时间:2022-07-24 04:58:02
序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇测量技术论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。
(1)GPS-RTK测量应用范围,首先用在控制测量,一般用在四等以下测量与工程测量。其次用在地形测量,用GPS-RTK测量时辅以测图软件,可测绘各种地形图,如:带状地形图与数字地形图等。最后用在放样测量。用GPS-RTK测量有效把放样工作与设计方案结合,提高工作效率。(2)GPS-RTK系统土地测量优点。PTK动态测量是继GPS定位技术后,测量领域的技术变革。有以下优点:①观测点无需通视。精度高,有效距离远,可减少测量时间和经费,使地形点位选择更灵活。②操作简便与自动化高。PTK测量所需人员少与时间短,效率高,且测量成果为独立观测值,不像常规测量积累误差。③观测时间短。通常使用PTK测量中已达到几秒就可测定一点位。能对坐标实时计算,因此可提高效率。(3)RTK技术。实时测量技术以载波观测量为依据的差分GPS技术。GPS测量模式有多种,如静态、准动态与动态定位等。但用这些模式,如不和传输系统结合,定位结果需通过测后处理获得,无法实时得出定位结果,无法实时审核基准站与用户站数据质量,长致使重测。动态测量思想是,安置一GPS接收机于基准站,对可见GPS卫星连续观测,将观测数据用无线电设备,实时发送用户观测站。在该站上,GPS接收机接收卫星信号时,通过接收设备,接收基准站观测数据,再根据定位原理,实时计算与显示用户站坐标与其精度。
2GPS-RTK测量控制要点
(1)控制点确定。设计测量控制点收集,根据需要,收集高级控制点参心坐标、高程成果与坐标转换参数等。其次确定平面控制点,把平面控制点划分等级成:一级、二级与三级。其三确定高程控制点,按精度可分成五等。最后布设平面控制点,用逐级布设与越级布设结合方式,争取控制点保证一个以上等级点和其通视。(2)测量方法。GPS-RTK测量用参考站RTK与网络RTK两种方法。通信困难时,可用后处理测量模式测量。(3)平面控制点测量。用GPS-RTK测平面控制点,先应该用流动站采集观测数据,用数据链接收参考站数据,系统中组成差分值实时处理,用坐标转换将观测地心坐标转为坐标系平面坐标。其次获取坐标转换参数时,直接用已知参数。最后,GPS-RTK测量起算点应均匀,且能控制测区。转换时根据测区与具体情况,检验起算点,采用数学模型,进行点组合式分别计算与优选。
3GPS-RTK测量土地测量中应用
(1)技术路线。土地开发所要求绘图比例为1∶10000或1∶2000,这对一定范围精度达到厘米的GPS-RTK测量将完全达到要求。准备工作。测量前检查仪器能否正常;精度检验;项目地基处理与行政界线等资料收集,为保证精度,在控制网中选取已知点求转换参数,校正应选4个以上校正点,且待测点位于校正点范围内。(2)数据采集。测量要素与综合取舍可能和普通测量不同,具体需参照指导书。外业采集时徐绘制草图。每天外业完成后要及时把观测数据输到计算机。一般主要有两种采集,即连续测量与非连续测量。(3)GPS数据处理阶段。开展传输时把电脑与测控设备放一起,就能把当天信息与内容融汇,以表格展示出来,非常便利。(4)图形编辑。用AutoCAD编辑图形,参照外业草图或外业点记录编号把测量区地物按实际连接与形成矢量图,等高线生成与地类符号等作业。(5)图幅整饰与面积统计。依据规范与指导书要求,将绘制土地现状图图号、坐标系、制图单位与其他说明上图。(6)界址点放样与埋设界桩。界址点放样测量方法,用接收机在放站为固定站,用RTK移动站放样和定位时。按这几个步骤:①建立项目与坐标管理。选择参考椭球与参数输入,选择和输入投影带等。②移动站频率选择。根据无线电频率。选一理想频率,移动站与基准站要使用一个频率。③坐标输入。将界址坐标及控制点坐标输入建立项目作为放样与检查使用。(7)测量菜单选择RTK形式,并初始化,完成后启动RTK,然后进行测量。(8)定位放样。从手薄中调出项目放样点坐标,手簿屏幕上放样点距移动站方位与距离,背着接收机,它会提醒走到放样点位置,迅速与方便。移动站正对放样点时,手簿有提示声,表明该点定位成功。然后挖坑和埋设界桩,埋设时不断纠正界桩位置到达到误差要求。良好条件下,PTK初始化需时间几十秒;不良条件下,先进PTK需几分钟或十几分钟。
4总结
由于小功率信号计量校准技术非常成熟,测量方法和测量设备都非常完善,测量不确定度也很小。相比小功率信号,大功率信号热效应显著、非线性特性显著,模型很难建立。大功率部件稳定性差,离散性大,直接校准非常困难,因此如何把大功率信号不失真地转化为标准的小功率信号,利用已建立的小功率计量标准开展精确量传就成为关键问题。首先,我们需要研究和分析定向耦合器链路的温度特性、电性能特性。3.1定向耦合器功率-温度特性实验我们利用功率计、定向耦合器、大功率负载、功率放大器、非接触温度测量仪等构建了一套简单的功率-温度特性实验系统。给系统加不同的功率,在此功率下稳定一段时间,监测定向耦合器输入端、耦合端、输出端和负载输入端附件的温度。实验数据见表2。从实验分析可以得出以下结论。1)整个链路施加功率时,定向耦合器整体发热量很小,温升变化(21℃~26℃),温度变化很小;2)系统选用的27000(同轴)500W定向耦合器,在常温下,链路承受功率小于50W时,链路上各监测点的温度都变化不大,在5min内都达到了温度平衡状态;3)链路功率大于50W时,链路上定向耦合器各监测点的温度变化不大,但负载检测点温度变化较大,需要15min才能达到热平衡;4)链路上热量主要集中在负载部位,负载的材料的热导率很高,导热效果很好,但对邻近的定向耦合器输出端口温度影响很小,因此定向耦合器的小功率和大功率状态下的温度比较稳定。3.2定向耦合器电性能-温度特性实验根据定向耦合器功率-温度特性实验中,系统加不同功率功率后稳定的温度,我们利用矢量网络分析仪、定向耦合器、大功率负载、温箱等构建了一套简单的电特性-温度特性实验系统,进行环境模拟实验,实验的温度箱设置温度按照上面的大功率实验获取的链路温度来设定,实验温度变化间隔一般小于5℃,以获取大功率计量校准链路温度变化对电参数特性的影响,测量耦合度和驻波比等性能来评估系统。校准矢量网络分析仪,把待测定向耦合器连接大功率负载放入温箱,温箱外的矢量网络分析仪通过长电缆连接到被测件的输入端和耦合端。根据功率-温度特性实验中定向耦合器温度变化,设置温箱温度22℃和26℃,在此温度下稳定15min,监测定向耦合器耦合端驻波、输入端驻波和耦合度的变化。实验数据如图3至图5所示。下面进行大功率负载温度实验,把待测大功率负载放入温箱,温箱外的矢量网络分析仪通过长电缆连接到被测件的输入端。根据功率-温度特性实验中大功率负载的温度变化,设置温箱温度22℃~60℃,监大功率负载输入端驻波的变化。实验数据图6所示。定向耦合器电性能-温度特性实验可知,大功率校准系统具有链路发热量小,热分布均匀,后级大功率负载产生的热量对定向耦合器耦合度基本不产生影响,电性能都最接近常温下的小功率状态。因此常温小功率状态下的校准数据在大功率状态下仍然准确、有效。
2控制软件工作原理
测量控制使用软件负反馈方法对功率放大器输出功率进行定标,具体实现方法为设置信号源CW模式、频率和输出幅度。根据具体标定功率设置合适的系统耦合度(包括定向耦合器耦合度+程控衰减器B的衰减量+钢电缆插损,统一整体标定),设置程控衰减器A控制功率放大器输入功率。程控衰减器的设置原则是使标准功率计F1109和M1110测量功率在最佳测量范围,即(0~+10)dBm。打开信号源输出,软件系统测量到输出功率,并与标定功率取差,将该差值作为信号源的幅度变化量,进入循环,跳出循环的条件是该差值绝对值小于等于0.02dB。在给信号源幅度重新赋值之前,判断将要赋的值,若过大,启动保护程序,跳出循环,若合适,则继续,直到跳出循环完成设置。此时读出输入功率和输出功率,通过类似步骤,即可完成功率放大器额定功率、增益、1dB压缩点输出功率和最大功率等下面的校准,大功率计量校准软件框图如图7所示。
3测量不确定度评定实例
在前面的分析中,本文具体讨论了光学细分系统的设计方案。运动距离测量实验选取光学四细分的光学系统,实验系统如图6所示。系统分为光路部分和信号处理部分。mW和0.5mW,反射镜M4由硅片制成,其反射率大约为0.4。硅片反射镜M4可调节反射方向。角锥棱镜M1、M2和M3的型号为Agilent10767A,具有非常好的光学性能。测量导轨选用的是PI公司的M-5x1.DD型号。二维精密电控平移台(直流电机驱动)单向重复定位分辨率达0.1μm,直线度参数为0.1μm/200mm,最高运行速度50mm/s,量程为200mm。2个测量角锥棱镜被安装在导轨上,通过PI公司的控制软件在计算机上对导轨的运动进行控制,实现对外腔长度的改变。通过运动距离测量结果与PI导轨运动参数的一致性可验证测量方案的可行性。信号处理部分中,由PD探测到的激光自混合干涉信号首先由低噪声前置放大器(Standford,SR560C)进行滤波和放大,一路送入示波器而另一路接着由NI公司的数据采集卡(NI6251)进行AD转换。采集到的数字信号送入PC机中由专业的数据分析软件(LabVIEW)实现信号再次细分以及实时处理重构目标物体的运动距离。测量过程中,示波器可定性观察光学细分的现象,而数据采集卡采集到的信号经过计算机的处理可进行运动距离测量。
2实验过程与结果分析
实验在同一测量环境条件下进行:恒温(20℃±1℃),恒湿(50%±3%)。使激光器预热2h,激光波长稳定在632.8334nm,让导轨以某一速度匀速运动,然后对采集的信号加入电子五细分处理。在本实验系统中,由自混合干涉光路细分原理可知,一个条纹对应的运动距离为λ/8,将此波形通过阈值为0的比较器后得到对应的方波信号,再将方波信号n细分,通过计数方波的个数来得到外部物体实际的运动距离。这样处理后,可以得到的分辨率为λ/8n。一个周期内的正弦波通过过零比较器整形成方波信号,五细分后的波形如图7所示。这样通过计数的方法就可以再次提高分辨率。此外,细分处理前对干涉信号进行了整形,可以显著增强对于叠加在自混合干涉信号上的高斯噪声的抗干扰能力,使测量结果更加稳定可靠。在数字域进行细分时,将上面得到的方波信号改写成二进制码(1111100000),然后将其右移9次,将其奇数次和偶数次的右移结果两两异或,则可以得到(1010101010),即对应的五细分信号及其互补信号(0101010101),实现了对原自混合干涉信号的细分。将PD探测到的微弱信号进行电流-电压(I-V)转换后,变成电压信号,经高通电路去直流后,再经放大电路放大,通过NI公司的数据采集卡USB-6251采集,在PC机上编写LabVIEW程序进行细分计数处理。信号经数字域电子细分后,进行计数后就可以重构并显示物体的实时运动距离。测量实验使用PI精密导轨对实时测量数据进行校准。导轨的移动范围设置为0~200mm,每次匀速步进20mm,移动速度设置为5mm/s,步进10次,每次导轨的示数作为标准;该运动过程由电机自动完成,系统对每次的步进长度进行自动测量记录并给出实时误差,连续记录几十组,选择其中的5组实验数据进行分析。通过拟合曲线与误差分析可以看出,实验结果与实际运动距离有良好的线性关系,且重复性非常的好,实现了使用光学细分与电子细分相结合的方法对物体的运动距离进行实时监测,实验结果与理论分析吻合。
3讨论
激光器作为测量光路的一部分而不能成为一个独立的、波长稳定的光源,其稳定性对测量准确度有很大的影响。空气折射率的变化和角锥棱镜的直角误差也会影响系统的测试精度。1)激光器频率稳定性带来的累计误差。实验中的氦氖激光器输出光在空气中传播的中心波长为632.8334nm,短期频率稳定性为1.5×10-6,因此,在没有反馈时,激光器波长稳定性为δλ=λδν/ν≈0.9492×10-6μm。当自混合效应反馈系数很低时,频率波动极小。理论计算表明,当外腔长度在百毫米量级时,波长稳定度可以达到10-8的测量准确度,测量不确定度小于0.4μm[9-10]。2)空气折射率变化带来的误差。测量环境的初始条件:空气压强101325Pa,室温20℃,湿度1333Pa。测量过程中,由温度、湿度以及压强传感器可知,只有环境温度会有最大不超过1℃的改变。因此得到折射率的变化为δn≈0.929×10-6。当测量长度为200mm时,测距不确定度小于0.3μm[9]。3)角锥棱镜的直角误差。角锥棱镜的直角误差会直接影响其对光路的反射特性。对于Agilent10767A型号的角锥棱镜,其3个直角误差δθ<5″。玻璃的折射率为1.56,则测量长度为200mm的测距误差小于0.002μm[11]。由于本实验系统存在3个角锥,则测距不确定度应小于0.006μm。由以上讨论可以知道,影响测量精度的最大因素来自于激光的频率的稳定度。理论上实验系统的测量分辨率可达到波长的1/40。而实际上,受制于激光频率的稳定程度,在弱反馈条件下,百毫米量级运动距离的测量只能达到微米级的测量精度。
4结语
随着我国现代化建设不断的深入,人们对自身生活的环境要求也越来越高,交通、水电以及气象等问题都成了现代化建设所要考虑的主要问题,我国现代化的建设的准确性,与现代测量技术有着非常大的关系,只有科学合理的对施工地区进行测量,才能够更加准确的对其进行有效的建设。在对工程进行选定的初期,就要使用工程测量技术对当地进行相关数据的采集,然后通过对数据进行合理有效的分析,从而确定工程施工的计划,并且对初步估计的情况进行有效的纠正;在工程施工的过程中,还要使用工程测量技术对工程进行合理的预测以及检测,从而确保工程质量能够达到国家要求的标准,进一步防止一些工程事故以及危险事故发生。这些还是共层测量技术最基本的作用,随着时代的不断发展,任何一种技术都离不开创新,工程测量技术也一样,对工程测量技术创新和发展,不仅仅能够有效的提高工程的准确性,还能够在各个方面确保工程的质量。
2现代工程测量技术特点
随着计算机技术以及卫星技术在测量技术中的应用,我国的测量技术的应用已经越来越广泛,而且技术方面也逐渐的成熟起来。在现代工程建设中测量技术得到了充分的利用,而且对工程建设的准确程度也有非常大的影响。现代工程测量技术有着以下几个特点。
(1)自动化以及多样化。
随着现代科技的不断进步,测量方法和测量技术也在不断的丰富和完善,在现代化的工程测量技术作业中主要有自动化以及方式多样化等特点。
(2)创造性。
在现代工程测量技术不断的发展更新中,创造性也逐渐的成为了当今工程测量技术主要的特点。
(3)广泛性。
传统的工程测量包含了建筑、土木以及桥梁的建设,但是现代化的工程测量技术不仅仅包含传统工程测量所包含的各方面的建设,而且还包括人们生活的各个方面。具有非常强的广泛性。
(4)科学性。
现代工程测量技术在对施工地区进行测绘的时候,测量的效果已经从传统的平面测量转换到三维的测量结果,具有非常明显的科学性。
3现代测量技术发展和应用
3.1摄影测量技术应用
摄影测量技术是把数字化摄影技术、数字化测量技术以及数字化信息处理技术等结合在一起的技术,其主要的作用是为工程施工前期的数据进行测量,主要提供三维、非接触性等高效测量方法。这种测量技术主要用在一些面积比较大的工程当中,其中包括大比例尺地形测量、地籍测量等方面。遥感技术以及卫星技术是摄影测量技术的主要技术核心,并且在此基础上融合了光谱航空摄影测量技术,能够进一步为人们对一个地区基础的地理信息的收集和使用提供非常大的帮助。一方面因为遥感技术有着其同步性、实效性、经济性等优势,能够在工程建设测量中得到非常大的应用;另一方面遥感技术在工程测量方面的使用,为工程测量技术在测量图和地籍图的绘制方面提供了非常高的准确度,对现代化工程测量技术的应用有着非常重大的意义。
3.2数字化测量技术应用
对于大比例尺地形图以及工程图的绘制,是一直以来工程测量的主要任务。但是因为传统的测量技术不能够很好的满足现代化城市建设的需要,所以在传统测量技术的基础上加以改造,数字化信息处理技术以及数字化图形处理技术就在工程测量技术中得到了充分的使用,数字化信息处理技术和数字化图形处理技术在工程测量技术中使用之后,使得工程测绘的工作效率以及工程测绘的工作质量在很大程度上得到了提高。随着这两项技术的完美融合,逐渐的出现了电子经纬仪、全站仪等等,这些仪器能够很好的把野外的采集的数据进行合理充分的整合,从而自动的生成一个非常好的三维测量图。这样就在很大程度上减少了工程测量的时间,提高了工程测量的效率。
3.3卫星定位技术在工程测量中的应用
在工程测量的过程中,合理的使用卫星导航定位技术是非常必要的,其中表现在地形的测绘以及工程的测量等方面,把卫星定位技术融入到工程测量技术中,进一步使得我国工程测量技术走进一步走向科学化,在我国很多工程测量中,都使用到了这两个技术的结合。例如,长江三峡工程建设、南水北调工程建设、青藏铁路工程建设以及浙江省杭州湾大桥的建设等等,这些工程在建设的时候都充分使用了卫星定位技术,这一技术的使用,在很大程度上减少了建设好中工程事故的发生情况,极大的提高了我国工程技术的危险地区作业的效率。
4结束语
1.根据不同量具特点精心设计教学方法
《测量技术与应用》这门课要涉及不同类型的量具,根据不同量具特点笔者精心设计了不同的教学方法。例如,在讲游标万能角度尺时,由于该量具有四个量程,不同的量程有不同的装拆方法,因此精心设计了信息拼图法教学:提前设计了ABCD四种学习卡片,每种卡片印有不同的量程量具的装拆图片,同时打印了学习材料。课堂上,学生们首先成立原始ABCD4人组,每人任选一张卡片,然后成立专家组,即所有A卡片、所有B卡片、所有C卡片、所有D卡片的同学4人一组,并领取相应的待测零件,专家组同学共同学习,讨论解决问题。之后所有同学再回到原始ABCD4人组,专家A向其他3人讲清A种测量技术并实测零件,其他专家B、C、D类推。全班每一名同学都肩负着任务,增加了同学们的责任感,教学活动受到学生们的欢迎,他们积极参与其中。
2.关注教学中的每一个细节
(1)学生小组活动时的精细化指导。在测量课教学中,经常采用小组形式学习。分组的目的是提高学生合作学习的能力,促进学生之间研究开发问题解决的策略。笔者认为,每一个教学任务在分组学习时,教师都要课前考虑到小组长在学习中要承担的责任与任务,和他们讲清楚合作学习的要求与方法,使他们明确合作学习的真正目的。实践证明,教师只有精细的分析和统筹安排,充分发挥小组长,甚至课代表、班干部的作用,才能有效地指导学生有组织、有秩序、高效率地完成任务,使小组合作学习达到理想的效果。(2)学习文件的书写与整理、装订的精细化要求。由于测量技术与应用是这几年中职校新增课程,教材还不够理想。因此,每一种量具笔者都为同学们精心准备、打印了学习材料,精心设计了学习卡片及工作任务单,精心设计了笔记(板书设计)。不仅如此,从笔记的格式、日期、节数、正文、课后90分钟学习反思小结都做了严格、规范的要求。为了帮助同学们养成好的记笔记习惯,为今后走上职场做好各方面准备,笔者坚持课后收笔记,并一一审阅,及时留下批语。批语不仅涉及笔记的内容,更多涉及课堂听讲、小组活动、主动发言、上讲台展示等学习环节,以赞赏、表扬、鼓励为主。这样的批语是和每个孩子心灵的交流,为提高课堂质量奠定了基础。另外,笔者还对学习卡片、工作任务单等的书写提出了详细的要求,对于学习材料的处理同样做了细致、规范的明确要求:凡是老师下发的材料,请同学们自己设计,粘贴在教材的适当位置,晚自习时课代表检查,下次上课老师抽查,这样避免了学生不爱惜资源,随意存放,丢失文件。由于几乎每次课都有学习任务单,因此要求学生每月对学习文件进行统一整理、装订,培养学生文件归类、整理、保存的能力。(3)多媒体课件、展台的点睛效应。多媒体课件、展台的点睛效应是从它的精细化中产生的。例如,在学习游标卡尺、外径千分尺时,在选择视频材料以及课堂讲解中,笔者坚持了“精与细”的原则,最终使多媒体产生了良好的效应。笔者精心准备了课件,包括图片和读数动画,但是,把它们放在什么地方进行点睛,成为笔者进行决断的一个重要问题。通过认真设计与思考,最终选择图片作为结构点睛,读数动画作为学生自主学习读数环节后的一个重要项目。这样就激发了学生学习兴趣,为学生搭建了积极上讲台展示自我的“舞台”。巧妙取舍、合理安排视频资料,通过实施多媒体材料的准备、取舍中的精细化,最终使课堂管理中的有效作用得到充分发挥。
二、课堂管理精细化
1.突然发问
当教师发现有学生在课堂上玩手机、看小说、精神不集中时,若突然问他(她)一个问题(这个问题必须是老师刚刚讲过,有一定难度但只要注意听就能答上来的),可引起该学生的重视,提醒他(她)停止不良行为,集中注意力。但当此学生回答不出时,万不可讽刺挖苦,要积极引导,否则会起负面作用。
2.停止讲课
若教师发现有学生违反纪律,或因突发事件大多数学生谈论兴奋不能专心时,可立即停课片刻,表情庄重注视着学生。这不仅会引起违纪学生重视,也会引起全体同学的重视,但时间要适度把握不可过长,否则会使学生反感,也影响全班学生的学习。
3.调整座位
作为任课教师,接手一个新的任课班级,一周至两周后就会做到“班级学生心中有数”。对于课堂上经常违纪,不注意听讲,自我约束力不强的学生,笔者通常的处理是:将与其和好的学生调到一桌,或要求他从后排搬桌椅到前面空挡处,这样便于教师控制。
4.课后处理与个别谈话
信息时代信息爆炸导致通信带宽需求或通信网络容量爆增。如近期北美骨干网的业务量约6-9个月翻一番,达到了所谓的“光速经济”的时期,它比微电子芯片性能发展的摩尔法则(约18个月翻一番)快2-3倍,而且迄今这种发展势头不减。面对这种发展趋势,各个通信发达国家都在积极研究设计新的宽带网络,如可持续发展网络CUN、下一代网络NGN、新公众网NPN、一体化网UN等,但其基础传输媒质的物理层都是密集光波分复用(DWDM)的光传送网OTN。不如此就不可能提供巨大的通信带宽,高度可靠的传输性能,足够的业务承载容量以及低廉的使用费用,确保网络的可持续发展,支持当前和未来的任何业务信号的传送要求。
1密集光波分复用(DWDM)系统
DWDM系统主要由光合波器、光分波器和掺铒光纤放大器(EDFA)组成。其中EDFA的作用是由比信号波长低的高能量光泵源将能量辐射进一段掺铒光纤中,当载有净负荷的光波通过此段光纤一起传播时,完成光能量的转移,使在1530-1565m波长范围内各个光波承载的净负荷信号全都得到放大,弥补了光纤线路的能量损失。这样,当用EDFA代替传统的光通信链路中的中继段设备时,就能以最少的费用直接通过增加波长数增大传输容量,使整个光通信系统的结构和设计都大大简化,并便于施工维护。
EDFA在DWDM系统中实际应用时又分为功放或后置放大器(BA),预放或前置放大器(PA)和线路放大器(LA)3种,但有的公司为了简化,尽量减少设备品种,统一为OA,以便于维护。
目前商用的DWDM系统的每个波长的数据速率是2.5Gbps,或10Gbps,波长数为4、8、16、32等;40、80甚至132个波长的DWDM系统也已有产品。常用的有两类配置。一类是在光合波器前与在光分波器后设置波长转换器(WavelengthTransponder)OTU。这一类配置是开放式的,采用这种可以使用现有的1310nm和1550nm波长区的任一厂家的光发送与光接收机模块;波长转换器将这些非标准的光波长信号变换到1550nm窗口中规定的标准光波长信号,以便在DWDM系统中传输。美国的Ciena公司、欧洲的pirelli公司采用这类配置,他们是生产光器件的公司,通常,所生产的光分波合波器有较好的光学性能参数。如Ciena公司采用的信道波长间隔为0.8nm,对应100GHz的带宽,在1545.3-1557.4nm波长范围内提供16个光波信道或光路。但他们没有SDH传输设备,因此,在系统配置、网络管理方面不能统一考虑。此类配置的优点是应用灵活、通用性强,缺点是增加波长转换器、成本较高。另一类配置是不用波长转换器,将波分复用、解复用部分和传输系统产品集成在一起,这一类配置是一体的或集成的,这样简化了系统结构、降低了成本,而且便于将SDH传输设备和DWDM设备在同一网管平台上进行管理操作。这类配置的生产厂家如Lucent、Siemens、Nortel等,他们是SDH传输系统设备供应商,有条件这样做。他们在做4×2.5G32bpsDWDM系统设计时就考虑与4×10Gbps速率的兼容,考虑增加至8个波长、16个波长、基至40个波长、80个波长,以及2.5Gbps和10Gbps的混合应用,确保系统在线不断扩容,平滑过渡,不影响通信网的业务。当然,他们也提供开放式配置,或发送是开放式,接收为一体式的DWDM系统设备。
由于初期商用的EDFA带宽平坦范围在1540-1560nm,故早期使用的DWDM系统的复用光波长多在1550nm附近。后来实际EDFA的增益谱宽为35nm,约4.2THz,其中增益起伏小于1dB的谱宽在1539-1565nm之间,若以1.6nm(对应200GHz)的波长间隔,则最少可实现8波长,乃至16波长的同步放大;若以0.8nm(对应100GHz)的波长间隔,则最少可实现16个波长,乃至32个波长的DWDM系统,再加上EDFA约40dB的高增益,大于100mW的高输出功率,以及4-5dB的低噪声值等优越性能,故极大地促进了DWDM系统的快速发展。
正如电放大器那样,光放大器在放大光信号的同时也要引入噪声。它由光子的自发幅射(SpontaneousEmission)产生。此种噪声和光信号在光放大器中一起放大,并逐级积累形成干扰信号,即熟知的放大自发辐射(AmplifiedSpontaneousEmission,简写为ASE)干扰信号。这种ASE干扰信号经多经光放积累的功率会大到1-2mW,其频谱分布与波长增益谱对应。
这就是为什么经过若干个OLA放大后必须经过光电变换,分别取出各波长光路的电信号进行定时、整形与再生(3R),完成光数字信号处理的主要原因,它决定了电中继段或复用段的最大距离或最大光中继段数。当然,其他因素例如允许的总的色散值也决定此电中继段的最大距离,这要由系统设计作光功率预算时,哪个因素要求最严格来确定。
2DWDM系统的测试要求
以SDH终端设备为基础的多波长密集光波分复用系统和单波长SDH系统的测试要求差别很大。首先,单波长光通信系统的精确波长测试是不重要的,只需用普通的光功率计测量了光功率值就可判断光系统是否正常了。设置光功率计到一个特定的波长值,例如是1310nm还是1550nm,仅用作不同波长区光系统光源发光功率测试的较准与修正,因为对宽光谱的功率计而言,光源波长差几十nm时测出的光功率值的差别也不大。可是,对DWDM系统就完全不同了,系统有很多波长,很多光路,要分别测出系统中每个光路的波长值与光功率大小,才能共发判断出是哪个波长,哪个光路系统出了问题。由于各个光路的波长间隔通常是1.6nm(200GHz)、0.8nm(GHz),甚至0.4nm(50GHz),故必须有波长选择性的光功率计,即波长计或光谱分析仪才能测出系统的各个光路的波长值和光功率的大小,因此,用一般的光功率计测出系统的总光功率值是不解决问题。其次,为了平滑地增加波长、扩大DWDM系统容量,或为了灵活地调度、调整电路和网络的容量,需要减少某个DWDM系统的波长数,即要求DWDM系统在增加或减少波长数时,总的输出光功率基本稳定。这样,当有某个光路、某个净负荷载体,即光波长或光载频失效时,又用普通光功率计测量总光功率值是无法发现问题的,因为一两个光载频功率大大降低或失效,对总的光功率值影响很小。此时,必须对各个光载频的功率进行选择性测量,不仅测出光功率电平值,而且还准确地测出具体的波长数值后,才能确切知道是哪个波长哪条光路出了问题。这不仅在判断光路故障时非常必要,而且在系统安装、调测和日常维护时也很重要。
此外,为了测量光放大器增益光谱特性,尤其是增益平坦度,需找出各波长或各光路的功率电平差值时,也必须测量出各光路的波长值和光功率值。
为便于查寻光线路放大器的故障,除测量各个光路的波长值和光功率外,还要测量出各个光路的信噪比(OSNR)。这里,在测量OSNR时要注意测量仪表的噪声带宽。例如用HP70952B光谱分析仪(噪声带宽1nm)测量的OSNR要比用Agilent86121AWDM光路分析仪(噪声带宽0.1nm)测量出的OSNR低约10dB;这是因为前者取出的噪声功率是后者取出的噪声功率的10倍,自然,前者测出的OSNR要低约10db(因光信号功率测量有差别)。
由于DWDM系统有n个波长,n个光路,等效于n个虚SDH光通信系统,故在系统的重要测量点必须有光分路器(分光器),以避免在做波长和功率测量时中断系统,造成大量业务丢失。
为便于比较对照,将OSP-102/OMS-100组合测试仪和一个典型的实验室用光谱分析仪OSA的技术规范列在一起。
3可调谐光滤波器
为使具有光谱分析仪功能的仪表适合现场测试,需要有轻便灵巧的可调谐光滤波器选择光波长。它是一个可调法布里-泊罗(Fabry-Perot)滤波腔体,它的基本结构是由两块部分镀银的板构成反射平面,两块板相对分开的距离是可普的。其滤波原理是:对某个波长的光,当调节两块板之间的距离,使在两块板之间反射引起的部分射线在相位上完全重叠时,滤波器对该波长的光是直通的,而对其他波长的光会引入很大的衰减。
这种可调谐光滤波器与光分度计或旋转干涉滤波器相比有很多优点。它没有轴承、轴、马达等,不存在由于连续持久的操作引起磨损、破裂等问题;结构非常坚实,对振动不敏感。它是不可逆的光器件,无论是衰减,还是通常波长均与输入光波的射线极化无关;这一优点在有几个波长激光器都调整到有相同输出光功率时尤其重要。
4便携式光谱分析仪
适用于DWSM系统现场安装调测与日常维护的便携式光谱分析仪,除去前已介绍的HP70952B,Agilent86121A外,现举OSP-102插件和OMS-100主机配合专用于DWDM系统测试的便携式光谱分析仪为例,说明采用可调谐光滤波器一方面使成本显著降低,一方面使重量减轻。体积缩小,有利于便携。为便于使用,还增加了下述分立的应用方式。
(1)光谱分析仪方式
用可调谐光滤波器沿着要选测的波长范围调整移动,将以图形方式显示测量结果,可用游标定位估计波长、功率数值,以及各波长和功率差值的测试数据。还可用存储器存储两个光谱的测试数据进行比较。
(2)光纤系统方式
用表列出直到16个光路或波信道的被测试的波长、功率和S/N。这种应用方式对光纤通信系统的日常维护测试特别有用。因为在DWDM系统的运行过程中,通常不希望光载频信号的功率超过规定的容限。
(3)光功率计方式
可调谐光滤波器固定调整到所选的波长,以数字显示该波长的光功率,就可以用来检测该光路或信道光载频功率随时间的变化,即稳定程度。这一方式在检测中断故障时尤其有用。
(4)监视器输出方式
将被滤出的光信号的一部分送到监视器输出,就能在不影响其他光路或波信道业务的条件下对DWDM系统的某指定波信道进行比特误码率测试,也可具体检测出哪一个波信道传输有问题。
关键词:航空中心工程施工测量主楼旋转餐厅南裙房大弧度造型
西安西北航空中心工程是由西北航空中心有限公司投资兴建,中国建筑西北设计研究院设计。位于西安市劳动南路东侧,紧靠西北民航管理局办公楼。地下二层,最大埋深12.14m;平面呈多边形(主楼水平投影类似于乌龟壳),东西向轴长约100m,南北向150m(其中主楼约45m),最高点108m,自然地坪标高402.3m,±0.000标高402.9m。工程由北裙楼、主楼、南裙楼三部分组成。北裙楼主要为地下二层地上四层服务区;中部为主楼部分,内设宾馆、写字间、游乐中心、餐饮等;南裙楼主要为商场、保龄球馆并且屋顶有游泳池。
主楼位于本工程的正中间,地下有两个标高层,地上有8个标高层(其中有20层的标准层),平面尺寸为100×45m,结构顶标高108m,基础埋深-9m,最大埋深-12.14m。作为具有深基础、大凌空、高程落差大、曲线类型多、结构平面形式复杂的大型建筑,且工期紧、任务重、图纸多,促成施工测量工作内业计算量超常。因此,如何控制本工程测量放样的精度,如何进行系统地、高效地、全面地图纸审核和快速准确的提供施工测量数据,是测量工作的重中之重,直接关系着最终工程的质量。从测量工作的逐级控制原则出发,严格执行“项目部测量组施工测量复核监理检核”的三级管理程序,高标准、严要求、高精度,为确保工程质量获结构优质的目标实现提供基本保障。
1总体控制
1.1平面控制
场地控制测量,按照由整体到局部、先控制整体后控制碎部的逐级控制的测量原则,结合场地、工程建筑结构特点,根据现场通视条件以及现场施工的需要,以城市导线点为高级控制点,沿场地周围布设了一条闭合导线,作为首级控制导线网。导线全长相对中误差高于1/35000,方位角闭合差小于±5″√n(n为导线点个数),平差后精度指标:测角中误差小于±2.5″,边长相对误差高于1/40000。
由于曲线类型多、通视条件差、占地面积大、平面形状复杂等施工特点,外控制点的布设困难大,布设导线边长差异大,首级导线点之间精度不均匀,且在施工过程中的使用率也会受到很大程度的限制。因此,在施工测量的总体控制采取内控为主,外控为辅,内外控相结合的的控制方法,但始终保持内、外联测。测设现场方格网做为轴线控制时,边长不宜过长(如取≤100m),并以此作为工程的二级导线,为减少由于工程高差太大产生I角的影响,避免地下、地上两部分结构出现测量放样的超差,事先在基础护坡周围布设“十”字轴线控制点,并与地上Ⅰ、Ⅱ级导线点联测,检核,以确保施工测量控制精度的要求。
轴线控制点的测放,按常规正倒镜投点法投测,并经平差、复核后,采用内分法或直角坐标法测放出其他线及墙体控制线等细部线。如基坑开挖进行边坡上、下口线控制时,应根据坡度计算边坡外放量。
为便于层间的检核,在各流水段内应以适当密度设置预留点:轴线控制点,主楼每层预留点九个),以此进行层间放线的复核,对于大凌空层间较复杂的点位采用激光铅直仪法进行投点检核。
平面细部测量一般分为初测和归化2步进行,放样定点后要对各点做校核条件的检查或在一点架设仪器重复检查。对于一些不连线的或与周边结构相对关系不很明确的独立结构(如独立柱),在放样后必须用另外的控制点或轴线进行检查,以保证其位置正确。
1.2竖向标高控制
本工程的高层控制,采取二等水准测量和四等水准测量法控制。
1.2.1±0.000以下
由于工程结构基坑深,采用水准仪高程测量向基坑度进行标高传递,获得基底高程,经检查、复检、复核进行闭合差调整后将标高基准桩妥善保护起来(标高基准桩不少于三个),对于基底均以2-3m设控制桩带水平线来控制开挖平整度。
1.2.2±0.000以上
为了避免标高传递出现上、下层标高超差,经常对标高控制点进行联测、复测、平差,检查核对后方可进行向上层的标高传递,在适当位置设标高控制点(每层不少于三点),精度在±3mm以内,总高±15mm以内调整闭合差,结构标高主要采取测设﹢1m标高控制线,作为高程施工的依据。
1.3非常规结构构件的测量控制
西北航空中心工程中,主楼平面中轴以斜10°11″线为主。东西端辅以圆弧。旋转餐厅为半悬空圆形,南裙房交叉圆弧等。因此,控制曲线放样精度及中轴斜线精度,直接关系到建筑物的成形效果。
1.3.1外业控制
受通视等条件制约较大,常规的测量方法已无法满足该工程的精度和质量要求,现场施工测量主要采用全站仪极坐标测量法,局部放线也可适当采用直角坐标放样法。全站仪的选择和精度指标控制是制约施工测量的因素之一,如本工程中全站仪(精度指标在2+2ppm)和棱镜,要求能精确测距和极坐标放样乃至进行三维坐标测量,其精度在±3mm。
1.3.2内业控制
测量内业工作是进行一切施工测量的重要前提和保障,尤其对于本工程而言包括施工图纸的准确核对、以不同种方法进行图纸原始数据和推算数据的计算与核对、复核以及资料编制等,为此,利用计算机编程和电子板制图方法进行测量内业工作在本工程中得到了广泛的应用。
1.3.2新方法的探讨与改进
在高精度要求的复杂建筑工程结构施工中,受到现场通视等条件影响,当在控制点的布设和使用率受到限制时,采用GPS进行控制点的随机布设,既可避免由于不通视所带来的困扰,且可免除控制点间联测等工作,从而一步定点,既可确保点位精度,又可节省时间提高工作效率,每定一点时间不超过40min,点位精度可达到±3mm,但使用GPS定点应确保有一个固定点做为永久性控制点用于相对定点。
2施工测量技术的应用
在西北航空中心工程中,除了大范围的斜线,复杂的平面曲线,螺旋曲线也是本工程的重点与难点,以下将分别从平面斜线、二维曲线(旋转餐厅),异形曲线楼梯等结构的测量控制加以探讨。
2.1复杂平面斜线的测量控制
本工程的结构平面为非对称性平面,且无主轴定位线,对测量控制标准要求更高(本工程的内控制标准比国家提高一级),考虑到施工中其他分项工程(如钢筋、模板工程)的相互制约。施测步骤如下:①在1点处架设经纬仪,观测2(2´),旋转90°0´0″之后取3点及4点,满足√3,√4的距离;(此时正南北、正东西控制线已施测出来了)②在3(4)点处架设经纬仪,向内转10°11´(a值);至此本工程主楼的平面方位控制线均已明确。(说明:原施工组织设计为四角控制点,本人对此作了修改,同时满足分成左右两段施工及测量的要求,为主体的提前竣工抢得了宝贵的时间)
2.2旋转餐厅的施工测量控制
2.2.1基本特征
旋转餐厅位于主楼28层顶,且偏西方向,呈半悬挑状态,平面为一半径为6.8m的圆弧图形,内弧半径为6.8m,外圆弧半径为10m,悬挑3.8m。旋转餐厅有三层,包括设备层、餐厅、水箱间三部分。
2.2.2测量控制
根据施工餐厅与主楼屋面有高低差,故旋转餐厅的测量分为:高程传递与平面控制两大部分。本文着重介绍平面控制测量方法:将仪器架设于2点处,将2、2´线移至标高H1处,再在2´处架仪器,2´2″线即可出来。
2.3南裙房
2.3.1基本特征
入口门厅为一半径为35m的弦,在其南方由一空中游泳池。
2.3.2测量控制
主要介绍入口门厅弦的平面定位:已知OM=a,CM=m,AO=R。
易知:OC=√a2+m2,DC=R-√a2+m2,n=DC/OC×m,即b/a=n/m,则:b=n/m×a,x1=m+n=MR/√a2+m2,D1=b=R-√a2+m2/√a2+m2×a。I测量时,知x1即1M,y1即1D,调整为x1,H-y1,此D点即为已知OM、R及CM时的圆弧上的点。此法我们称之为平行移弦法。避免了需要圆心时的测量变通法。
3施工测量中计算机技术的应用
在大型工程的施工测量中,由于结构复杂、计算量大,尤其是对于平面不规则的施工放样与数据计算(包括二维曲线和三维曲线),使用传统的计算方法已不能满足工程的需要。因此,利用计算机程序进行计算也越来越广泛地应用在大量的测量内业计算中,不但计算精确、高效,而且能快速完成复杂、大量的计算,人而大地提高工作效率。
3.1曲线放样计算程序
根据曲线特征要素,为施工放样的方便起见,以一定弧长为等分圆弧起始步长,来实现计算圆弧中间加密点坐标,输入已知数据即可算出该段圆弧中所加密点数和各点在当前坐标系内的坐标值。对于随圆曲线,可以一确定距离为限定界限等分拖延来计算加密点坐标。