮带称4套,,电动三通挡板2个,移动伸缩头4个,除尘器24个。

3.2)人机接口系统

本系统由两台操作员站(POS),一台工程师站(EDS),一台服务器,及相应的通讯网络组成.两台工控机可互为备用,EDS 是对输煤系统运用软件,进行开发管理的工具,与编程软件一起完成所有的工程设计,组态修改,文档服务,现场调试和系统维护等任务。服务器用于对过程数据进行实时采集、记录、处理、存储并生成一定格式的报表等数据以便于运行监视、历史分析等管理工作.各工作站使用普通网线同以太网交换机相连,通过以太网通讯模块同PLC主机进行通讯。所有的数据显示和操作都可以在操作员上位机上完成,并且还有报警,历史趋势和报表功能,给操作人员提供最完备的使用环境。论文大全,自动。

3.3)远程系统

本系统设置了八个I/O远程站,通过光缆经光电转换器与主/从站的总线控制器相连。这种应用方式极大地减少了控制电缆的数量和长度,减少了因电缆过长而引起的接地或接线不良等故障,也减少了费用的投入。另外采用光缆连接远程站的通讯方式,使得通讯距离比应用同轴电缆通讯长了很多,并且消除了电压、电流的干扰,提高了数据传输的品质。每一套系统通过四块IC697BEM731总线控制器与现场Genius BIU(IC670BI002)总线接口单元连接,构成一个简洁Genius 网络。这个时候我们可以通过Genius 网络特性一览表决定终端电阻等。我们可以从网络组态图上可以看出基本上每个转运站都有两个BIU,每个BIU可以管理多种类型的I/0模块,热电阻和热电偶模块。我厂在现场主要采用的是IC670MDL640输入模件,IC670MDL740输出模件,IC670ALG240模拟量输入模块及 IC670ALG620 RTD模块。对于BIU 和I/O模块我们都可以通过HHM手持式监视器进行配置。

4) 构成局域网主要软硬件

4.1 软件系统

4.1.1)上位机监控软件

本系统的上位监控软件选用的是GE公司的CIMPLICITY HMI 6.1作为开发平台,利用该软件的变量存档编辑器和报表设计器,可以很方便地为运行用户过程数据生成用户档案并生成报表。利用ODBC功能,把所有设备的报警和人员的操作都记录下来,通过声音通知操作人员,以便使操作人员能够立即进行处理,并给日后事故原因的分析创造有利条件。报表的数据量目前保留一个月,通过ODBC功能存放在服务器中(服务器所用软件为SQL2000)

4.1.2)PLC编程软件

PLC编程软件采用GE公司的Proficy Machine Edition5.0(包含编程软件、组态软件)作为编程调试软件的开发平台。论文大全,自动。使用梯形图编程方式,这种软件的优点是有强大的功能块系统,并且由于集成了组态通讯等功能对于我们使用者是相当方便的。另外当时上位机软件也采用GE公司的HMI,作为画面开发平台它虽然不属于主流开发软件,但我们考虑到与PLC良好的兼容性通过和INTOUCH软件比较后觉得还是采用同一家公司的软件比较好。

4.2) 硬件系统

操作员站配置客户机2台.长期放置于值班员操作台,POS客户机采用DELL台式PC.工程师站配置服务器一台,服务器采用DELL服务器.安装软件为基于微软 Windows XP 操作系统上的SQL2000 数据库软件,一台DELL 台式PC机

5) 使用注意问题

a) 控制好温度

PLC正常工作要求的环境温度在0-55°C之间。在安装PLC时应使其尽量远离发热量在的元件,并给PLC四周留足足够的通风散热空间。PLC的基本单元和扩展单元之间要留有30mm以上间隔。PLC机架上要安装风扇,在夏天最好装设空气调节器,以降低PLC运行时的环境温度。

b) 保证供电电源质量

PLC设备使用的供电电源为50HZ、220(1±10)V的交流电。考虑到设备持续运行的问题一般考虑接入UPS电源。论文大全,自动。

c) 提供良好的接地

良好的接地是保证PLC可靠工作的重要条件,可以避免偶然发生的电压冲击危害。论文大全,自动。PLC的接地线与机器的接地端相接,扩展单元其接地点与基本单元的接地点接在一起。并使用专用地线(独立的接地装置),接地点应尽可能靠近PLC。

6) 结束语

这套系统目前已经运行了两年时间了,根据实际的运行情况证明:整个系统安全可靠,稳定性高,控制灵活性强。随着计算机和PLC技术的提高,输煤系统的自动化水平也在不断提高,目前已经做到了把相对分散的各个设备统一集中到一起进行远程控制,表明了目前自动化水平的提高。相信随着我国电力工业的发展和计算机、PLC硬件及软件水平的不断提高,程序控制作为输煤系统的主要控制方式,在火力发电厂将得到更加广泛的应用。

参考文献

PACsystem中文手册

网站www.ctrlink.com.cn以太网须知介绍

《现代电气控制》机械工业出版社