期刊大全 杂志订阅 SCI期刊 投稿指导 期刊服务 文秘服务 出版社 登录/注册 购物车(0)

首页 > 精品范文 > 土钉支护技术论文

土钉支护技术论文精品(七篇)

时间:2022-08-27 19:53:22

序论:写作是一种深度的自我表达。它要求我们深入探索自己的思想和情感,挖掘那些隐藏在内心深处的真相,好投稿为您带来了七篇土钉支护技术论文范文,愿它们成为您写作过程中的灵感催化剂,助力您的创作。

土钉支护技术论文

篇(1)

【关键字】土钉支护技术,深基坑,应用研究

一、前言

现今国内的高层建筑中土钉支护技术应用的很广泛,也是高层建筑的施工重点。很多的建筑工程由于土钉支护技术的失误,结果造成了巨大的经济损失,同时也是建筑工程的工期延误。所以,在建筑工程中,我们应当确保深基坑的安全性和质量,这就需要我们采用土钉支护技术进行深基坑的施工。土钉支护技术的造价较低,施工方法简便,同时工期较短。本文主要通过对土钉支护技术在深基坑中的设计、施工以及检测和在雨季中的处理对策等内容进行分析,从而保证建筑工程的质量和安全。

二、工程概况

笔者所在公司负责某市的一座综合楼,该楼的建筑面积是9.5万平方米。全部采用钢筋混凝土框架结构,该楼有22层,并且有地下室,基坑开挖的深度为9米。通过地质勘查报告可以知道,影响场地基坑支护影响的岩层包括填土层、粉土、黏土、粉砂等。粘土没有钻穿,现场测验有两层地下水,第一层地下水的深度是2到12米,第二层地下水的深度为14米。深基坑东临城市主干道,西侧是住宅区,北侧是一宾馆。

三、基坑支护设计方案

通过现场的地质勘查情况,同时还考虑到工程的安全、经济以及周边情况等因素,对于该工程,我们可以采用土钉支护技术和护壁桩两种施工方案。同时通过地质勘查报告,可知,该场地地下水位较高,因此实际开挖地下3米左右就可以见到地下水。。

1.基坑降水

为了使地下室能够干燥作业,我们使用12口径的管井进行抽水,将降水井安置在距离开挖线1米处,考虑到可能将地下水降到基底一下1米处,因此要在基坑周围布置82口管井,每口管井的距离为八米,在基坑内部布置渗井。降水井的深度为13米左右,将管底封死,同时在管外填上滤料。

2.土钉支护

由于地下结构施工对空间的要求,因此基坑侧壁和地下结构外墙之间的水槽为0.8米,同时土钉墙的高度应该为12米,土钉墙的坡度大约为1:0.2,同时还布置8排土钉。使用20HRB335型号的钢筋,保持水平间距在1.5米。土钉的长度为5米到九米,孔径是110毫米,排拒是1.5米。同时在第二排要采用预应力锚杆,长度为15米。

四、土钉支护施工技术

1.土钉支护工艺原理

土钉支护技术就是在依次开挖基坑土方而形成的坑壁中,通过采用机械进行钻孔,从而将土钉放到孔内,然后向孔内注入混凝土,然后在挂上钢筋网,最后喷射混凝土面层结构,这样就使其形成共同支撑的结构体系,经过这样的施工,一直到挡墙支护完全。

2.工艺流程

首先是基坑降水施工,接着是土方开挖至土钉标高下50cm,然后是土钉成孔,接着是杆体支放,接着注浆,接着坡面修正,接着铺设钢筋网,然后喷射混凝土,然后重复工序至基坑底,最后基底排水沟。

3.基底施工

对于土钉墙的施工,必须要根据开挖来进行,对于基坑的边坡一般应该按照分层分段开挖的原则进行开挖,采用中心岛的开挖方法,也就是说,首先将基坑沿线挖出10米左右宽度的护坡作业平面。将土方开挖到土钉标高一下0.5米处,同时采用机械成空方式,孔径大约为110ram,同时还要控制好空的深度、孔径以及倾角。在成孔以后,要迅速的向孔内插放钢筋,同时进行注浆。土钉杆体的水灰比为0.5,用普通硅酸盐水泥浆进行注浆。在第一次注浆完成后两个小时内,进行第二次注浆,同时要将孔口进行封堵。对于喷射砼施工,我们分段进行在统一分段内,喷射的顺序为自下而上。

五、施工监测

1.地下水位监测

从6月21日项目开工到7月17日,对降水井施工完毕并进行连续的抽水后,必须要保持水位在十米左右,可以达到施工的标准。

2.基坑位移监测

在进行土方开挖之前,要对基坑坡顶的水平位移以及沉降位移进行测定,得到原始值。水平位移很沉降位移的监测点沿着基坑坡顶的变现布置,距离为三十米。在进行土方开挖时,要每天检测一次。将沉降监测点布置在深基坑开挖可能影响范围内的市政道路上。对于水平位移,我们采用视准线法,就是说在需要进行位移监测的基坑槽壁上布置一条视准线,并且在改线两端深基坑可能影响的范围内设置两点A、B,将他们作为监测的主站点和后视点。接着就沿着改线在槽壁上设置几个观测点,就可以直接在读数尺上读出位移。

六、雨季中出现的危机情况和处理措施分析

7到8月间,该地区就进入了雨季,雨季给深基坑施工带来了很多的不便和影响,同时伴随着暴雨的来临,边坡支护的安全就面临很大的挑战。

1.危机情况的出现

在基坑的边坡锚钉和面层喷射混凝土施工完以后,在坑壁的局部就出现了一些出水点,同时在基坑西侧的边坡坑壁上,出水点有不断加大并进而形成涌水或者是涌砂的现象。同时在西侧的土体局部的变形变大,有些观测点点的水平位移达到75ram,沉降位移达到90mm。在基坑的北侧和东侧的情况要好一些。通过我们的观测数据分析可知,土方开挖到预先设计的深度,基坑边坡的水平位移相对比较稳定。

2.处理措施

对于坑壁局部渗水,在基槽四壁增加灌水孔,孔深0.6m,高度距槽底0.8m,间距2m。在护壁中插入周边带孔眼的包网塑科排水管,把局部渗水通过暗埋在土钉坡内的塑料排水管引入基坑周围排水沟及集水坑中。利用水泵及时抽排,加快边坡粉土层排水固结。

基坑东(3—1)轴到(3—7)轴采取分级支护.首先把高2.5m.宽4.0m的土卸除。在-7.0m位置增加一排预应力锚杆,高度16m。

按上述措施进行施工和危机加固处理后,对整个基坑及邻近建筑物的位移进行了跟踪监测。各观测点均处于稳定状态。同时对基坑开挖后,地面裂缝的开展情况进行了跟踪监测,各观测点的裂缝均处于稳定状态。

3.情况分析

通过现场的勘查,基坑西、北两侧场地条件较好,全部进行了硬化处理.通过对承平位移监测数据分析,开挖到设计深度,基坑坡顶水平位移在10mm以内,变形稳定。说明水源远近是影响基坑稳定的主要因素,地表水渗入土体造成坡体土层的力学性能指标严重下降和坡体水压力增加。

七.结束语

土钉支护技术在深基坑施工中的应用十分广泛,对于深基坑施工具有重要的意义。

参考文献:

[1]张晁 郑俊杰 辛凯 土钉支护技术在软土基坑中的应用 (被引用 18 次) [期刊论文] 《岩石力学与工程学报》 ISTIC EI PKU -2002年6期

[2]陈东 黄博 刘兴旺 曹国强 土钉墙支护技术在杭州某深基坑工程中的应用 (被引用 5 次) [期刊论文] 《岩土工程学报》 ISTIC EI PKU -2006年z1期

[3]孙丽梅 张玉敏 高明涛 鞍山东方大厦深基坑土钉支护技术 (被引用 13 次) [期刊论文] 《探矿工程-岩土钻掘工程》 ISTIC -2007年2期

[4]杨文侠 王松泉 朱彦鹏 土钉支护技术在黄土地区深基坑支护中的应用 (被引用 11 次) [期刊论文] 《甘肃科学学报》 ISTIC -2003年4期

[5]赵乃志 刘丹 张敏江 姚静 复合土钉支护技术在深基坑工程中的应用 (被引用 2 次) [期刊论文] 《沈阳建筑大学学报(自然科学版)》 ISTIC PKU -2007年3期

[6]吴忠诚 汤连生 廖志强 刘晓纲 颜波 深基坑复合土钉墙支护FLAC-3D模拟及大型现场原位测试研究 (被引用 10 次) [期刊论文] 《岩土工程学报》 ISTIC EI PKU -2006年z1期

篇(2)

【关键词】 水泥搅拌桩 土钉支护 坑基

水泥搅拌桩复合土钉支护技术是建立在传统土钉支护方法基础上,主要有水泥搅拌桩止水帷幕复合土钉支护、超前微桩复合土钉支护及预应力锚杆复合土钉支护等多种方式。虽然与传统土钉支护技术相比,会投入大量资金,提高造价成本,但是总体而言,这种新型土钉支护技术施工较为简便,不需要使用大型、重型机械设备,施工工期较短,因而在建筑施工中得到了广泛应用。

1 水泥搅拌桩复合土钉支护原理

在基坑开挖之前,地层处在平衡状态中,但由于基坑开挖打破了受力平衡状态,局部地层的结构状态会发生改变。主要有如下表现:

(1)地层中重力重新分布,基坑四周土体应力增加,特别是基坑的边坡附近,土体应力大幅增加;(2)基坑附近土体侧向约束力削减,致使承载力降低;(3)地下水失去原有平衡,进而导致渗流出现,同时渗透压力还会对搅拌桩稳定性产生影响。最终导致坑基附近土体出现沉降或位移,边坡遭到破坏。

通过水泥搅拌桩复合土钉的支护,能够承担基坑开挖产生的荷载,使土体尽量保持原有受力平衡状态,避免地下水出现渗流[1]。水泥搅拌桩复合土钉作为一种新型的基坑支护技术,结构形式多样,针对性强,从而起到了分担载荷、传递载荷止水抗渗、局部稳定及超前加固的作用。

2 水泥搅拌桩复合土钉在基坑支护中的实际应用

2.1 工程概况

某地一个在建商贸大厦,工程总面积为32000平方米,地上19层,地下2层,建筑总高度为56米,整个商贸大厦的结构体系以框式剪力墙为主,地基深度为6.8米,下桩基础为29.5米。相关地质资料显示,建筑工程场区内土层至上而下分别为人工土、淤泥、粉质粘土及花岗片麻岩,地下水主要分布在淤泥层缝隙和岩层空隙中,总体透水性比较差。

2.2 选择支护方案

本建筑工程周围建筑物较少,土地空旷,坑基四周较为平坦,附近没有重要管道线路经过。通过对该工程地质及周围环境等因素的综合考虑,结合基坑开挖深度与经济效益,最后决定选用水泥搅拌桩复合土钉的支护方案,直立开挖,并使用双排搅拌桩做超前支护。

2.3 水泥搅拌桩

在实际施工中要选用强度等级为32.5的普通性硅酸盐水泥,合理控制水泥用量。通常情况下,实际水泥使用量大约为被加固土重的20%,同时要掺合0.2%的木质素、

0.05%的三乙醇胺,水灰比为0.45。采用上下各搅拌两次的水泥搅拌工艺,在喷浆时要把速度控制在80-100cm/min范围内,水泥泵的进流量为恒定值,泵送压是 0.3MPa[2]。考虑到实际地质条件,不同地段具有不同的坑基开挖深度,因而也要分段设计支护方案。搅拌桩长度要控制在9-11m,并且插入淤泥层的深度要超过1m,而锚杆插入淤泥层的深度要超过3m。

2.4 土钉支护

选用的土钉长度为48mm,焊接钢管厚度为2.5m,倾斜角度为30°。在布置土钉时,尽量成梅花形状,无论是水平还是垂直间距都控制在1.2m左右。注浆压力控制在0.35-0.65MPa,在水泥用量标准下,锚管注浆量要超过35kg/m,水泥、石子和砂子之间的质量配合比为1:2:2。通过计算来准确判断锚杆参数,锚杆长度为12-24m,每个锚杆间距控制在100cm-120cm之间[3]。图1为水泥搅拌桩复合土钉支护典型剖面图。

2.5 稳固性分析

在高水位软土基层中,经常会应用泥搅拌桩复合土钉来支护,水泥搅拌桩起到了隔水作用。由于软土基坑经常会出现隆起、滑坡等问题,因而在支护时,需要对搅拌桩的抗渗漏和隆起稳定性进行分析。另外,在开挖基坑时,墙背侧土体会对搅拌桩直接产生作用力,很可能由于材料拉力不足或抗剪承载力不够,而使整体发生滑移,进而产生弯折或冲剪破坏,因而也需要对搅拌桩弯折与冲剪稳固性进行计算,从而确保搅拌桩稳固性。

通过相关计算可以发现,土钉内力与土钉的位置具有一定相关性。在上部和底部位置的土钉通常受力比较小,在之间部位的土钉的受力比较大,而在最底部的土钉则有较小轴力;随着基坑深度的增加,土钉拉力也随之加大,一直到挖到基坑底部之后,土钉拉力则不会再增加;土钉支护能使墙后土体的稳定性大幅度增加,而通过更改土钉长度,则可以对支护结构的安全性进行调整;基坑深度的加深,基坑自身结构稳定性和安全系数会降低,当加入土钉后,则能够有效提升坑基结构的稳定性与安全系数[4]。另外,在水泥搅拌桩复合土钉支护过程中,正常情况下,土钉自身不会出现断裂形式的破坏,往往都是拉拔式破坏。

3 结语

水泥搅拌桩复合土钉作为一种新型的基坑支护技术,具有分担载荷、传递载荷止水抗渗、局部稳定及超前加固的作用,同时还具有安全经济、适用范围广及支护位移小等特点。因而在新时期的建筑施工中,我们要对该项支护技术有足够重视。我们要继续加强对水泥搅拌桩复合土钉支护技术的研究,在实际应用中,坚持动态化原则,根据工程的实际地质条件、支护结构以及支护环境,合理设计支护方案,并要对设计方案进行及时反馈。同时,要加大信息化的投入,科学计算,对数据进行多次检验,防止坑基位移和基地隆起,提高搅拌桩稳定性,发挥出水泥搅拌桩复合土钉支护技术的优势,创造更大价值。

参考文献:

[1]李建.水泥搅拌桩复合土钉在基坑支护中的应用研究[J].中南大学,2012,05(01:12-13.

[2]郭秋菊.水泥搅拌桩复合土钉基坑支护应用[J].铁道科学与工程学报,2013,08(28):9.

篇(3)

关键词:深基坑 支护工程 施工技术

我国经济的速发展,城市在断扩大,为适应社会需要,大量高层建筑和地下建筑建设工程兴起,因此涉及到大量的基坑工程。由于施工现场的周边往往已有许多建筑或管道,为保持周边设施的正常使用,需要进行基坑支护工作。基坑稳定安全了,建筑基础的质量和安全才能得到保证。本文在探讨深基坑支护施工的过程中,结合工程实际需要,重点围绕支护结构本身的薄弱点,提出一些具有工程应用价值的建议措施。

1 深基坑支护结构设计阶段与施工阶段的技术难题

工程地质复杂多变,存在很多不确定性的因素。就当前的技术难题,主要存在以下几个技术难题:

(1)在计算实际土体压力方面如何选择一个适合的土体物理力参数;因为在很大程度上,基坑支护结构的安全性能质量程度受所能承受的土体压力大小决定的。在基坑开挖后,粘聚力、含水率、内摩擦角这三个重要参数,由于其具有可变性,进一步增加准确计算支护结构实际受力的难度。此外,支护结构形式和施工工艺等因素,也影响土体物理力学参数的选择。

(2)取样分析方面,无法做到对基坑土体的取样完全。基坑支护结构设计的一个必要步骤是在设计前对地基土层进行取样分析;但在本工程中地质情况复杂,造成随机取得的土层样本无法做到准确地反映土层的真实情况,进而影响到支护结构的设计并不能完全符合基坑的实际地质情况。

(3)无法做到全面考虑基坑开挖后的空间效应,本工程和其它不少基抗开挖实例表明,基坑开挖还存在空间的问题,即基坑四周朝内侧发生水平位移,且往往表现为中间比两边大,这样的现象容易造成基坑边坡失稳的质量问题。

(4)理论计算受力的结果与实际受力情况存在不相符合的情况。在本工程基坑支护施工过程中,也发现了一个当下常见的工程共性问题,即设计人员按极限平衡理论来确定安全系数及设计计算支护结构,从理论的角度来看此类做法是绝对安全的,但从工程成本控制来看,支护结构的建设成本却有所增加,而且不一定就能完成适应工程;但根据以往的工程经验发现,若选择规范中较小的安全系数来设计支护结构,却能达到实际工程的要求。

二、深基坑的支护工程的施工技术要点

平整施工场地之后,基坑开挖之前,需要进行基坑支护工程。当代的建筑往往占地面积大,场地狭小,建筑距离小,开挖基坑深,呈现出大型、紧密、复杂、深挖等特点,而这些都极易造成基坑支护工程的安全隐患。基坑支护工程的质量对基坑开挖的施工进度和效率有着直接影响,所以,基坑开挖的前一周,应当勘探地质,了解施工现场的具体情况,比如周围的地下水流和地下管线,按照有关技术规定,计算出各种必要的施工数据以及土方工程量,选择适当的基坑支护技术和安全合理的基坑支护设计方案。

相对于基槽和浅基坑来说,深基坑的支护有着更复杂谨慎的技术要求和更重要的施工作用。深基坑的支护关系着随后的基坑开挖工程以及整体建筑工程的施工质量,甚至还影响到工程邻近的建筑物的安全问题。因此在深基坑支护的施工流程上,不能因为支护是临时工程就不加以重视,如果一旦发生事故,造成的经济损失和人员伤亡将更加难以估量。经过多年实际实践,技术人员和施工人员总结出以下几种常用的深基坑支护方法:

1.型钢桩横挡板支护

挡土位置预先打入钢轨、工字钢或H型钢桩,间距适宜在1m到1.5m之间,挖方的同时,将挡土板塞进钢桩之间挡土,挡土板的厚度适宜在3m到6m之间,并在横向挡板与型钢桩之间打入楔子,使横板与土体紧密接触。适用于地下水位较低,深度不很大的一般粘性或砂土层中应用。

2.钢板桩支护

这是在经过精确的计算之后,在开挖基坑的周边打入钢板或者钢筋混凝土板桩,板桩入土的深度和悬臂的长度都应该符合计算后得到的数据。如果基坑的宽度足够大,则尽量要加加水平支撑。这样的基坑支护在地下水、深度和宽度都不是很大的粘性沙土层中使用较多。

3.灌注桩排桩支护

在开挖基坑的周围,用钻机钻孔,现场灌注钢筋混凝土桩,达到强度后,在基坑中间用机械或人工挖土,下挖lm左右装上横撑,在桩背面装上拉杆与已设锚桩拉紧,然后继续挖土要求深度。在桩间土方挖成外拱形,使之起土拱作用。

4.挡土灌注桩与土层锚杆结合支护

同挡土灌注桩支撑,但在桩顶不设锚桩锚杆,而是挖至一定深度,每隔一定距离向桩背面斜下方用锚杆钻机打孔,安放钢筋锚杆,用水泥压力灌浆,达到强度后,安上横撑,拉紧固定,在桩中间进行挖土,直至设计深度。适用于大型较深基坑,施工期较长,邻近有高层建筑,不允许支护,邻近地基不允许有任何下沉位移时采用。

5.双层挡土灌注桩支护

将挡土灌注桩在平面布置上,由单排桩改成双排桩,成对应或梅花式的排列,桩数应当保持不变,双排桩的桩径适宜在400mm到600mm之间,排距适宜在双排桩的桩径1.5倍到3倍之间,在双排桩顶部设圈梁使其成为整体钢架结构。

亦可在基坑每侧中段设双排桩,而在死角仍采用单排桩。采用双排桩支护可使支护整体刚度增大,桩的内力和水平位移减小,提高护坡的效果。适用于基坑较深,采用单排混凝土灌注桩挡土,强度和刚度都无法胜任时使用。

6.地下连续墙支护

在开挖的基坑周围,先建造混凝土或钢筋混凝土地下连续墙,达到强度后,在墙中间用机械或人工挖土,直至要求深度。对跨度、深度很大时,可在内部假设水平支撑及支柱适用于开挖较大、深度大于10米、有地下水、周围有建筑物、公路的基坑,作为地下结构外墙的一部分,或用于高层建筑的逆作法施工,作为地下室结构的部分外墙。

7.土钉墙

土钉墙,是一种边坡稳定式的支护,它的挡土作用和上述的围护墙都有所不同,它是起主动嵌固的作用,大大增加边坡的稳定性,使基坑开挖后坡面能够保持稳定。施工的时候,每挖深1.5m左右,挂细钢筋网,喷射细石混凝土面层厚适宜在50mm到100mm之间,然后再钻孔插入钢筋,长度适宜在10m到15m之间,纵间距和横间距适宜在1m到1.5m之间,加垫板,同时进行灌浆,依次进行直至坑底。基坑坡面,有一个比较陡的坡度。土钉墙适用于基坑侧壁安全等级为二级、三级的非软质土场地;基坑深度不宜大于12m。

三、 结语

综上所述,超深基坑采用多种支护形式进行组合,对节约支护成本起到了积极的作用。在整个施工控制过程中,要做到信息化施工控制,与监测单位保持密切联系,将设计、施工、监测等有序结合起来,并制定相关的应急预案与措施,使施工控制过程严密进行,获得良好的工程效益。

参考文献:

[1]周结仪 关于地铁车站深基坑的论述[期刊论文]《广东建材》 2012

[2] 孟凡运,刘全峰.土钉墙在深基坑支护中的应用[J]探矿工程(岩土钻掘工程). 2008(05)

[3] 娄奕红,俞三溥,王秉勇.基坑支护结构内力及变形动态分析[J].岩石力学与工程学报.2003(03)

篇(4)

【关键词】岩土工程;深基坑支护;技术措施

1引言

我国城镇化进程的加快使得城市有限的土地资源变得越来越紧缺,为了缓解人口的大量增加与稀缺的土地资源之间的矛盾,高层建筑、超高层建筑越来越多。为了解决地基沉降的问题,高层建筑的建设需要建立在深基础、大基础之上,而深基坑在开挖的过程中必须充分考虑施工场地的地下管道、道路以及周围的建筑物、地下水水位改变等因素。为了保证施工的顺利进行,必须采取必要的深基坑支护技术。深基坑支护技术不仅关系着工程建设的质量,影响着工程建设的顺利进行而且关系着施工人员的生命财产安全,所以,在工程建设的过程中要根据工程建设的实际特点选择合适的支护技术。

2岩土工程中常见的深基坑支护技术

2.1钢板桩支护技术

钢板桩相互连接之后形成的钢板桩墙可以有效地阻挡沙土与水,又因为其施工难度也较低,所以钢板桩支护技术在施工过程中的应用比较普遍。但由于钢板桩支护在施工的过程中噪声较大,所以在施工的过程中会对周围的环境造成一定的影响。此外,由于钢板桩自身具有一定的柔性,在施工的过程中容易发生变形,如果在支护上出现问题会带来意想不到的后果,所以在基坑深度大于7m时不宜采取这种方式。

2.2土钉墙支护技术

土钉墙支护技术是在基坑土坡的表面铺设钢筋网后再向钢筋网喷射混凝土面层,同时,通过已经深入到基坑侧面土体中的土钉与边坡土体紧密结合,从而达到加固边坡使其稳定的目的[1]。这种情况之下,土钉与混凝土面层形成有效的受力体系后产生了很好的挡土功能。但需要注意的是,在开挖过程中需要遵循分层开挖、分层支护的原则,并且还需要做好混凝土面层和土钉的养护工作。土钉墙支护技术往往适用于无地下管网、地下水位以下的边坡支护,不适用于淤泥土的支护。

2.3灌注桩支护技术

灌注桩支护技术是指利用专门的钻孔机械设备钻出桩孔后将混凝土浇筑在桩孔内生成灌注桩的技术,是目前岩土工程深基坑支护技术中最常见的1种技术形式。灌注桩支护技术在施工的过程中必须保证钻机钻孔之前施工场地是平整的,在做好排水沟的开挖工作后进行试桩成孔确定好轴线的定位点、水准点,做好防线定桩位。在钻孔的过程中,还需要做好水泵设备、桩架的安装工作,然后埋设孔口护筒,充分发挥孔口护筒保护孔口、存储泥浆等作用。

2.4喷锚支护技术

喷锚支护技术综合了钢筋网喷射混凝土锚杆和土层锚杆两者的优点,具有稳固、安全的特点。钢筋网喷射混凝土锚杆主要是指锚杆在高速喷射的情况下喷射到已固定的钢筋网支护上,进而使得支护土体与喷层发生嵌固效应。锚杆固定后在土体内与土体之间形成了复位,从而有效地提高了土体的强度和整体性,并且有效控制了位移现象的发生。

3岩土工程深基坑支护中的常见问题

岩土工程深基坑支护技术在长期的发展过程中积累了一定的经验,但仍然存在着一系列的问题,具体表现如下。

3.1土层开挖和边坡支护不配套

通常情况下,深基坑支护施工要滞后于土方开挖施工很长一段时间,在进行支护施工时必须采用二次回填或搭设架子的方式来完成。土方开挖工程工序简单、技术含量低、施工组织和管理难度小。而支护工程工序复杂、技术含量高、施工组织和管理的难度较大。所以在工程的建设施工过程中,土方开挖工程与支护工程多是由不同的施工队伍来完成的,这就会导致土层开挖和边坡支护不配套现象的出现。土方施工单位往往为了抢进度,开挖顺序较为随意,不注重给后期支护施工留充足的工作面,这就使得后期的支护施工不能顺利进行。

3.2边坡修理不符合要求

深基坑在进行开挖时通常使用机械开挖,在机械开挖、人工进行简单边坡修理后就开始进行支护施工。但在实际开挖中,技术交底不到位、施工管理较为松散、分层分段开挖高度不一致等因素的存在都会导致边坡表面不平整,需要对边坡进行修理。但受到种种因素的制约,边坡修理往往不能符合工程建设的要求,使得挡土支护后常常出现欠挖、超挖现象。

3.3注浆不到位、土钉或锚杆的受力不能达到相关的设计要求

深基坑支护所用土钉或锚杆通常使用钻孔直径为100~150mm的钻机成孔,孔深从五六米到二十多米不等,钻孔所穿过的土层质量也不一样[2]。在这种情况之下,如果不对土体的情况进行细致的研究,会出现出渣不尽的现象,残渣沉积不仅会影响注浆的进行还会出现孔洞坍塌的问题。除此之外,如果注浆时配料不标准、操作不规范还会造成土钉或锚杆的受力不能达到相关的设计要求,严重影响工程质量。

4岩土工程中深基坑支护技术的施工要求

4.1合理选择深基坑支护技术形式

如前文所述,深基坑支护有很多常见的技术,但每一种技术的优势和适用范围是不同的,所以,在深基坑支护技术的使用过程中要根据工程特点,合理选择深基坑支护技术形式,切忌盲目使用。合理的深基坑支护技术能够有效保证施工安全,提高施工质量。

4.2明确深基坑支护工程的性能要求

深基坑支护施工能够有效提升地基的稳定性和承载能力,但在深基坑支护技术的施工过程中,深基坑支护工程的性能还有着其他的要求,比如说基坑的防水作用、基坑四周的稳定情况等。因此,明确深基坑支护工程的性能要求能够有效提高支护工程的施工水平和质量,促进施工的安全进行。

4.3合理设计深基坑支护施工方案

在确定深基坑支护的施工形式后需要合理设计深基坑支护施工方案。在进行方案设计时,要充分考虑基坑开挖的各个影响因素并对其进行有针对性的分析,比如建筑物的占地面积、基坑的边缘距离、地基的地质条件等[3]。

5提高岩土工程深基坑支护技术的具体措施

5.1加强观测力度

在岩土工程的深基坑支护施工过程中应该加强对地下管线、基坑边坡等的观测力度,并且在观测结束后及时将施工前的观测数据与施工过程中的观测数据进行对比。在对比后如果发现两组数据存在着冲突,应当根据实际情况及时进行分析解决,确保工程安全和工程质量。在基坑支护过程中数据的准确获得对于整个工程的顺利进行会产生非常大的影响,所以在施工过程中加强观测力度对于整个工程质量的提高具有非常重要的现实意义。

5.2加强施工管理控制

在岩土工程的深基坑支护施工中,需加强施工管理控制,对于在施工过程中出现的一系列问题及时发现、及时解决。在施工前,要做好设计方案,规划施工进程,确保施工可以正常开展。在施工过程中,应该根据施工的任务和目标,遵循深基坑开挖的原则,实行分层、分段开挖与支护,避免不规范开挖现象的出现[4]。

6结语

经济社会的发展使得建筑工程的复杂程度越来越高,其对岩土工程深基坑支护技术的要求也越来越高。深基坑支护技术发展潜力巨大,我们应该加强对深基坑支护理论和支护技术的研究,从而促进我国建筑事业的进一步发展。

【参考文献】

【1】余良武.岩土工程深基坑支护方案探析[J].低碳世界,2017(5):188.

【2】杨文方.岩土工程深基坑支护技术应用探微[J].中国设备工程,2017(13):152.

【3】廖辉.岩土工程深基坑支护施工技术探讨[J].资源信息与工程,2017(1):113.

篇(5)

【关键词】地下综合管廊;影响因素;工程造价控制

1引言

随着我国城市的快速发展,地下管线建设需求增多。2014年国务院《关于加强城市地下管线建设管理的指导意见》,要求全面加强城市地下管线建设管理,并指出要稳步推进城市地下综合管廊建设。因其较其他工程复杂,建设投资大,故加强对影响其工程造价的因素进行分析,对管廊工程造价的控制起到关键作用。

2工程概况

翔安南路(翔安大道-洪钟大道)地下综合管廊工程总长约1.47km,为双舱布置,其中设计起点至翔安大道综合管廊约196.57m,净断面尺寸为6700mm×3200mm,其中市政舱净断面尺寸为3400mm×3200mm,高压舱净断面尺寸为3000mm×3200mm;翔安大道至洪钟大道段综合管廊1275m,为双舱布置,净断面尺寸为7400mm×3200mm,其中市政舱净断面尺寸为4100mm×3200mm,高压舱净断面尺寸为3000mm×3200mm。根据管廊工艺要求设置管线分支口、逃生口、通风吊装口、人员出入口、管廊转换井等特殊构造物,项目建安工程费用为14016.97万元,总投资为18238.23万元,建安技术经济指标为9528.87万元/km。

3影响综合管廊工程造价的主要因素及控制

3.1基坑支护方案

3.1.1选型原则设计应充分考虑工程地质条件及周围环境,确保支护结构安全,同时充分考虑基坑开挖施工及降水工程对周边环境的影响,以保证周边道路、构筑物及现状地下管线的安全及正常使用。支护方案在满足安全的前提下应尽量做到经济性、合理性,基坑支护结构能保证主体结构顺利方便施工,且不对主体结构施工造成较大影响。

3.1.2支护结构选型放坡开挖及简易支护:当施工场地条件允许,能够满足放坡要求,土体经验算能保证边坡稳定性时可采用放坡开挖,其施工工期短,工程造价最低,每100m造价约160万元。土钉墙支护结构:土钉墙是由天然土体通过土钉墙就地加固并与喷射砼面板相结合,形成一个类似重力挡墙以此来抵抗墙后的土压力,从而保持开挖面的稳定。一般适用于地下水位以上或降水厚的基坑边坡加固。该方式施工工期短、所需材料较省、机械设备少,但对场地、地质条件和周边环境要求较高,工程造价较放坡开挖高,每100m造价约190万元。围护桩支护结构:围护桩支护主要分为SMW工法桩、钻孔灌注桩、钢板桩,当项目地质条件不理想且场地受限时,可根据项目具体情况采用合适的围护桩支护。工程造价相比于放坡开挖和土钉墙都高,每100m造价为250~600万元。

3.1.3结合实际案例分析结合翔安南路管廊(翔安大道-洪钟大道)工程项目的现状地形、地物及交通等因素分析,本次基坑支护主要采用如下方案:AK0+000~AK0+123、AK0+320~AK0+672段。为避免基坑开挖对现状高架桥墩的影响,采用直径准800mm灌注桩结合准609mm钢管内支撑的围护结构型式,内支撑间距为4.0m。AK0+240~AK0+320段,受限于桥下净空,采用直径准1000mm人工挖孔桩结合准609mm钢管内支撑的围护结构型式,内支撑间距为4.0m。K0+672~K0+990段,受限条件较少,但基坑较深,采用边坡率为1:0.3的土钉墙支护型式。AK0+123~AK0+240、K1+092~K1+230、K1+320~K1+390、K1+570~K1+600段,受限条件较少,但基坑较深,基坑底部以上7m采用边坡率为1:0.3,7m以上边坡率为1:0.5的土钉墙支护型式。K0+990~K1+092段,左侧基坑深7.4~7.7m,管廊结构已经占用辅道;右侧有高约3m的边坡,且坡顶有建筑物,基坑深9.8~10.4m。本段左侧采用边坡率为1:0.3,右侧基坑底部以上7m采用边坡率为1:0.3,7m以上边坡率为1:0.5的土钉墙支护型式。K1+230~K1+240段,地势左高右低,左侧紧靠人行天桥桥墩,为避免基坑开挖对桥墩的影响,采用准800mm灌注桩,由于地势高差较大,不能采用横撑支护,采用预应力锚索进行支护;右侧采用边坡率为1:0.3的土钉墙支护型式。K1+240~K1+320段,地势左高右低,左侧紧靠人行天桥桥墩,为避免基坑开挖对桥墩的影响,采用准800mm灌注桩,由于地势高差较大,不能采用横撑支护,采用预应力锚索进行支护;右侧为凹地,受限较小,采用1∶1边坡坡率开挖,开挖后采用挂网锚喷。K1+390~K1+570段,地势左高右低,左侧紧靠辅道,基坑深6.4~9.4m,基坑较深,采用边坡率为1:0.3的土钉墙支护;右侧为公园,地势较低,基坑深为1.69~5.39m,采用1∶1边坡率开挖,开挖后采用挂网锚喷。由于右侧为公园,在符合管廊覆土要求上,本段需恢复坡面,恢复边坡采用植草防护。恢复坡面顶位于管廊顶以上不小于3m,水平距离为1m,坡率采用1:1.5。坡脚侵入公园人行道时,采用矮挡墙收坡。根据以上分析,本项目结合实际情况采用多种支护形式相结合的方式,经计算造价为每100m造价约280万元。

3.2主体结构施工工法

目前国内已建或在建的地下综合管廊,常规的施工工法有2种:明挖现浇法、预制拼装法(多弧装配式、叠合装配式)。明挖现浇施工法是地下结构施工的首选方法,在地面交通和环境允许的地方通常采用的施工方法,为最常用的施工方法,可将整个工程分割为多个标段,施工难度、技术要求、工程造价均较低,主体工程为2000~2300元/m3。预制拼装法主要有胶接预应力装配式、叠合装配式。胶接预应力装配式施工工法是一种较为先进的施工方法,施工速度快,施工质量易于控制、专业工厂化制作均一的品质,无需现场加工钢筋、绑扎、立模、砼养护等工序,具有加快现场施工进度、减少施工机具对现场空间的占用、有利于施工期间交通组织、保持工地整洁、减少噪音扰民等作用,与现场浇筑作业方式相比较施工简单、功效可提高数倍。要求有较大规模的预制厂和大吨位的运输和起吊设备,施工技术要求、工程造价较高,主体工程为3800~4000元/m3。叠合装配式施工工法:该技术是通过桁架钢筋将两边混凝土外墙巧妙地叠合在一起而形成的一个自重轻、整体性好、刚度大、承载力强、结构抗震性能突出的装配式墙体构件,主体工程约3000元/m3。翔安南路管廊(翔安大道-洪钟大道)工程项目因工期紧,且现状翔安南路为城市主干路,日常车流量大,为确保现状道路车辆通行等因素最终确定综合管廊标准段采用预制叠合装配式,过高架桥下段、埋深较大段及节点处采用现浇的施工工法,综合后主体工程约2550元/m3。

3.3附属安装工程

附属工程一般包括综合管廊的通风系统、电气系统、监控与报警系统、消防系统、排水系统、标识系统等内容。各类管线布署是否合理直接影响工程造价,且随着科技的进步,新工艺、新材料的不断出现,附属工程的比重呈上升趋势。翔安南路管廊(翔安大道-洪钟大道)工程项目附属工程包含电气工程、监控工程、火灾报警工程、消防工程、通风工程、标识工程等附属工程综合指标为1250万元/km。为确保附属工程整体造价控制在合理范围内,应严格把控其设计阶段,重点为材料和设备的选型,做到合理、经济适用,不超规模设计。图纸要严格会审,优化施工方案,控制施工过程中的设计变更。

3.4全寿命周期的造价控制

每一个工程项目工程造价的确定与控制贯穿于项目建设全过程,地下综合管廊因其工期长、项目复杂、专业多、施工难度大等,做好整个寿命周期的造价控制至关重要。其中,决策阶段各项技术经济决策,对项目的工程造价有很大影响,特别是建设标准水平的确定、建设地点的选择、工艺的评选、设备选用等,直接关系到工程造价的高低。据有关资料统计,投资决策阶段对工程造价的影响最高,可达到80%以上。还有招标阶段编制的工程量清单、招标控制价的准确性、工程材料、设备价格的合理性、减少施工过程中的项目变更等对地下综合管廊整体造价高低起着重要作用。

4结语

篇(6)

【关键词】边坡稳定;防护技术;公路;边坡破坏

1.引言

当前我国正加大基础建设的力度,以响应国民经济的快速发展。公路等级越来越高,一些公路所处的地形也更加复杂。公路边坡防护工程难度加大,其解决边坡的稳定问题具有实际的工程安全可靠度意义和经济性价值。一直以来,路基边坡的综合防护是公路建设的薄弱环节,其造成的安全隐患和经济损失也一般是不可小觑的[1]。

2.边坡稳定理论

2.1 边坡稳定理论的发展

边坡稳定分析最早出现于十八世纪,当法国某军队修建土质工事时对其边坡的稳定进行了稳定性分析[2]。之后一百年后,人们大量的修建运河、铁路以及大土坝,使人们逐渐意识到这些构筑物的边坡稳定研究的必要性。随着这项与研究的发展,边坡稳定问题成为岩土工程的经典问题之一。早期的理论研究建立在与实际有一定出入的条件基础之上,为半理论半经验性质,分析的方法并不完善。研究的成果与实际结果有较大出入。

边坡稳定研究另一个比较有里程碑意义的是1950年土力学专家太沙基发表了题为《滑坡机理》的论文。该论文对滑坡产生的过程、起因以及判定方法进行了论述,为之后边坡稳定的研究奠定了基础。到了20世纪60年代,一些大型大坝、岩体失稳事故的发生,更加促使了边坡稳定研究的发展。这时的理论研究逐渐采用弹塑性理论,使研究成果更加接近实际。

2.2 边坡稳定分析方法

如今边坡稳定问题分析方法较多。最常用的是极限平衡分析法和有限元法。极限平衡法将滑动带上土体竖向划分为若干土条,列出这些土条的静力平衡方程,从而计算出边坡安全系数。极限平衡法较容易理解掌握,但得到的安全系数不够准确,与实际监测结果有一定差异。有限元法计算结果较为真实,且不必事先假定滑动体形状位置,缺点是不能直接得到安全系数,工程应用不方便。

3.边坡的破坏形式

边坡破坏常发生于岩土软弱处和强风化段。某公路边坡破坏实例如图1所示。为保证行车安全,应注意检查边坡的变化,及时进行加强防护。通常其破坏形式如下几种[3]:

(1)滑坡:岩土在重力作用下无支撑力整体向下方滑动。通常发生于河流、雨水冲刷后以及人为切割较多坡脚后。当坡体顶部超载后也易发生此现象。滑坡根据力学特征可分为牵引式和推移式。牵引式滑坡起因是下部先滑动,导致上部土体失去支撑作用继而变形滑动,发生速度较为缓慢。推移式滑坡则是上部土体受到挤压后向下移动,并挤压下面的土体,常见于上部堆载的情况。

(2)崩塌:陡坡上岩层本身不稳定,容易在外界的扰动下发生突然的脆性破坏。崩塌发生速度极快,无明显的滑动面。虽然剥落的岩体总体积一般并不大,但其发生突然,若路面有行人车辆,则很难避开。

(3)剥落:岩土表面在风化作用下与母体脱离。

图1 边坡破坏实例

4.边坡失稳的防护措施

边坡稳定防护措施可分为浅层的防护与深层加固治理以及二者的综合治理方法。

4.1 浅层防护措施

(1)坡面防护。坡面防护主要方法有种植植被,抹面,捶面等。当边坡较为稳定,表面只轻微冲刷,且土质环境适宜草类生长,可采用种植草体方法防止土坡表面的冲刷。当坡面易风化或冲刷严重时,可用材料抹面形成整体性较好的表面。

以某公路工程为例,其表层土为膨胀土则其开挖后原本稳定的土层现在表层,土体所受到的扰动较大,较容易发生失稳问题。此时应特别注意对坡面的加固防护。该项目表层采用混凝土骨架,主要为方格和拱形护坡并结合使用植被护坡[4]。

(2)地面排水。

从造成土坡失稳的原因分析中可知水对土坡失稳的重要影响,因此必须将表层水及时排出,防止地面水变成地下水,减少水对土坡的扰动。地面排水主要有以下几类,在挖方路基的路肩外侧;挖方路基上方适当位置以对流向路基的水流截流;用以引出低洼积水的排水沟等。

(3)冲刷防护。用以防止边坡的被冲刷以及受大气影响,多采用护面墙。护面墙的坡度应满足整体的稳定要求。

4.2 深层防护措施

(1)排除地下水。不仅应对地表水及时排除,对地下水更应注意其水位变化,并及时制定应对措施。深层地下水的排除方式有:渗沟排水、集水井排水、平沟排水及渗水隧洞排水。

(2)岩土锚固技术。采用拉杆将土坡锚固在稳定的岩层上,充分利用稳定岩层的作用力,提高土坡整体的稳定性。该方法在几乎不增加结构自重的基础上确保了岩土的稳定,减轻了下部土体基础的作用力,更加确保了结构安全性。该方法经济性安全性明显,故在岩土工程中广泛应用。

(3)土钉支护。该方法经济可靠施工方便,在工程中推广迅速。土钉与周围土体充分接触,形成组合体。当土体变形滑落时,土钉受到粘结力受拉,约束了土体的进一步滑动。

4.3 边坡浅层、深层结合的防护措施

(1)挡土墙。挡土墙可分为重力式挡土墙和轻型挡土墙、悬臂式挡土墙、扶壁式挡土墙等。在公路边坡支护中重力式挡土墙应用较多,其依靠自身重力抵抗侧向土压力,防止墙身后土体的失稳滑动。该方法应用于夹杂大孤石的残积土边坡常不成功。因为此类边坡蠕动变形大。应采用土钉挂土工格栅后再在表层种植植被。

(2)抗滑桩。抗滑桩使用桩穿过滑坡面直接锚固在稳定岩层一定深度范围内,可以抵抗一定的滑坡作用力,阻止滑坡体的滑动状态,增加边坡安全系数。抗滑桩可以有效的解决一些难度较大的工程,因此该发展较为迅速。抗滑桩桩位布置灵活,可设置在抗滑效果最有利的位置。使用抗滑桩需要注意的是使用寿命。几年之后抗滑桩经常会出现推移甚至倾倒事故。理论上是由于土压力理论的缺陷,没有考虑土体的蠕动的物理现象。现在可加固土体自身加强结构的整体性以提高土坡稳定性。

另外公路路线的选择直接关系到边坡的稳定性。合理的公路平纵面设计可以减少大填大挖,减少对山体的破坏。避免高填深挖,在丘陵地区尽量按地形顺其自然的设置边坡。对山路路线不宜过度追求平直。要充分利用地形,恰当使用人工构造物如锚杆、喷射砼、加筋挡土墙等,减少对环境的影响。

边坡的稳定性验算应采用适宜的方法和合理的参数。应充分考虑各计算参数的随机性和模型的不确定因素[5]。另外应从法制上保证公路建设的顺利进行,建立健全法律体系,采用强制手段保证公路建设的可持续发展,全面提高公路的建设质量。

参考文献

[1] 姚金强.浅谈边坡稳定及加固[J].民营科技,2012(1).

[2] 儒.边坡稳定及抗滑桩加固分析研究[D].长安大学,2013.

[3] 刘金良.公路边坡稳定与防护问题[J].科技情报开发与经济,2004(14)

篇(7)

论文关键词:深基坑支护类型土压力支护结构地下水动态设计施工

深基坑工程是随着城市建设事业的发展而出现的一种较类型的岩土工程,基坑支护设计是一个综合性的岩土工程问题既涉及土力学中典型强度与稳定问题,又包含了变形问题,同时还涉及到土与支护结构的共同作用以及结构力学等问题。随着对这些问题的认识及其对策研究的深入,越来越多的新技术在深基坑工程中也得到应用。

1深基坑支护类型

1)土钉墙支护。2)搅拌桩支护。3)柱列式灌注桩、排桩支护。4)内支撑和锚杆支护。5)钢板桩支护。6)地下连续墙。

2深基坑支护的土压力

2.1土强度指标的选择

土的抗剪强度指标C,与土的固结度有密切的关系,土的固结过程就是土中孔隙水压力的消散过程,对于同一种土,在不同排水条件下进行试验,可以得出不同的抗剪指标C和,故试验条件的选取应尽可能反映地基土的实际工作状态。在基坑支护设计中应采用三轴试验的指标,才能保证选取参数值的客观性和准确性。对于黏性土,计算围护结构背后由自重应力而产生的主动土压力采用三轴试验的固结不排水剪的指标与实际工作状态较致,但由地面临时荷载而产生的土压力,通常采用三轴不排水剪指标较合理。特别对于软黏性土,最好采用现场十字板的原位测试方法确定c和妒,因为室内试验的扰动影响太明显,强度指标偏低,使设计过于保守。计算基坑内被动土压力时,一般宜采用三轴固结不排水剪。对于砂土,由于排水固结迅速,对于任何情况,均可采用排水剪指标,或采用固结不排水剪经孔隙水压力修正后的c,值来计算土压力。

2.2土压力计算理论及方法

1)试验结果证实了太沙基理论的定性结论,土压力大小取决于位移的大小和位移方向;2)实测结果表明,当变形小于5%H(H为开挖深度)时,被动土压力仍然能得到充分发挥,所以说,对于深基坑工程的实际变形情况而言,套用一些经验的位移指标来判断墙前土体是否达到被动极限状态,是有局限性的;3)在黏性土上的许多基坑支护工程,护坡桩钢筋强度未完全发挥,实际钢筋应力还低于钢筋的设计强度,造成很大浪费,而造成钢筋应力低的原因主要是计算土压力大于实际土压力。实验还表明,把基坑支护结构视为平面不合理,因为基坑工程的“角效应”即土压力的空间效应,对墙移有明显的抑制作用。利用这种空间效应可以在两边折减桩数或减少配筋量。

2.3水土压力的合算与分算

按照有效应力原理,可知“土、水压力分算”比“土、水压力合算”概念要清楚。但由于要测得有效应力强度指标,一般试验难以做好,而且水、土压力合算法在一些软黏土地区的临时性开挖工程中土压力计算值与实测值较为符合。

土在有水作用时,墙后土压力主要是水、土压力共同作用的结果,在未搞清水、土耦合效应的前提下,水、土压力合算是一个包含一定的实践经验的综合方法,对工程实践来说是有利的。

为搞清墙后土体在水、同作用下的破坏机理,进行水、土压力分算,是符合系统科学原理的方法。

3支护结构计算方法

3.1静力平衡法

静力平衡法亦称自由端支承法,该法假定围护结构是刚性的,并可绕支撑点转动。围护结构的前侧产生被动土压力,后侧产生主动土压力。静力平衡法适用于围护结构的入土深度不太深即底端非嵌固的情况,此时围护结构由于土压力的作用而达到极限平衡状态。利用墙前后土压力的极限平衡条件来求插入深度、结构内力等。

3.2等值梁法

单支撑(锚拉)埋深板桩计算,将其视为上端简支、下端固定支承,变形曲线有一反弯点,一般认为该点弯矩值为零,于是可把挡土结构划分为两段假想梁,上部为简支,下部为一次超静定结构,其弯矩图不变,该法称为等值梁法。实践表明,等值梁法计算板桩是偏于安全的,实际设计计算常将最大弯矩予以折减,折减经验系数为0.6~0.8,一般取0.74。等值梁法基于极限平衡状态理论,假定支挡结构前后受极限状态的主被动土压力作用,不能反映支挡结构的变形情况,亦即无法预先估计开挖对周围建筑物的影响,故一般仅作支护体系内力计算的校核方法之一。

3.3弹性地基梁的m法

基坑工程弹性地基梁法取单位宽度的挡墙作为竖直放置的弹性地基梁,支撑简化为与截面面积、弹性模量和计算长度等有关的二力杆弹簧。弹性地基梁法中土对支挡结构的抗力(地基反力)用土弹簧模拟,地基反力的大小与挡墙的变形有关,即地基反力由水平地基反力系数同该深度挡墙变形的乘积确定。即f=mzy,其中,.f为土对支挡结构的水平地基反力,kN/m2;为比例系数,kN/m4;为计算深度,m;为计算点处挡墙的水平位移m。弹性地基梁的m法优点是考虑了支护结构与土体的变形协调。工程实践表明,在软土中的悬臂桩支护计算采用m法,计算位移与实测位移有很大差异,实测位移是计算值的好几倍。这说明桩后土体变形已不再属于弹性范围。另外,m法无法直接确定支护结构的插入深度,通常假定试算有很大的随意性,有时桩底落在软弱土层中,还需经验来修正。

3.4弹塑有限元法

有限单元法作为今后基坑支护设计计算的发展方向,它的优点是考虑了土体与结构的变形协调,而且可以得出塑性区的分布,从而判断支护结构的总体稳定性。但选取合理的本构模型与计算参数,以及塑性区范围与稳定性之间的定量关系均缺乏经验。目前,随着计算机技术及系统科学的发展,为有限单元法的完善提供了更有利的工具。在结构计算方面,建立了能考虑基坑围护结构和土压力的空间非线性共同作用理论及其计算方法,并编成程序,方便高效地完成基坑围护工程的计算。

4地下水治理

4.1明排水治理法

在填土、浅层黏性土中开挖基坑,经计算和现场试验判断不可能发生坑底突涌或侧壁渗漏、流土,可采用明沟盲沟排水方法。

4.2井点降水治理法

降水治理方法适用以下条件:1)地下水位较浅的砂石类或粉土类土层;2)周围环境容许地面有一定的沉降;3)止水帷幕密闭,坑内降水时坑外水位下降不大;4)基坑开挖深度与抽水量均不大,或基坑施工期较短;5)有有效措施足以使邻近地面沉降控制在容许值以内;6)具有地区性成熟经验,验证降水对周围环境不产生大的不良影响。填土、粉土及含薄层粉砂的粉质黏土含水层涌水量不大时,适用轻型井点降水。黏性土、淤泥质土和粉土,适用电渗井点降水。砂土、粉土地层适用喷射井点降水。砂土、碎石土和岩石地层适用管井井点降水。管井降水可根据水文地质条件,水位降幅要求和环境保护要求采用完整井或非完整井。

4.3隔渗治理法

采取隔渗措施治理方法适用以下条件:1)开挖深度以上或坑底以下接近坑底部位分布有粉土、粉砂,有可能产生流土时;2)邻近基坑有地表水体(湖塘、渠道、河流),与基坑之间没有可靠隔水层时;3)有承压水突涌可能,且无降水措施时。

4.4减小降水不良影响的措施

1)充分估计降水可能引起的不良影响;2)设置有效的止水帷幕,尽量不在坑外降水;3)采用地下连续墙;4)坑底以下设置水平向止水帷幕;5)设置回灌系统,形成人为常水头边界。回灌系统适用于粉土粉砂土层。

5动态设计和施工

深基坑工程是土体与围护结构体系相互作用的一个动态变化的复杂系统,仅依靠理论分析和经验估计是难以把握在复杂等条件下基坑支护结构和土体的变形破坏,也难以完成可靠而经济的基坑设计。通过施工时对整个基坑工程系统的监测,可以了解其变化的态势,利用监测信息的反馈分析,就能较好地预测系统的变化趋势。当出现险情预兆时,可做出预警,及时采取措施,保证施工和环境的安全;当安全储备过大时,可及时修改设计,削减围护措施,通过分析,可修改设计模型,调整计算参数,总结经验,提高设计与施工水平。