时间:2023-02-05 23:26:01
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇什么是研究性学习范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
为了解决研究性学习操作的问题,我们向班主任提出了这个问题。见我们都对研究性学习比较感兴趣,班主任为我们联系了一次“研究性学习研讨沙龙活动”。
那天晚上,一位博士导师(因为当时人多比较乱,再加上我听不懂上海话,因此,没听清楚导师叫什么),四位博士生来到了教育系的演播厅。在教育系接受培训的语、数班学员多数都来了,还有当地许多中学、小学的教师。整个演播厅被挤的满满的。
大家就“研究性学习”提出了许多问题,份一下类大致包括:什么是研究性学习、怎样操作、怎样处理研究性学习与高考的关系、怎样解决资源问题等等。那天晚上,导师和几位博士生的回答,我们不很满意。因为,大家更多地针对实践操作进行了思考,而导师和博士生大谈研究性学习的起源、意义等。专门搞理论的人和搞实践的人,经常说不到一起的。我当时题了两个自认为很理论的问题“研究和探究究竟有什么样的区别”,没想到,研究性学习的行为怎么在学习过程中落实(其实我就是想问:什么样的学习行为是研究性学习行为,它与一般的学习行为又什么异同)。结果,第一个问题,我没听太懂,也没留下什么印象,第二个问题被“踢”了回来——“这个问题应该由你们来解决”。呵呵。
不过,一位上海某中学正在读硕士研究生的教师的发言,启示了我,他介绍了他在自己班级组织学生开展专题研究学习的经历,是我了解到了研究行学习的基本思路。确定主题、实践研究、成果展示。 为了搞清楚研究行学习如何操作,研究行学习行为与一般的学习行为(其实是传统的学习行为)的区别,我开始在网上和图书室里搜集、查阅相关的文献。
毕竟,上海在这些方面起步早,上海教育情报、教育科研等杂志,有很多关于研究行学习的资料。研究性学习的意义、目标、基本教学流程、评价,每一个专题,都查阅到了很多的资料。其中,最感兴趣的一个环节是每次研究性学习活动,都有一个成果的展示,其中,些研究报告、研究心得体会,是进行成果展示的基本方式。
课题的内容和方向定下来了。这个时候,已经开始进入到了开题的准备阶段。
研究性学习与作文教学的整合究竟可行不可行?
我尝试着回忆指导学生杨小明研究“彩虹为什么是弧形的彩带”的经历,我认定:那首先是一次研究性学习,然后,那又是一次作文的经历,那是一次将研究性学习与作文整合的很好实例。不过,毕竟是一个人。
全班可以吗?我回忆自己“指导学生写小动物的经历”,我觉得,那是一次为作文而开展的活动。那次,学生好像在做研究,但是,因为“缺乏老师对‘研究’的指导”,虽然,学生有自己感兴趣的研究对象,虽然学生也“研究”(观察、查资料、访谈),并且也记了“研究笔记”,但是,那时还没研究性学习的提法,自己也不懂研究性学习,因此,学生的研究过程情不清楚,不算是一次很好的研究性学习。但是,作文很成功。如果有时间,再研究上下功夫,不正好可以完成研究性学习和作文的双重任务吗?
我在阅览室翻查资料。在2001、4 期《小学语文教师》杂志上,李昌斌的《科普作文:作文教学的奇葩》 。这篇文章主要介绍了一次“科学探究活动,然后写成作文”这样的经历。“发表”了的文章,如同给了我一支强心剂,是我坚定了“整合研究”的信念。
于是,我开始系统地学习整理研究性学习的资料。通过网络和图书室,我专门搜集关于研究性学习如何实践操作的文献,短短的不足一个月的时间,我竟然翻阅了50时多篇从理论到实践介绍研究性学习的文章。笔记也记下了10多万字。开题、组织、研究方法、实践指导、评价,对每个环节,几乎做到了心中有数。 我把自己搜集的资料介绍给为我们主讲《教育科研方法》的班主任听,征求他对我的搜集资料的看法。
他听完以后,点点头:你对研究性学习的认识还算可以了。不过,作为一个课题,你涉及到了两个方面的内容——研究性学习和作文教学。从整合的角度来看,研究性学习的论证还能成立。但是,从作文角度来分析呢?你的很多认识很有见解。不过,还需要理论上加以印证——理论基础、国外如何做?国内类似研究做的怎么样?这些,你还需要进一步的思考。
天呢,那还要有多少工作呀!
1“研究性学习”的教学含义
随着《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的实施,以及新的高中教材在全国逐步推广使用,“研究性学习”正成为高中教学研究的热点.教育部门的各级领导、教研员、任课教师对“研究性学习”的理解还处在探索阶段,认识还不统一.尤其是对“什么是‘研究性学习’?”“什么样的课是‘研究性学习’的课?”“研究性学习与探究性学习有什么区别?”等问题在认识上还存在分歧.我们认为有必要搞清楚“研究性学习”的含义,适当扩大“研究性学习”这一概念的外延,这样我们把“研究性学习”划分了三个层次.
1.1含有课程意义的必修课
“研究性学习”最初是在《全日制普通高级中学课程计划》中提出的,它是该课程计划中规定的高中课程项目之一.把“研究性学习”、“劳动技术教育”、“社区服务”和“社会实践”统一划归为“综合实践活动”,属于必修课程,规定了课时安排和具体要求.这种意义的“研究性学习”属于课程范畴,但它没有统一的教材,属于校本课程的范围.它所涉及的教学内容不同于数学、物理、化学、地理、生物等学科,而具有明显的综合性.它一般在课下和校外进行,具有鲜明的实践性.
1.2写进课本的“研究性学习”课题
在《全日制普通高级中学数学教学大纲》中规定:“每个学期至少安排一个研究性学习课题”.新教材执行新大纲,在相应的章中单独设立一节,以“研究性课题”给出具体的教学内容,如“分期付款中的有关计算”、“向量在物理中的应用”、“线性规划的实际应用”、“多面体欧拉公式的发现”、“杨辉三角”等.教材中的“研究性学习”给出了具体的课题,这些课题大部分属于课外内容,或具有实际意义或具有研究探索的意义,但都属于数学内容.它与上一层次没有材的“研究性学习”不同,它既有教材,又具有学科性.
1.3课堂教学中的“研究性学习”
随着教学改革的深入,只用以上两种层次的“研究性学习”来培养学生的创新意识和应用意识已感到不足.如何使用课本的教材内容,使用“研究性学习”的方法,在日常教学的过程中进行学生创新意识和应用意识的培养,就成了课堂教学改革的方向.于是这种使用课本内容进行“研究性学习”的课堂教学被称之为“研究性学习”的教学模式或方法,简称为“研究性学习”.
不过开始时,有些报刊中的文章使用“自主探究性学习”的提法以和第一层次的“研究性学习”相区别.但随着改革的深入,现在大部分文章已不再使用“探究性学习”的字样,而都使用“研究性学习”了.这种变化也说明了随着课程和教学改革的深入,对“研究性学习”的理解正向纵深发展,给“研究性学习”注入了新的内涵,使它更具生命力.
三个层次的“研究性学习”其区别在于所选用的素材不同,所研究的对象不同,而使用的方法却是一样的,都具有研究性和探索性.本文下面所提及的“研究性学习”是指“研究性学习”教学模式的简称,它的真实含义是“研究性教学”.
2“研究性学习”的教学特性
如何使用课本内容,引导学生进行探索与发现的课堂教学,是我们要研究的重点.为此,我们首先应该明确以引导学生参加“研究性学习”为主的教学模式应该具备哪些特性,只有这样才能为教学设计、具体实施以及教学评价提供依据.
2.1自主性
学生的自主学习是相对于传授式学习而言的,自主性的主要标志是学生学习的主动性.学生是课堂教学的主人,他们应积极主动参与教学活动,主动获取知识,是课堂教学的主体.对主体性的评价,不能只看学生的活动所占课堂教学时间的比例,关键是看学生的思维是否真的被调动起来了,他们的学习是否积极主动.
自主性的第二个标志是个体性或独立性.课堂虽是集体学习的场所,但课堂的学习活动却是从个体开始的,其最终目的也是为了提高每一个学生的思维水平.因此,课堂教学过程中首先要强调学生个体的作用与发展,让每个学生在教学活动中尽量做到:信息自己采集,数据自己处理,问题自己提出,课题自己选定.提倡独立钻研,独立思考,独出心裁,以培养独创精神.
2.2协作性
协作性是在个体性和独立性的基础上体现的,两者的关系是相辅相成的,在学生的自主独立思维活动被调动起来之后,在解决问题的过程中,往往会遇到思维障碍,此时通过学生与学生之间的思维沟通,通过相互协作,往往会使思维障碍得以克服,并加快解决问题的速度.学生之间进行相互沟通与交流的学习也被称为“合作学习”.“合作学习”可以培养学生的协作意识和团队精神,学会与人沟通和交流的方法.
合作学习可划分为两个层次.一是小组内的合作学习,几人一组,人数不多,便于沟通,有利于互相启发,与个体研究能紧密结合.二是班级性的大型思维展示,这也是一种合作学习.这种形式的合作学习范围大,人数多,用于展示研究成果和思维过程,并开展讨论和争论.两种层次的合作学习可在课堂中多次交替开展,有利于学生创新思维的培养.
2.3研究性
前两个特性都是从学生在“研究性学习”中的地位、作用以及学习的方式等方面简述的,并没有对研究的方法、研究的过程给以突出说明.我们认为,“研究性学习”最本质的属性是“研究”二字,“研究性学习”的教学模式不同于讲授式,也不同于自学式,它的主要过程是:提出问题—研究探索—得出结论.其中所研究问题的性质很重要,无论是由学生提出,还是由教师给出,所提出的问题应该是开放的,只有素材而没有结论.这样才具有研究的意义.可以这样说,问题的开放性决定了教学模式的研究性.
“研究性学习”的研究性还应表现在研究过程中对研究方法的实践.研究不应该盲目进行,而应体现出方法性.也就是说在研究的过程中,要教给学生一些研究问题的基本方法,通过研究的实践,使他们从中学会研究的方法.我们认为学习实践研究的方法比得到的研究结论更为重要.
在“研究性学习”的教学活动中,最经常使用的研究方法有:归纳性研究方法、类比性研究方法、试验性研究方法和实验性研究方法.课堂教学过程中是否突出强调并使用相关的研究方法是“研究性学习”研究性的重要标志.
“研究性学习”的教学特性,除上面所述的三种以外,还具有开放性、实践性、创新性等其他特性.但我们认为后三种特性的本质属性不如前三种突出,有的还可以包含在前三种之中,因此就不再赘述.
3“研究性学习”的教学设计
如何进行“研究性学习”的教学设计?怎样实施课堂教学的“研究性学习”?这些问题应该是我们研究的重点.我区“研究性学习”的教学研究工作刚刚起步,只搞了几节市、区级的研究课,在听取了专家和同行们的意见之后,又进行了深入的思考,产生了一些新的想法.现将“研究性学习”在教学设计时应重点考虑的几个问题整理如下.
3.1两个体现
作为教研活动的“研究课”,在备课之初首先应该考虑这节课要给听课教师展示什么,打算起到什么示范作用,准备达到什么目的.对于“研究性学习”的研究课,应重点突出以下两条.
3.1.1体现新教学理念
什么是新的教学理念?什么是数学教学的新理念?我们认为应该从教学目的出发,在新的高中教学大纲中去寻找答案.
在新的高中教学大纲中对数学课的教学目的进行了新的划分,共分为三个层次.第一层提出的是一般能力要求,可归纳为“三层问题”,即“提出问题、分析问题和解决问题的能力”;“两种意识”,即“创新意识和应用意识”;“四类能力”,即“探究能力”、“建模能力”、“交流能力”和“实践能力”.第二层提出的是数学思维能力要求,把空间想象和运算等都包含在内.第三层是人格、品德和素质的要求,表现为“兴趣”、“信心”、“精神”、“价值”和“世界观”.
与原大纲相比较,我们认为“提出问题”的能力、“创新意识和应用意识”、“探究能力”、“建模能力”、“交流能力”和“实践能力”等都颇具新意.如果我们在备课之初抓住其中的一两项,认真地去设计在教学过程中如何实现,不失为是新教学理念的体现.
3.1.2体现新的教学设计思想
在党的“十六大”上,提出了“发展要有新思路,改革要有新突破,开放要有新局面,各项工作要有新举措”的工作要求.数学课的教学模式与教学设计怎样体现“新”字,是我们需要研究的又一个问题.我们不能墨守陈规,因循守旧或小打小闹,止步不前,而必须解放思想,打破原有的教学设计的思维框架,在教学模式和教学设计上有所突破.要大胆创新,独出心裁,别出新意,以体现课堂教学改革的新思路.
最近进行的一节以数列为载体的“研究性学习”课,包括了等差数列和等比数列的定义、通项公式、前n项和公式等主要内容.教学顺序不是先研究完等差数列再研究等比数列,而是横向与纵向交叉进行.在研究完等差数列的定义之后,类比研究等比数列的定义;在研究完等差数列的通项公式之后,类比研究等比数列的通项公式,最后再顺次研究等差数列、等比数列的前n项和公式.这种改革不失为一种大胆的尝试,不仅课堂教学容量大,而且知识之间的横纵向联系十分紧密,不仅学生在研究方法上有所收益,而且有利于知识结构的形成.
3.2两个突出
一节课只有45分钟,不可能涉及过多的教学目的,不可能面面俱到,因此一节“研究性学习”研究课的教学设计抓主要矛盾和主要过程是十分必要的.
3.2.1突出一个主题
主题的确定,可以从教材内容上考虑,可以从教学方法上考虑,但最主要的还是从教学目的和培养目标上考虑.一节课如果从总的教学目标考虑,不应有过多的项目,要把主题选好,然后再在这个主题下进行具体设计.
最近进行了一节函数复习的“研究性学习”研究课.开始时打算由两个具体的函数解析式,通过研究它的定义域、值域、奇偶性、单调性、最大(小)值,并画出它的草图来复习函数的概念、性质与图象.但后来任课教师考虑到给出的函数解析式过于抽象,不如由实例引出,使其具有实际意义.这是个很好的建议,并在此基础上又作了进一步的发展,既然引入的是实例,那么结尾也应给予呼应,也应再回到应用问题.于是前后共出现三道应用题,并且还涉及了字母的讨论.这样一来,由原来侧重于创新意识,变成了应用意识与创新意识并重;由一个主题变成了两个主题.如果照此设计实施,可能一个目标也完成不了.又经过讨论,最后决定只由应用问题引出函数解析式,把由解析式到函数图象的“研究性学习”、培养创新意识确定为本节课的主题.
3.2.2突出一条主线
我们这里所说的主线是指教师与学生的关系、学生与学生的关系在“研究性学习”中的位置.作为“研究性学习”的研究课,必然要把学生的自主学习放在首位.在课堂中,学生的自主性与协作性的关系如何处理?以哪一个特性为主更好呢?在常规教学中学生主体作用的发挥、课堂活跃的程度,往往用教师提问次数的多少、学生回答问题所占时间的多少来评价.为了改变这种现象,我们提出,在现阶段“研究性学习”的研究课,要突出“合作学习”的作用.一节课中,在不同的教学环节应设计出不同类型的合作学习方式,以“合作学习”为主线,将“合作学习”贯穿于课堂教学的始终.
3.3两个侧重
无论什么课型,就教学过程而言,都可以划分为引入环节、主体环节和结尾环节.不言而喻,一节课的中心和关键必然是中间的主体环节,必然要把设计的重点放在这一环节中.正因为如此,往往容易忽视对引入和结尾的教学设计,于是我们在“研究性学习”研究课的教学设计中,加强了对这两个环节的考虑.
3.3.1侧重引入环节的教学设计
引入环节是课堂教学的首要环节.这一环节设计得好坏,直接影响一节课的教学效果.对于“研究性学习”的研究课,引入环节的教学设计,我们提出了三层考虑,即提出问题—制造悬念—激发兴趣.
问题的提出,可以由教师直接给出,也可以由学生自己提出;可以由实际问题引出,也可以用数学问题引出;可以由旧内容引出,也可以开门见山直接给出.但无论采用哪种方法,都要注意贯彻主题和主线.能由学生提出的,最好就不由老师给出;能由实际问题引出的,最好就不用数学问题引出;能由旧知识引出的,最好就不开门见山.在提出问题时,应该是先大后小,先难后易,先一般后特殊,以给学生多留一些思考的余地,少一些提示,以增加课堂“研究性学习”的气氛.
制造悬念是设置问题的一种技巧.对学生那些似知非知,似懂非懂,似是而非的新内容,对那些可能产生负迁移,可能发生错误的新方法,教师应精心设计一些带有悬念的问题,让学生自己思考,“勾”起学生参与解决问题的欲望,最终达到激发兴趣的目的.
3.3.2侧重小结环节的教学设计
复习小结是课堂教学的最后一个环节,常规做法是由老师或学生总结本节的知识内容,也有教师更深入一步,总结本节课所涉及的重要思想和方法.但作为“研究性学习”的研究课,到此我们仍觉不够.由于“研究性学习”的课堂教学把研究方法放在了重要的位置上,因此我们提出,在总结数学知识和数学方法的基础上,还应更深入一步,“在学完了这节课之后,你还学会了哪些解决问题的一般方法?”希望学生自己总结出在思维方法上的收获.开始时,学生肯定会不适应,说不到点子上.我们觉得,随着改革的深入,在多次使用“研究性学习”的教学模式进行教学之后,学生解决问题的方法会逐渐积累.通过总结,解决问题的能力会逐步提高.
4两个希望
教学设计是在课堂教学之前教师的教学设想,但在课堂教学具体实施的过程中,往往很难完全实现,这是正常的现象.尤其是在调动学生参与,启发学生思维时,课堂上学生会怎样表现?设计与实际之间往往会有较大的差异,设计时难度也会更大.于是,我们只好用“希望”二字来表达我们对课堂教学中学生活动的一种企盼,也是对教师在教学设计时提出的较高要求.
4.1希望产生障碍或出现错误
研究的过程从来就不可能一次成功,产生思维障碍,出现这样或那样的错误是正常和自然的.为了使学生学会思维、实践研究的方法,我们希望教师在全班讨论时,不要只叫会的,只听对的,相反,应从出现错误的,产生障碍的开始,要求学生不要只讲结果而应讲出产生错误和出现思维障碍的原因,讲出解决的办法,讲出思维的全过程.
没有失败,哪有成功?我们也应该让学生尝试失败,并从中总结经验和教训,逐渐学会由失败走向成功.
笔者长期从事高中数学教学,认为在高中数学教学中进行研究性学习是很有必要的,下面就数学教学中的研究性学习提出个人的一些浅见,以求教于方家。
一、数学研究性学习
数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。数学研究性学习更加关注学习过程。
用于数学研究性学习的材料应是建立在学生现有知识经验基础之上,能够激起学生解决问题的欲望,体现数学研究的思想方法和应用价值,有利于营造广阔的思维活动空间,使学生的思路越走越宽,思维的空间越来越大的一种研究性材料。
数学研究性学习的材料不仅仅是教师自己提供的,而且教师应鼓励学生通过思考、调查、查阅资料等方式概括出问题,甚至通过日常生活情景提出数学问题,进而提炼成研究性学习的材料。在研究性学习的过程中,学生是学习的主人,是问题的研究者和解决者,是主角,而教师则在适当的时候对学生给予帮助,起着组织和引导的作用。
数学研究性学习的评价不仅仅关心学习的结果,而且更重要的是关注学生参与学习的程度、思维的深度与广度,学生获得了哪些发展,并且特别注意学生有哪些创造性的见解,同时对学生的情感变化也应予以注意。为了使评价能够真实可靠,起到促进学生发展的目的,因此要充分尊重学生自己对自己的评价以及学生之间的相互评价。既要有定量的评价也要有定性的评价。
二、数学研究性学习课题的选择
数学研究性学习课题主要是指对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究。要充分体现学生的自主活动和合作活动。研究性学习课题应以所学的数学知识为基础,并且密切结合生活和生产实际。高中数学新教材按《新大纲》的要求编入以下课题,供参考选用,当然教学时也可由师生自拟课题。提倡教师和学生自己提出问题。
高中数学新教材研究性学习参考课题有六个:数列在分期付款中的应用,向量在物理中的应用,线性规划的实际应用,多面体欧拉定理的发现;杨辉三角,定积分在经济生活中的应用。 其教学目标是:1.学会提出问题和明确探究方向;2.体验数学活动的过程;3.培养创新精神和应用能力;4.以研究报告或小论文等形式反映研究成果,学会交流。
三、数学开放题与研究性学习
研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。
自70年代日本、美国在中小学教学中较为普遍地使用数学开放题以来,数学开放题已逐渐被数学教育界认为是最富有教育价值的一种数学问题,因为数学开放题能够激起学生的求知欲和学习兴趣,而强烈的求知欲和浓厚的学习兴趣是创新能力发展的内在动力。80年代介绍到我国后,在国内引起了广泛的关注,各类刊物发表了大量的介绍、探讨开放题的理论文章或进行教学实验方面的文章,并形成了一个教育界讨论研究的亮点。
高考命题专家也敏锐地觉察到开放题在考查学生创新能力方面的独特作用,近年来在全国各地的高考试题中连续出现具有开放性的题目。例如高考数学题中,1993年的存在性问题,1994年的信息迁移题,1995年的结论探索性问题,1996的主观试题客观化,1997年填空题选择化,1998的条件开放题,1999年的结论和条件探索开放。
数学开放题的常见题型,按命题要素的发散倾向分为条件开放型、方法开放型、结论开放型、综合开放型;按解题目标的操作摸式分为规律探索型、量化设计型、分类讨论型、数学建模型、问题探求型、情景研究型;按信息过程的训练价值分为信息迁移型、知识巩固型、知识发散型;按问题答案的机构类型分为有限可列型、有限混沌型、无限离散型、无限连续型。
数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。因此数学开放题用于学生研究性学习应是十分有意义的。
四、数学研究性学习中开放题的编制方法
无论是改造陈题,还是自创新题,编制数学开放题都要围绕使用开放题的目的进行,开放题应当随着使用目的和对象的变化而改变,应作为常规问题的补充,在研究型课程中适合学生研究性学习的开放题应具备起点低、入口宽、可拓展性强的特点。
用于研究性学习的开放题尽量能有利于解题者充分利用自己已有的数学知识和能力解决问题。编制的开放题应体现某一完整的数学思想方法,具有鲜明的数学特色,帮助解题者理解什么是数学,为什么要学习数学,以及怎样学习数学。开放题的编制不仅是教师的任务,它的编制本身也可以成为学生研究性学习的一项内容。
数学开放题的编制方法:
1.以一定的知识结构为依托,从知识网络的交汇点寻找编制问题的切入点
能力是以知识为基础的,但掌握知识并不一定具备能力,以一定的知识为背景,编制出开放题,面对实际问题情景,学生可以分析问题情景,根据自己的理解构造具体的数学问题,然后尝试求解形成的数学问题并完成解答。
2.以某一数学定理或公式为依据,编制开放题
数学中的定理或公式是数学学习的重要依据,中学生的学习特别是研究性学习常常是已有的定理并不需要学生掌握,或者是学生暂时还不知道,因此我们可以设计适当的问题情景,让学生进行探究,通过自己的努力去发现一般规律,体验研究的乐趣。
3.从封闭题出发引申出开放题
我们平时所用习题多是具有完备的条件和确定的答案,把它称之为封闭题,在原有封闭性问题基础上,使学生的思维向纵深发展,发散开去,能够启发学生有独创性的理解,就有可能形成开放题。在研究性学习中首先呈现给学生封闭题,解答完之后,进一步引导学生进行探究,如探究更一般的结论,探究更多的情形,或探究该结论成立的其它条件等。
4.为体现或重现某一数学研究方法编制开放题
数学家的研究方法蕴涵深刻的数学思想,在数学研究性学习中让学生亲身体验数学家的某些研究,点燃埋藏在学生心灵深处的智慧火种。以此为着眼点编制开放题,其教育价值是不言而喻的。
5.以实际问题为背景,体现数学的应用价值编制开放题
在实际问题中,条件往往不能完全确定,即条件的不确定性是自然形成的或是实际需要,其不确定性是合理的。如包装的外型,花圃的图案,工程的图纸这些是需要设计的,而由于考虑的角度不同,设计者的知识背景、价值判断不同,得出的方案也会不同。
以实际问题为背景,编制出设计类型的开放题,用于研究性学习,可以培养学生创新精神和实践能力。第国际数学教育心理会议的公开课问题:“在一块矩形地块上,欲辟出一部分作为花坛,要使花坛的面积为矩形面积的一半,请给出你的设计。”是一道公认的开放题,花圃的图案形状没有规定性的要求,解题者可以进行丰富的想象,充分展示几何图形的应用,这种以实际问题为背景编制的开放题往往有趣而富有吸引力。
将数学开放题作为数学研究性学习的一种载体,首先必须有适合的问题,如何编制能够用于研究性学习的开放题,这是值得研究的。在研究性学习的教学实践中,有充满活力和创造力的学生的参与,必将促进对这一问题认识的深化和提高。
1. 数学研究性学习
数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。数学研究性学习更加关注学习过程。
用于数学研究性学习的材料应是建立在学生现有知识经验基础之上,能够激起学生解决问题的欲望,体现数学研究的思想方法和应用价值,有利于营造广阔的思维活动空间,使学生的思路越走越宽,思维的空间越来越大的一种研究性材料。
数学研究性学习的材料不仅仅是教师自己提供的,而且教师应鼓励学生通过思考、调查、查阅资料等方式概括出问题,甚至可以通过日常生活情景提出数学问题,进而提炼成研究性学习的材料。在研究性学习的过程中,学生是学习的主人,是问题的研究者和解决者,是主角,而教师则在适当的时候对学生给予帮助,起着组织和引导的作用。
数学研究性学习的评价不仅仅关心学习的结果,而且更重要的是关注学生参与学习的程度、思维的深度与广度,学生获得了哪些发展,并且特别注意学生有哪些创造性的见解,同时对学生的情感变化也应予以注意。为了使评价能够真实可靠,起到促进学生发展的目的,因此要充分尊重学生自己对自己的评价以及学生之间的相互评价。既要有定量的评价也要有定性的评价。
2. 数学开放题与研究性学习
研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。
数学开放题的常见题型,按命题要素的发散倾向分为条件开放型、方法开放型、结论开放型、综合开放型;按解题目标的操作摸式分为规律探索型、量化设计型、分类讨论型、数学建模型、问题探求型、情景研究型;按信息过程的训练价值分为信息迁移型、知识巩固型、知识发散型;按问题答案的机构类型分为有限可列型、有限混沌型、无限离散型、无限连续型。
数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感。
3. 数学研究性学习中开放题的编制方法
无论是改造陈题,还是自创新题,编制数学开放题都要围绕使用开放题的目的进行,开放题应当随着使用目的和对象的变化而改变,应作为常规问题的补充,在研究型课程中适合学生研究性学习的开放题应具备起点低、入口宽、可拓展性强的特点。
用于研究性学习的开放题尽量能有利于解题者充分利用自己已有的数学知识和能力解决问题。编制的开放题应体现某一完整的数学思想方法,具有鲜明的数学特色,帮助解题者理解什么是数学,为什么要学习数学,以及怎样学习数学。开放题的编制不仅是教师的任务,它的编制本身也可以成为学生研究性学习的一项内容。
数学开放题的编制方法:
(1)以一定的知识结构为依托,从知识网络的交汇点寻找编制问题的切入点。能力是以知识为基础的,但掌握知识并不一定具备能力,以一定的知识为背景,编制出开放题,面对实际问题情景,学生可以分析问题情景,根据自己的理解构造具体的数学问题,然后尝试求解形成的数学问题并完成解答。
(2)以某一数学定理或公设为依据,编制开放题。数学中的定理或公设是数学学习的重要依据,中学生的学习特别是研究性学习常常是已有的定理并不需要学生掌握,或者是学生暂时还不知道,因此我们可以设计适当的问题情景,让学生进行探究,通过自己的努力去发现一般规律,体验研究的乐趣。
(3)从封闭题出发引申出开放题。我们平时所用习题多是具有完备的条件和确定的答案,把它称之为封闭题,在原有封闭性问题基础上,使学生的思维向纵深发展,发散开去,能够启发学生有独创性的理解,就有可能形成开放题。在研究性学习中首先呈现给学生封闭题,解答完之后,进一步引导学生进行探究,如探究更一般的结论,探究更多的情形,或探究该结论成立的其它条件等。
(4)为体现或重现某一数学研究方法编制开放题。数学家的研究方法蕴涵深刻的数学思想,在数学研究性学习中让学生亲身体验数学家的某些研究,做小科学家,点燃埋藏在学生心灵深处的智慧火种。以此为着眼点编制开放题,其教育价值是不言而喻的。
(5)以实际问题为背景,体现数学的应用价值编制开放题。在实际问题中,条件往往不能完全确定,即条件的不确定性是自然形成的或是实际需要,其不确定性是合理的。如包装的外型,花圃的图案,工程的图纸这些是需要设计的,而由于考虑的角度不同,设计者的知识背景、价值判断不同,得出的方案也会不同。
以实际问题为背景,编制出设计类型的开放题,用于研究性学习,可以培养学生创新精神和实践能力。如,有一个公开课的问题:“在一块矩形地块上,欲辟出一部分作为花坛,要使花坛的面积为矩形面积的一半,请给出你的设计。”这是一道公认的开放题,花圃的图案形状没有规定性的要求,解题者可以进行丰富的想象,充分展示几何图形的应用,这种以实际问题为背景编制的开放题往往有趣而富有吸引力。
首先,由于目前高师院校的大多数学生对研究性学习毫无认识,凭感觉认为其很神秘,也没有任何这方面的知识储备,所以教师在活动开始以前,做好必要的知识铺垫,使学生对研究性学习有初步的感性认识,了解“什么是”“为什么要”。
其次,教育学开展研究性学习的一般过程和方法有必要事先告诉学生,还要通过讲座或其他形式帮助学生了解如何确定适合本小组的研究课题、如何进行人员分工、如何确定开题报告和课题研究方案、如何收集、分析和处理相关资料、怎么进行研究活动来得出结论、怎么表达和交流研究成果等等。还需要注意的是,教师只能简单说明,不要用教师的思路固定住学生的自由研究,也不能盲目统一要求,以免失去研究性学习的意义。
再次,在研究性学习开展前,教师要对学生进行充分的动员,通过向学生讲解开展研究性学习的重要意义、让学生了解以往国内外开展研究性学习的一些成功案例、邀请教育专家结合目前大多数人关注的教育问题为学生们进行讲座,目的是开阔与拓深学生的思路,为研究性学习实施阶段自主选择课题做准备。
2.研究性学习的教学实施阶段
第一步,在教师指导下学生们结成结构合理的课题研究小组,所谓结构合理是指在小组内部每个成员都担当起适合自己的角色(如联络员、记录员、检查员等),都可以取长补短,加强小组的整体工作能力。
第二步,学生在选择自己研究的项目时,教师要加以关注,使其所选既科学又可行,并具备创造性。
第三步,定题后,学生结合目前所掌握的资料和相关知识与研究方法,再根据选题制定具体的研究方案。这可以使课题研究更有目的性、计划性。
第四步,进行开题报告。各小组派一人陈述本组开题报告———课题的由来、意义,课题研究的可行性、所选择的研究方法、计划进度及人员安排。由教师与学生组成的评审组根据各组陈述进行评审,提出修改意见。
第五步,学生按照课题研究方案开展研究活动。在每一步的活动之前,先要进行组内讨论,讨论内容为此次活动的内容、预期达成的目标和需要注意的事项,使每个组员都能心中有数;在活动中,组长的任务是组织协调各方面工作,组员对自己所负责的事务要认真履行,注意相互交流与合作;活动后,组内展开讨论,各组员汇报自己任务的完成情况,探讨碰到的困难和问题,如需请求帮助,则有联络员与指导教师联系。同时,记录员要履行职责———及时填写活动记录,联络员负责将活动记录交给指导教师。本阶段教师的任务是密切关注各组活动情况,对研究小组的求助及时回应,积极支持与帮助,并做好师生联络记录。
1 数学研究性学习
数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。数学研究性学习更加关注学习过程。
用于数学研究性学习的材料应是建立在学生现有知识经验基础之上,能够激起学生解决问题的欲望,体现数学研究的思想方法和应用价值,有利于营造广阔的思维活动空间,使学生的思路越走越宽,思维的空间越来越大的一种研究性材料。
数学研究性学习的材料不仅仅是教师自己提供的,而且教师应鼓励学生通过思考、调查、查阅资料等方式概括出问题,甚至可以通过日常生活情景提出数学问题,进而提炼成研究性学习的材料。在研究性学习的过程中,学生是学习的主人,是问题的研究者和解决者,是主角,而教师则在适当的时候对学生给予帮助,起着组织和引导的作用。
数学研究性学习的评价不仅仅关心学习的结果,而且更重要的是关注学生参与学习的程度、思维的深度与广度,学生获得了哪些发展,并且特别注意学生有哪些创造性的见解,同时对学生的情感变化也应予以注意。为了使评价能够真实可靠,起到促进学生发展的目的,因此要充分尊重学生自己对自己的评价以及学生之间的相互评价。既要有定量的评价也要有定性的评价。
2 数学研究性学习课题的选择
数学研究性学习课题主要是指对某些数学问题的深入探讨,或者从数学角度对某些日常生活中和其他学科中出现的问题进行研究。要充分体现学生的自主活动和合作活动。研究性学习课题应以所学的数学知识为基础,并且密切结合生活和生产实际。新高中数学新教材将按《新大纲》的要求编入以下课题,供参考选用,当然教学时也可以由师生自拟课题。提倡教师和学生自己提出问题。
新高中数学新教材研究性学习参考课题有六个:数列在分期付款中的应用;向量在物理中的应用;线性规划的实际应用;多面体欧拉定理的发现;杨辉三角;定积分在经济生活中的应用。 其教学目标是:(1)学会提出问题和明确探究方向;(2)体验数学活动的过程;(3)培养创新精神和应用能力;(4)以研究报告或小论文等形式反映研究成果,学会交流。
3 数学开放题与研究性学习
研究性学习的开展,需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。
自上世纪70年代,日本、美国在中小学教学中较为普遍地使用数学开放题以来,数学开放题已逐渐被数学教育界认为是最富有教育价值的一种数学问题,因为数学开放题能够激起学生的求知欲和学习兴趣,而强烈的求知欲望浓厚的学习兴趣是创新能力发展的内在动力。上世纪80年代介绍到我国后,在国内引起了广泛的关注,各类刊物发表了大量的介绍、探讨开放题的理论文章或进行教学实验方面的文章,并形成了一个教育界讨论研究的亮点。
高考命题专家也敏锐地觉察到开放题在考查学生创新能力方面的独特作用,近几年在全国和各地的高考试题中连续出现具有开放性的题目。例如高考数学题中,2003年的存在性问题,2004年的信息迁移题,2005年的结论探索性问题,2006的主观试题客观化,2007年填空题选择化,2008的条件开放题,2009年的结论和条件探索开放。
数学开放题的常见题型,按命题要素的发散倾向分为条件开放型、方法开放型、结论开放型、综合开放型;按解题目标的操作摸式分为规律探索型、量化设计型、分类讨论型、数学建模型、问题探求型、情景研究型;按信息过程的训练价值分为信息迁移型、知识巩固型、知识发散型;按问题答案的机构类型分为有限可列型、有限混沌型、无限离散型、无限连续型。
数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。因此数学开放题用于学生研究性学习应是十分有意义的。
4 数学研究性学习中开放题的编制方法
无论是改造陈题,还是自创新题,编制数学开放题都要围绕使用开放题的目的进行,开放题应当随着使用目的和对象的变化而改变,应作为常规问题的补充,在研究型课程中适合学生研究性学习的开放题应具备起点低、入口宽、可拓展性强的特点。